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Perceptual grouping of line segments into object contours has
been thought to be mediated, in part, by long-range horizontal
connectivity intrinsic to the primary visual cortex (V1), with a
contribution by top-down feedback projections. To dissect the
contributions of intraareal and interareal connections during con-
tour integration, we applied conditional Granger causality analysis
to assess directional influences among neural signals simultaneously
recorded from visual cortical areas V1 and V4 of monkeys perform-
ing a contour detection task. Our results showed that discounting
the influences from V4 markedly reduced V1 lateral interactions,
indicating dependence on feedback signals of the effective connec-
tivity within V1. On the other hand, the feedback influences were
reciprocally dependent on V1 lateral interactions because the
modulation strengths from V4 to V1 were greatly reduced after
discounting the influences from other V1 neurons. Our findings
suggest that feedback and lateral connections closely interact to
mediate image grouping and segmentation.
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Akey step in the visual system’s analysis of object shape is to
group line segments into global contours and segregate

these contours from background features. This process is critical
to identifying object boundaries in complex visual scenes, and
thus particularly important for performing shape discrimination;
image segmentation; and, ultimately, object recognition.
Contour integration follows the Gestalt principle of good con-

tinuation (1). The underlying neural underpinnings have been
characterized as an association field (2), which links contour ele-
ments that are part of smooth contours. Neurophysiological studies
in monkeys have identified that the primary visual cortex (V1)
makes a fundamental contribution to contour integration (3–6), and
anatomical studies have shown that the topology of horizontal
connections in V1 is well suited for mediating interactions between
neurons with a similar orientation preference (7–10). Such intra-
cortical circuitry in V1 has been implemented in many computa-
tional models to account for the successful process of contour
integration (11–13). Although many lines of converging evidence
suggest that V1 is intimately involved in contour integration, circuit-
based models have to take into account the findings that contour
grouping is more than a bottom-up or hard-wired process, but that
it is strongly dependent on top-down feedback influences (5, 14–17).
Surface segmentation, another important intermediate stage in
processing of visual images, is also mediated by interactions be-
tween feedforward and feedback connections (18).
We have proposed a model whereby cortical feedback con-

tributes to the effective connectivity of horizontal connections
within V1 (13, 19). A possible role of higher cortical areas in this
process is to disambiguate local image components by creating a
template that is fed back to V1, which then can selectively en-
hance object components and suppress interfering background
(20–22). This notion is exemplified in one of our recent studies
through simultaneous recordings from monkey visual cortical
areas V1 and V4 implanted with microelectrode arrays (23). We

have shown that in the presence of a complex background, in-
formation about global contours emerges initially in V4 and then
rapidly builds up in both cortical areas. Bidirectional interareal
interactions not only facilitate V1 neurons encoding the contour
elements but also suppress V1 neurons responding to the back-
ground. Because the onset of contour-related signals in V1 is
much delayed relative to the onset of contour-related signals in
V4, an unsolved important question is whether the contour sig-
nals in V1 are derived from feedback inputs alone, or whether
they are mediated by an intimate interaction between feedback
signals and horizontal connections within V1.
In the current study, we used conditional Granger causality

(GC) to tease apart the contributions of horizontal interactions
within V1 and top-down feedback from V4 to V1. Although
conventional GC provides a statistical measure of the influences
of one recording site on another, conditional GC provides a
further measure of whether such influences are dependent on
other simultaneously recorded sites. It also has the ability to
remove confounding influences that result from common inputs
to a pair of recording sites, thus allowing us to dissect the re-
spective contributions of horizontal connections and feedback
influences during contour integration.

Results
To look at the interplay between feedback and intrinsic cortical
connections, we recorded neural activities from V1 and V4 of
awake monkeys performing a contour detection task (23). In this
task, two identical background patterns of randomly oriented
bars were presented in two visual field quadrants (Fig. 1A). A
contour was formed by collinearly aligning one, three, five, or
seven bars in either of these two patterns (Fig. 1B). The monkeys
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were rewarded for choosing the pattern containing the contour
by making a saccade to it. When the number of collinear bars was
one, the two simultaneously displayed patterns were identical
and the animals were randomly rewarded for choosing either of
the two stimuli.

Feedback Modulation from V4 Strengthens V1 Lateral Interactions.
We analyzed multiunit spiking activity recorded by microelec-
trode arrays implanted in V1 and V4 from neurons with pre-
ferred orientations close to the contour orientation and with
overlapping receptive fields (RFs) in these two cortical areas.
The simultaneously recorded V1 sites were further separated
into two groups: the contour sites with RFs lying on the contour
and the background sites with RFs on the complex background.
Analysis of spiking activity (Fig. 1C) confirmed the previous
observations (23) of both contour facilitation (increasing re-
sponses for V1 contour sites with increasing contour length) and
background suppression (decreasing responses for V1 background
sites with increasing contour length). V4 sites, similar to V1 contour
sites, showed progressively enhanced responses as the number of
collinear bars increased.
To dissect the respective contributions of V1 horizontal con-

nections and V4 feedback influences during contour integration,
we performed conditional GC analysis on spike trains collected

in the seven-bar condition. Specifically, we compared the inter-
actions between V1 neurons, as measured by GC, with and
without taking into account V4 influences. We observed that
after discounting V4 influences using conditional GC analysis,
V1 horizontal connectivity along the contour path significantly
decreased in the frequency range of 0–30 Hz compared with
horizontal connectivity calculated using conventional GC analysis
(Fig. 1D). Similar reductions were observed in V1 effective con-
nectivity between two recording sites representing the contour and
the background, respectively (Fig. 1 E and F), and between two
sites on the background (Fig. 1G), with significant percentage
changes across all types of paired recording sites in V1 (Fig. 1H;
Friedman test for repeated-measures: χ2½332�= 69.61, P < 10−14;
four categories with different sample sizes were randomly down-
sampled to the smallest number, which was 332). Interestingly, the
directional interactions were asymmetrical between V1 contour
and background sites when the same recording sites were analyzed
(compare Fig. 1 E with F), suggesting asymmetrical figure–ground
interactions within V1 in the presence of a global contour.
We repeated the above analyses by shuffling V4 spike trains

across trials. The changes in GC for paired V1 sites were negli-
gible after discounting the influences from trial-shuffled V4 data
(compare Fig. S1 A–D with Fig. 1 D–G), further confirming that
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Fig. 1. GC analysis of V1 lateral interactions based on spike trains. (A) Contour detection task. (B) Sample contour patterns with embedded contours formed
by different numbers of collinear bars. (C) Sample recording sites showing normalized neuronal responses to contours of different lengths for a V1 recording
site on the contour (V1C site), a V1 site on the background (V1B site), and a V4 site. (Insets) Cartoons illustrate the spatial relationship between the collinear
contour and the examined RFs. (D–G) GC value as a function of frequency in the seven-bar contour condition, showing the directional interactions in
V1 between contour sites (V1C–V1C), from contour sites to background sites (V1C–V1B), from background sites to contour sites (V1B–V1C), and between
background sites (V1B–V1B) before (red) and after (blue) discounting V4 influences. Shaded areas represent ±SEM. (H) Data shown in D–G are replotted here,
showing percentage reductions in overall GC (summed over 0–50 Hz) after removing V4 influences. Error bars represent ±SEM. A similar analysis based on LFP
data is shown in Fig. S2.
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the effective connectivities between V1 sites are subject to feedback
modulation.
In addition to multiunit spiking data, we performed conditional

GC analyses on simultaneously recorded local field potentials
(LFPs), which reflect aggregate activity over a large population of
neurons. We observed similar feedback modulatory effects from
V4 on lateral interactions within V1 along the contour, between the
contour and background, and within the background (compare Fig.
S2 A–E with Fig. 1 D–H).
The analyses of both spike-train and LFP data using conditional

GC strongly support the notion that feedback from V4 strengthens
V1 lateral interactions.

Feedback Modulation from V4 Is Amplified by V1 Lateral Interactions.
In the detection task, contour saliency was signaled by the
number of collinear bars embedded in the complex background.
Previous studies have shown that V1 neurons encode perceptual
saliency of contours, with more salient contours inducing stron-
ger facilitatory effects on neurons with RFs lying on the contour
(5, 23, 24) and stronger inhibitory effects on neurons with RFs
lying on the background (23, 24). Our GC analysis using spike-
train data showed that the strength of feedback influence from
V4 to V1 contour sites (Fig. 2 A, solid lines and B, dark solid
line) and to V1 background sites (Fig. 2 C, solid lines and D, dark
solid line) also progressively increased as the visual contour be-
came longer. This result suggests the involvement of feedback
from V4 in generating the contour signals as well as in sup-
pressing the background noise within V1.
We next used the conditional GC to examine whether the lat-

eral interactions in V1 are required for the feedback signals to
take effect. After discounting the influences from V1 background
sites, we found a substantial reduction in influence from V4 to
V1 contour sites (Fig. 2 A and B, dashed line versus solid line of
the same color). The amount of reduction was larger for longer

contours (Fig. 2B, gray line). The feedback influences from V4 to
V1 background sites also showed a similar pattern of dependency
on the influences from V1 contour sites (Fig. 2 C and D).
In agreement with the results from spike-train data analysis, GC

analysis using LFPs showed similar effects (compare Fig. S3 with
Fig. 2). Together, these results indicate the contributions of
V1 lateral interactions to mediating and strengthening the feedback
modulatory effects, which could play an important role in amplify-
ing the contour signals and suppressing the background noise.

The Relative Contribute of Feedback Modulation and Lateral Interactions
to Contour Integration in V1. Figs. 1 and 2 showed interdependence
between feedback modulation and horizontal interactions in gen-
erating contour signals in V1. We next set out to examine the rel-
ative contributions of V1 lateral interactions and V4 feedback
influences during this process. We first compared the influences
from V4 recording sites and from V1 background sites, respectively,
on the interactions between two V1 contour sites lying on a seven-
bar contour. We observed, by means of conditional GC, that the
interactions between V1 contour sites showed a significantly larger
reduction in strength when the influence of V1 background sites
was removed than when V4 influence was removed (Fig. 3 A and C,
two left bars in C; unpaired t test: t662 = 23.24, P < 10−87).
We then repeated the same analysis to examine the interactions

between two V1 background sites influenced by V4 sites and by
V1 contour sites, respectively. We also found a significantly larger
decrease in lateral interactions between V1 background sites after
discounting V1 contour sites than after discounting the influences
from V4 (Fig. 3 B and C, two right bars in C; unpaired t test: t1158 =
38.3, P < 10−207).
Consonant with the results from analysis of spiking data, condi-

tional GC analyses on LFPs also showed that the lateral interactions
among V1 neurons contribute more to the contour integration

A
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B

Fig. 2. GC analysis of V4 feedback modulations based on spike trains. (A) Influences of V4 on V1 contour sites with (solid lines) and without (dashed lines) the
influences from V1 background sites for different contour lengths. (B) Data shown in A are replotted here, showing the overall GC (summed over 0–50 Hz, left
y axis) as a function of contour length with (solid black curve) and without (dashed back curve) the influences from V1 background sites. The gray curve
(associated with the right y axis) represents percentage reductions (Friedman test, all Ps < 0.001) in GC after discounting the influences from V1 background
sites. Error bars represent ±SEM. (C and D) Similar to A and B, but showing the influences of V4 on V1 background sites with and without the influences from
V1 contour sites (Friedman test, all Ps < 0.001). A similar analysis based on LFP data is shown in Fig. S3.
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process in V1 than feedback modulation from V4 (compare Fig.
S4 with Fig. 3).

Both Feedback Modulation and Lateral Interactions Reflect Behavior.
To examine whether V4 feedback influences and V1 lateral in-
teractions were related to behavior, we measured the GC sepa-
rately for trials in which the animals made correct and erroneous
responses. Because there were only a small number of error trials
in the five- or seven-bar contour condition, we instead used the
three-bar condition for this comparison. The numbers of the
correct and error trials were equated to avoid potential con-
founds due to a difference in sample size.
We found overall decreases of GC in the error trials compared

with the correct trials for both V4 feedback influences (Fig. 4A)
and V1 lateral interactions (Fig. 4B). These changes were sta-
tistically significant (Fig. 4C, two left bars: unpaired t test: t2612 =
3.16, P < 0.01; two right bars: t1906 = 5.61, P < 10−6), showing
that both feedback influences and V1 lateral interactions are
behaviorally relevant.

Discussion
Despite the prevalence of feedback projections throughout the
visual cortex, it remains unclear what role the cortical feedback
plays in contour integration. We showed that feedback influences
from V4 remarkably promote the lateral interactions within V1
(Fig. 1 and Fig. S2). This result supports a neural network model
involving gating of V1 lateral interactions through feedback mod-
ulation (11–13).
It is intriguing to observe that intrinsic V1 interactions sub-

stantially strengthen V4-to-V1 feedback modulatory effects, es-
pecially in the presence of a global contour (Fig. 2 and Fig. S3).
This observation is somewhat surprising, but it can be explained
within the theoretical framework of countercurrent processing
between cortical areas (20–23): The intrinsic V1 connections

provide a substrate on which the feedback operates, and the
interactions between feedback and horizontal connections may,
in turn, reinforce the feedback modulatory effects for effectively
analyzing and disambiguating complex visual scenes. The con-
sequence is to augment the contour signals and suppress the
background noise, resulting in a parallel increment of global
contour information in both V1 and V4 (23).
We also showed that although both feedback influences and

lateral interactions were behaviorally relevant and tightly cou-
pled in contour grouping, the lateral interactions seemed to
contribute more to the integration process in V1 (Fig. 3 and Fig.
S4). This result is in agreement with the structure of long-range
horizontal connections, which tend to link neurons with non-
overlapping RFs and similar orientation preferences (7–10).
GC is a statistical measure of directional influence of one time

series on another (25). For two simultaneously measured time
series, one is called causal to the other if the predictability of the
second process at a given time point is improved by including
measurements from the immediate past of the first. GC has been
shown to be suitable for probing directionality in neuronal in-
teractions for both continuous signals (26–29) and spike trains
(30–32). However, the pairwise approach to GC analysis may not
clearly distinguish causal influences from different sources.
Conditional GC is instrumental in disambiguating such a situa-
tion (33), yet it has not been available for spike-train data. The
development of such a measure allows us to perform multivari-
ate analyses of spike-train data collected by electrode arrays,
which is particularly important, given the common use of spikes
in neuroscience research. In the contour detection process ex-
amined in the current study, results from analyses of both spiking
and LFP data were largely in agreement, but only the spiking
data can be used to differentiate V1 neurons reliably on the
contour and background.

A B C

Fig. 3. Relative contributions of V4 feedback modulations and V1 lateral interactions to the contour integration process in V1. (A) GC of spiking interactions
between V1 contour sites (red) compared with GC without the influences from V4 sites (blue) or V1 background sites (magenta). (B) GC of spiking interactions
between V1 background sites (red) compared with GC without the influences from V4 sites (blue) or V1 contour sites (magenta). (C) Same data as in A and
B are replotted to show percentage reductions in GC after discounting V4 feedback or V1 lateral influences. Shaded areas and error bars represent ±SEM.
A similar analysis of LFP data is shown in Fig. S4.

A B C

Fig. 4. Behavioral relevance of feedback influences and lateral interactions. The feedback influences of V4 on V1 (A) and the lateral interactions within V1
(B), measured by GC analysis of spike trains, were weaker in trials with erroneous behavioral choice (blue) compared with the correct trials (red). (C) GC values
summed over 0–50 Hz for data shown in A and B (**P < 0.01, ***P < 0.001). Shaded areas and error bars represent ±SEM.
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There are several important methodological issues when
interpreting the results obtained by GC analysis of spike-train
data. First, the data under analysis are assumed to be stationary,
which can usually be reduced with a sliding window approach
(32). Second, the noise contained in the data can bias the GC
estimation. Previous work has shown that GC estimation of
continuous time series can be strongly affected by noise, whereas
spike trains are less affected (32, 34). In addition, our simula-
tions (Figs. S5 and S6) have demonstrated that the noise-
contaminated spike trains usually lead to reduced absolute GC
values, yet the reduction does not change the GC directionality
(relative GC). Third, the difference in firing rates between
neurons can confound the GC estimation. One way to correct for
this issue is the so-called thinning procedure (27), whereby the
spikes of the more active recording site are randomly removed to
equate the firing rates of the paired sites. Fourth, the directional
influence revealed by GC analysis is statistical in nature; thus, the
observation of a Granger causal influence in the cortex does not
necessarily imply the existence of direct anatomical connections
between the corresponding neurons. Although GC analysis has
proven informative in dissecting neuronal interactions (26, 27, 32,
33), we note that it is difficult to exclude possible influences from
hidden variables or unrecorded neurons. Although this problem
has motivated several modeling studies (e.g., ref. 35), future work
to account for the common, yet hidden, inputs is needed to ad-
dress this issue. Functional influences between V4 and V1 can be
mediated by a number of anatomical routes, including direct
connections between V4 and V1 and indirect connections passing
through V2 or even pulvinar (33, 36). Nonetheless, the interac-
tions within V1 are likely mediated by a plexus of horizontal
connections that run between columns of similar orientation
preference (7–10, 37). The columnar specificity of these horizontal
connections, as well as their extent, is consonant with the func-
tional and perceptual characteristics of the putative association
field that links contour elements belonging to a smooth contour
(2, 38, 39). The task-dependent nature of contour-related re-
sponses in V1 suggests the involvement of higher order feedback
influences on the expression of the association field (14). The
results presented here from the conditional Granger analysis
support the idea of such an interaction.
In summary, by distinguishing whether the intraareal and inter-

areal interactions between cortical neurons have components of
different origins, the current study dissected the respective contri-
butions of V1 horizontal connections and V4 feedback to contour
grouping, and revealed an interactive role between feedback and
intrinsic circuits in parsing visual images.

Materials and Methods
Ethical approval was granted by the Institutional Animal Care and Use
Committee of Beijing Normal University, with all experimental proce-
dures in compliance with the NIH Guide for the Care and Use of Labo-
ratory Animals (40).

Behavioral Paradigm and Electrophysiological Recordings. Details of the ex-
perimental design are available elsewhere (23). In brief, two adult monkeys
(Macaca mulatta, male, weighing 6.5 and 10.5 kg) were trained to detect a
visual contour formed by collinear bars embedded in either of two stimulus
patches displayed simultaneously (Fig. 1A). Each component bar was 0.25° by
0.05° in size and distributed in a circular area 4.5° in diameter divided by 0.5°
by 0.5° grids. The number of collinear bars forming the contour was randomly

set to one, three, five, or seven in a trial (Fig. 1B). The task started with an initial
fixation period of 300 ms, followed by a 500-ms stimulus presentation. After a
300-ms blank delay period, the monkey was rewarded for making a saccade
within 800 ms to the location of the contour pattern. When the monkeys were
performing the contour detection task, multiunit activities (waveforms sampled
at 30 kHz) and LFPs (sampled at 2 kHz) were recorded from two microelectrode
arrays (Blackrock Microsystems; six by eight electrodes, each ∼0.5 mm in length
and spaced 0.4 mm apart) implanted in V1 and V4, respectively, at corresponding
retinotopic locations.

Data Analysis. All data analyses were performed using MATLAB (The Math-
Works). Spike trains and LFPs within 0–500ms after stimulus onset were used.
The orientation tuning curves and RFs of V1 and V4 recording sites were
measured using grating patches and were fitted with Gaussian functions.
The recorded V1 and V4 RFs had mean eccentricities of 5.08 ± 0.92° (mean ±
SD) and 4.07 ± 1.77°, respectively, and mean sizes of 0.67 ± 0.19° and 5.23 ±
2.35°, respectively. Only recording sites with preferred orientations deviated
from the global contour by less than 35° were selected. Based on the dis-
tance of a neuron’s RF center to the contour path, the selected V1 sites were
further divided into contour sites (RF contour distance ≤ 0.35°) and the
background sites (RF contour distance ≥ 0.55° and ≤ 1.50°). Among the se-
lected V4 sites, only those sites with central RF regions (±1.17 SD of the
Gaussian envelope) intersecting the axis of the contour and covering the RF
centers of selected V1 sites were used (more details are provided in ref. 23).

Conditional GC Analysis. Conditional GC analysis was performed to evaluate
the influence of one recording site (Y) on another (X), after taking into
account the influence of other recorded sites (Z). It allowed us to dissect
contributions of different sources to neuronal interactions. Within the
multivariate regression framework, the frequency domain representation of
the conditional GC measure from Y to X, conditional on Z, is given by
IY→XjZðfÞ= ln½PXXðX,ZÞ=

�
�~HXXðfÞ~ΣXXðX,Y,ZÞ~H*XXðfÞ

�
��, where

P
XXðX,ZÞ is the

residual variance of X that is not explained by the joint regression of X and Z;
~ΣXXðX,Y,ZÞ and ~HXXðfÞ are, respectively, the noise covariance matrix in the
joint regression of X, Y, and Z and the normalized transfer function, and the
asterisk denotes complex conjugate (41, 42).

To make the conditional GC directly applicable to spike trains, we took a
nonparametric approach (43). In our implementation, to construct the
spectral density matrix, the spectral estimate of spike trains was directly
applied to the neural point process itself (i.e., sequences of spike times
rather than the spike counts), using the multitaper technique (44). To cal-
culate the spectral estimates of spike trains that were down-sampled to
1 kHz, five orthogonal Slepian tapers were applied to the spiking activity
within the 500-ms stimulus presentation period. The obtained spectral ma-
trix, SðfÞ, was then factorized into the product of transfer functions and the
noise matrix (45), SðfÞ=HðfÞΣH*ðfÞ, from which the conditional GC was
finally computed.

For the analysis of LFP time series, LFPs were first down-sampled to 200 Hz,
followed by prewhitening with a first-order autoregressive model to reduce
the dynamic range of the data. This preprocessing helps reduce bias of the
final spectral estimate. Similar to the above analysis procedures of spike data,
conditional GC was obtained based on the prewhitened LFP data.

The strength of the directional influence from one recording site to an-
other was defined as the total GC values that were integrated over the
frequency range of 0–50 Hz. To rule out the possibility that changes in GC
could be due to different neuronal firing rates at different contour lengths,
a thinning procedure (27) was performed to correct the spiking rate dif-
ferences by randomly removing the spikes of the more active recording site
until the average firing rates of the paired sites were equal.
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