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Abstract

We present a continuous model for structural brain connectivity based on the Poisson point 

process. The model treats each streamline curve in a tractography as an observed event in 

connectome space, here the product space of the gray matter/white matter interfaces. We 

approximate the model parameter via kernel density estimation. To deal with the heavy 

computational burden, we develop a fast parameter estimation method by pre-computing 

associated Legendre products of the data, leveraging properties of the spherical heat kernel. We 

show how our approach can be used to assess the quality of cortical parcellations with respect to 

connectivity. We further present empirical results that suggest that “discrete” connectomes derived 

from our model have substantially higher test-retest reliability compared to standard methods. In 

this, the expanded form of this paper for journal publication, we also explore parcellation free 

analysis techniques that avoid the use of explicit partitions of the cortical surface altogether. We 

provide an analysis of sex effects on our proposed continuous representation, demonstrating the 

utility of this approach.
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1. Introduction

In recent years the study of structural and functional brain connectivity has expanded 

rapidly. Following the rise of diffusion and functional MRI, connectomics has unlocked a 

wealth of knowledge to be explored. Almost synonymous with the connectome is the 

network-theory based representation of the brain [1]. In much of the recent literature the 

quantitative analysis of connectomes has focused on region-to-region connectivity. This 

paradigm equates physical brain regions with nodes in a graph, and uses observed structural 

measurements or functional correlations as a proxy for edge strengths between nodes.

Critical to this representation of connectivity is the delineation of brain regions, the 

parcellation. Multiple studies have shown that the choice of parcellation influences the graph 

statistics of both structural and functional networks [2, 3, 4, 5]. It remains an open question 

which of the proposed parcellations is the optimal representation, or even if such a 

parcellation exists [6].

It is thus useful to construct a more general framework for cortical connectivity, one in 

which any particular parcellation of the cortex may be expressed and its connectivity matrix 

derived, and one in which the variability of connectivity measures can be modeled and 

assessed statistically. It is also important that this framework allow comparisons between 

parcellations, and representations in this framework must be both analytically and 

computationally tractable. Since several brain parcellations at the macroscopic scale are 

plausible, a representation of connectivity that is independent of parcellation is particularly 

appealing.

In this paper, we develop such a general framework for a parcellation independent 

connectivity representation, building on the work of [7]. We describe a continuous point 

process model for the generation of observed tract1 (streamline) intersections with the 

cortical surface, from which we may recover a distribution of edge strengths for any pair of 

cortical regions, as measured by the inter-region tract count. Our model is an intensity 

function over the product space of the cortical surface with itself, assigning to every pair of 

points on the surface a connectivity density, opposed to the usual connectivity mass assigned 

in discrete models. We describe an efficient method to estimate the parameter of the model, 

as well as a method to recover the region-to-region edge strength. We then demonstrate the 

estimation of the model on a test-retest dataset. We provide reproducibility estimates for our 

method and the standard direct count method [8] for comparison. We also compare the 

representational power of common cortical parcellations with respect to a variety of 

measures.

1It is critical to distinguish between white matter fibers (fascicles) and observed “tracts.” Here, “tracts” denotes the 3d-curves 
recovered from Diffusion Weighted Imaging via tractography algorithms.
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In this, the extended journal form of the conference publication [9], we explore possible 

methods for direct analysis of the continuous connective object. We present an exemplar 

analysis of group differences in continuous summary measures (regressing a connectivity 

measure on sex, with age and ICV covariates), showing significant differences in regions 

also identified using parcellation-based representations. We use this analysis to demonstrate 

a practical analysis of the proposed model.

2. Continuous Connectivity Model

The key theoretical component of our work is the use of point process theory to describe 

estimated cortical tract projections. A point process is a random process where any 

realization consists of a collection of discrete points on a measurable space. The most basic 

of these processes is the Poisson process, in which events occur independently at a specific 

asymptotic intensity (rate) λ over the chosen domain [10]. λ completely characterizes each 

particular process, and is often defined as a non-negative function λ : Domain → ℝ+, which 

allows the process to vary in intensity by location. This is functionally similar to a 

probability density, except that realizations of the Poisson process can consist of zero, one, 

or many points, the points are independent by assumption, and λ need not integrate to one.

The expected count of any sub-region (subset) of the domain is its total intensity, the integral 

of λ over the sub-region. In this paper, our domain is the connectivity space of the cortex, 

the set of all pairs of points on the surface, and the events are estimated tract intersections 

with the cortical surface.

2.1. Model Definition and Properties

Let Ω be union of two disjoint subspaces each diffeomorphic to the 2-sphere representing the 

white matter boundaries in each hemisphere. Further consider the space Ω × Ω, which here 

represents all possible endpoint pairs for tracts that reach the white matter boundary. We 

denote the set of observed tract endpoint pairs as D. We treat the observation of such tracts 

as events generated by an inhomogeneous (symmetric) Poisson process on Ω × Ω; in our 

case, for every event (x, y) we have a symmetric event (y, x).

Assuming that each event is independent of all other events except for its symmetric event 

(i.e., each tract in D is recovered independently), we model connectivity as a intensity 

function λ : Ω × Ω → ℝ+, such that for any regions E1,E2 ⊂ Ω, the number of events is 

Poisson distributed with parameter

(1)

Due to properties of the Poisson distribution, the expected number of tracts is exactly 

(E1,E2). For any collection of regions , we can compute a weighted graph (P, λ) 

by computing each (Ei,Ej) for pairs (Ei,Ej) ∈ P × P. Each node in this graph is an element 

of P (a subset of Ω, a region of the cortical surface), and the edges between them are the rate 

at which we observe streamlines between the regions.
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We call P a parcellation of Ω if ∪i Ei = Ω and ∩i Ei has measure zero ({Ei} is almost 

disjoint). If P is a parcellation, then (P, λ) has Poisson rate parameters as edges. For any 

realization of endpoints, the count matrices that form traditional connectomes are 

independent draws from Poisson distributions with elements of (P, λ) as parameters. The 

independence of the observations is conditional on λ and the fact that P is a parcellation, and 

does not imply an independence of the rates of the different regions—in other words, the 

observed counts are independent given the parameters, but this model does not speak to the 

generation of the parameters themselves.

It is immediately clear that λ is one such parcellation independent representation of 

connectivity that we desired in Section 1. λ is defined without reference to any particular 

parcellation; moreover, for any choice of parcellation P or even more general sets of subsets 

of Ω (e.g. overlapping sets) we can recover the parameters of a random network (P, λ). 

While λ is a representation of cortical connectivity, we posit that λ itself is not a weighted 

graph as it no longer has a countable set of nodes. However, it does retain several graph-like 

constructions, namely a function analogous to weighted-degree (“strength”).

Define the marginal connectivity over a region E ⊂ Ω as M(·;E) : Ω → ℝ+ as:

(2)

This is the aggregate connectivity to any point in region Ei from any point x–the pointwise 

intensity of observing a tract incident on x for which the other endpoint is contained in Ei. 

Further define

(3)

This is the direct analogue of the sum of the edge weights for a given node x, i.e. the 

weighted degree. It is equal to the pointwise rate at which tracts are incident on x, 

connecting to any other point. If λ is continuous, then it can be shown that M(x) is also 

continuous.

2.2. Selection of a Parcellation

(P, λ) is a summary statistic for the intensity function λ, in that it summarizes information 

about the rate of tract observation into a finite set of scalars. It is clearly dependent on the 

parcellation P. Thus, given λ and two or more parcellations P1, P2, . . . , we would like to 

know which parcellation and associated summary statistic (graph) (P, λ) best represents the 

underlying connectivity function. This requires a definition of the goodness of a 

representation; in practical terms, this means we need to choose a loss function in order to 

quantify how well (P, λ) represents λ. There are at least two perspectives to consider, one 

in which (P, λ) is viewed as an approximation to the function λ, and another in which (P, 
λ) is viewed as an approximation to the parameter of the point process model.
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L2 Approximation Error—Because each Pi covers Ω (and Pi×Pi = Ω×Ω), each (P1, λ) 

can be viewed as a piece-wise function g : Ω × Ω → ℝ+, where 

such that x ∈ Ei and y ∈ Ej. In other words, g is the constant approximation to λ over every 

pair of regions. A natural measure of error is another form of Integrated Squared Error:

(4)

This is analogous to squared loss (ℓ2-loss).

Likelihood—An alternative viewpoint leverages the point process model to measure the 

likelihood of the observed endpoint count in each region:

(5)

This uses the Poisson assumption on the tract endpoints, that the number of endpoints in any 

region Ei ×Ej is Poisson distributed with rate parameter equal to the integral of the intensity 

function over the region (Ei,Ej). Here, the independence assumption plays a critical role, 

allowing pairs of regions to be evaluated separately. Unfortunately this is biased toward 

parcellations with more, smaller regions, as the Poisson distribution has tied variance and 

mean in one parameter. A popular likelihood-based option that somewhat counterbalances 

this is Akaike’s Information Criterion (AIC) [11],

(6)

AIC balances accuracy with parsimony, penalizing overly parameterized models— in our 

case, parcellations with too many regions.

2.3. Recovery of the Intensity Function

A sufficient statistic for Poisson process models is the intensity function λ(x, y). Estimates 

of this function, denoted λ̂, represent a non-trivial learning task, and have been the subject 

of much study in the spatial statistics community [12]. We choose to use non-parametric 

Kernel Density Estimation (KDE), and we present an efficient method for tuning the 

bandwidth parameter (up to a choice of desiderata). We first inflate each surface to a sphere 

and register them using a spherical registration (See Section 3); recovery of λ can be 

undertaken without group registration, but for later analysis such a registration is useful. We 

treat each hemisphere as disjoint from the other, allowing us to treat Ω×Ω as the product of 

spheres (S1 ∪ S2) × (S1 ∪ S2).
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The unit normalized spherical heat kernel is a natural choice of kernel for 2. We use its 

truncated spherical harmonic representation [13], which is defined as the following for any 

two unit vectors p and q on the 2-sphere:

(7)

Here,  is the hth degree associated Legendre polynomial of order 0. Note that the non-zero 

order polynomials have coefficient zero due to the radial symmetry of the spherical heat 

kernel [13]. We extend this kernel to our context trivially: since Ω is actually the union of 

two spheres, S1 ∪ S2 (each the inflation of the anatomic hemispheres), we define Kσ(p, q) to 

be zero if (p, q) are not on both on S1 or both on S2. Since we are estimating a function on Ω 
× Ω, we use the product of two heat kernels as our KDE kernel κ. For any test point (p, q), 

the kernel value associated to an endpoint pair (xi, yi) is κσ((p, q)|(xi, yi)) = Kσ(xi, p)Kσ(yi, 
q). It is easy to show that ∫Ω×Ω Kσ(xi, p)Kσ(yi, q)dpdq = 1.

As is standard KDE practice, we evaluate

(8)

on a discrete grid of Ω × Ω. The surface mesh itself provides a convenient choice for such a 

grid, though various remeshing schema can also be used. We rewrite the estimator into a 

more computationally efficient form for estimating σ in the next section.

2.3.1. Bandwidth Selection—The spherical heat kernel has a single shape parameter σ 
which corresponds to its bandwidth. The practitioner may either set this parameter manually 

or select a tuning criterion and then optimize the parameter for the given criterion. We 

provide an efficient method for the latter case; a discussion on the advantages and 

disadvantages of the former is provided in Section 5.2.

In general, automated tuning of kernel hyper-parameters requires the re-estimation of the 

density estimate λ̂ at every iteration; most procedures would, at each step, propose a 

parameter value, measure some criterion and/or its derivative with respect to the parameter 

value, and then propose a next parameter value. Assuming the chosen criterion requires 

numerical integration, this usually has of order O(NMS) operations, where N is the number 

of observations (tracts), M is the number of mesh points, and S is the number of tuning 

steps/sigma grid points. For our particular context we are able to reduce this to O(NM +MS) 

operations. This is achieved by rewriting our kernel in the following form:
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(9)

The right hand side is clearly separable into two functions, one of which is independent of 

the bandwidth and the other of which is independent of the data. This allows the 

memoization of part of the computation so that we only need to store the sum of the outer 

products of the harmonics. Evaluations of the kernel can then be done quickly computed for 

sequences of values of σ.

We then are left with the choice of loss function. Denoting the true intensity function λ, the 

estimated intensity λ̂, and the leave-one-out estimate λ̂
i (leaving out observation i), 

Integrated Squared Error (ISE) is defined:

(10)

(11)

Hall and Marron [14] suggest tuning bandwidth parameters using estimated ISE. In practice, 

we find that replacing each leave-one-out estimate with its logarithm log λ̂
i(xi, yi|σ) yields 

more consistent and stable results.

3. Preprocessing and Procedure

We demonstrate the use of our framework in two separate analyses. The first is a test-retest 

reliability analysis using a subset of the Consortium for Reliability and Reproducibility 

(CoRR) dataset [15]; we compare the reliability of our method versus the standard counting 

method. We also compare three parcellations using the criteria defined in Equations 4, 5, and 

6. Our second analysis is a demonstration of groupwise tests of parcellation free measures. 

This was performed on data from the Human Connectome Project, and tests sex differences 

in marginal connectivity (Eq. 3), a derived statistic of the proposed representation. In the 

first analysis we use the self-tuning bandwidth parameter, while in the second we use a pre-

specified bandwidth. This was done to avoid conditioning results on the bandwidth 

parameter itself (avoiding the possibility of a group-wise effect on bandwidth selection).
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3.1. IPCAS (Test-Retest Reliability)

Our first dataset is comprised of 29 subjects from the Institute of Psychology, Chinese 

Academy of Sciences (IPCAS) sub-dataset of the larger Consortium for Reliability and 

Reproducibility (CoRR) dataset [15]. T1-weighted (T1w) and diffusion weighted (DWI) 

images were obtained on 3T Siemens TrioTim using an 8-channel head coil and 60 

directions. Each subject was scanned twice, roughly two weeks apart. T1w acquisition 

parameters were as follows: flip angle: 7 degrees; TI: 1100 ms; TE: 2.51 ms; TR: 2530 ms; 

voxel: 1×1×1.3 mm3. DWI acquisition parameters were as follows: flip angle: 90 degrees; 

TE: 30; TR: 200; 60 directions; voxel: 1.8×1.8×2.5 mm3.

T1w images were processed with FreeSurfer’s [16] recon-all pipeline to obtain a triangle 

mesh of the gray-white matter boundary registered to a shared spherical space [17], as well 

as corresponding vertex labels per subject for three atlas-based cortical parcellations, the 

Destrieux atlas [18], the Desikan-Killiany (DK) atlas [19], and the Desikan-Killiany-

Tourville (DKT31) atlas [20]. Probabilistic streamline tractography was conducted using the 

DWI in 2 mm isotropic MNI 152 space, using Dipy’s LocalTracking module [21], as well as 

its implementation of constrained spherical deconvolution (CSD) [22] with a harmonic order 

of 6. Tractography streamlines were seeded at 2 random locations in each voxel labeled as 

likely white matter via the segmentation maps generated by FMRIB’s Automated 

Segmentation Tool [23], also known as FSL FAST. Streamline tracking followed directions 

randomly in proportion to the orientation function at each sample point at 0.5 mm steps, 

starting bidirectionaly from each seed point. As per Dipy’s Anatomically Constrained 

Tractography (ACT) criteria [24], we retained only tracts longer than 5mm with endpoints in 

likely gray matter.

We estimate λ̂ (the continuous connectivity representation) on each scan using the self-

tuning kernel given in Section 2, and the vertices of a equi-areal triangular mesh (geodesic 

grid) as our sample points. This, along with the convention of unit surface area instead of 

unit radius (thereby eliminating an unnecessary division), simplifies computation. We 

threshold each of the sample points for λ̂ at 10−5, which is approximately one half of one 

unit tract density. We then numerically integrate λ̂ to compute regional connectivity graphs 

as in Eq. 1, and compare these to traditional count-based connectivity graphs. As a measure 

of reliability we provide the mean Intraclass Correlation (ICC) score [25] computed both 

with and without entries that are zero for all subjects, for both count and integrated-intensity 

connectivity matrices, for each element (each edge of the connectome). We also compute 

three measures of parcellation representation accuracy, namely ISE, Negative Log 

Likelihood, and AIC scores.

3.2. HCP (Demonstration Analysis of Marginal Connectivity)

Our second dataset is comprised of 731 subjects from the Human Connectome Project2 

S900 release [26]. We used the minimally preprocessed T1-weighted (T1w) and diffusion 

weighted (DWI) images rigidly aligned to MNI 152 space. T1w acquisition parameters were 

2Data were provided by the Human Connectome Project, WU-Minn Consortium (PIs: David Van Essen & Kamil Ugurbil) funded by 
the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for 
Systems Neuroscience at Washington University.
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as follows: flip angle: 8 degrees; TI: 1000 ms; TE: 2.14 ms; TR: 2400 ms; voxel: 

0.7×0.7×0.7 mm3. DWI acquisition parameters were as follows: flip angle: 78 degrees; TE: 

89.5 ms; TR: 5520 ms; 90 directions at each b-value; b-values: 1000, 2000, and 3000 s/mm2; 

voxel: 1.25×1.25×1.25 mm3.

The preprocessing of these images included gradient nonlinearity correction (T1w, DWI), 

motion correction (DWI), eddy current correction (DWI), and linear alignment (T1w, DWI). 

We use the HCP Pipeline (version 3.13.1) FreeSurfer [17] protocol to run an optimized 

version of the recon-all pipeline in order to extract registered surfaces and region labels. We 

remesh subjects in the FreeSurfer shared spherical space in order to construct registered 

meshes with a dense correspondence between the vertices [27]. Tractography was conducted 

using the DWI in 1.25mm isotropic MNI 152 space. Probabilistic streamline tractography 

was again performed using Dipy’s implementation of constrained spherical deconvolution 

(CSD) [22], here using a harmonic order of 8. The same seeding and tracking procedures 

were used as the above IPCAS dataset processing, as well as pruning short tracts, or those 

that did not end in likely gray matter (again as specified by Dipy’s ACT).

We again estimate λ̂ (the continuous connectivity representation) on each scan. In the HCP 

data, we use a fixed kernel bandwidth of σ = 0.005. While using a self-tuning kernel on each 

subject does not invalidate the proceeding analysis, it may be advantageous to instead fix a 

kernel bandwidth across the group (See Section 5). We then numerically integrate each λ̂ 

function to form the marginal connectivity defined in Eq. 3, sampled at every mesh vertex. 

We then conduct a linear regression on the marginal connectivity values at each vertex, using 

HCP subject data for Sex, with covariates of Age (in years), and intercranial volume. We 

exclude any vertex identified as part of the medial wall in more than 95% of the subjects (~ 

700 subjects), since labels are not fixed in the registered space. We correct the parametric p-

values for each regression coefficient using the the Benjamini–Hochberg [28] False 

Discovery Rate correction for multiple comparisons.

4. Results

4.1. IPCAS Test–Retest

Table 1 and Figure 1 show that networks derived from the continuous connectivity estimates 

are preferable to regular count networks with respect to reliability as measured by ICC in the 

IPCAS dataset. Table 1 shows surprisingly low mean ICC scores for regular count matrices. 

This may be because ICC normalizes each measure by its s2 statistic, meaning that entries in 

the adjacency matrices that should be zero but that are subject to a small amount of noise—a 

few erroneous tracts—have very low ICC. Our method in effect smooths tract endpoints into 

a density; end points near the region boundaries are in effect shared with the adjacent 

regions. Thus, even without thresholding we dampen noise effects as measured by ICC. 

With thresholding, our method’s performance is further improved, handily beating the 

counting method with respect to ICC score. It is important to note that for many graph 

statistics, changing graph topology can greatly affect the measured value [3]. While it is 

important to have consistent non-zero measurements, the difference between zero and small 

but non-zero edge values in the graph context is also non-trivial [29]. The consistency of 

zero-valued measurements is thus very important in connectomics.
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Table 2 suggests that all three measures, while clearly different, are consistent in their 

parcellation selection at least with respect to these three parcellations. It is somewhat 

surprising that the Destrieux atlas has quite low likelihood criteria, but this may be due to the 

(quadratically) larger number of region pairs. It should be noted that these results must be 

conditioned on the use of a probabilistic CSD tractography model. Different models may 

lead to different intensity functions and resulting matrices. The biases and merits the 

different models and methods (e.g. gray matter dilation for fiber counting vs streamline 

projection) remain important open questions.

4.2. HCP Sex Differences

Figure 3 shows a map of the areas in which significant differences of marginal connectivity 

were discovered between males and females in the HCP dataset, given the pointwise 

correspondence of the surfaces and under the fixed σ parameter. The marginal connectivity 

M(x) defined in Eq. 3 is the rate at which we observe tracts which have one endpoint at x as 

estimated by λ̂. Thus, estimated differences in marginal connectivity have a simple 

interpretation: in regions of significant difference, observed tracts are more likely to be 

incident on those regions in one group over the other. That is, the relative tract density per 

unit area is higher.

There is a clear region of difference in the left pre-frontal cortex. We also identify another 

significant region as the left anterior cingulate. Outside of these regions, there are areas 

suggestive of significant changes, but no large contiguous groups of significant vertices. 

Even though the FDR correction is conservative in its adjustment of positively correlated p-

values, we encourage researchers to take caution in the more scattered significant regions.

5. Discussion

In this paper we have proposed a continuous representation for cortical connectivity. While 

we believe our particular formulation to be novel, graph-like objects defined over 

continuums are by no means new. In particular, the continuum limits of graphs [30], also 

known as graphons, appear similar to the proposed framework, and have been used in the 

analysis of large random networks. Point process forms of graphons also exist [31], though 

in both these and the more general context the analysis is usually conducted with the 

assumption of exchangeability (i.e. the random function is invariant under measure 

preserving transformations of the domain). Our proposed structure is precisely the opposite, 

imposing the surface metric (or its proxy, a metric on S2); it is unreasonable to assume that 

phenomena of neurological interest on the cortical surface are exchangeable. Further, due to 

the surface metric the proposed object is not the graph limit of a parcellation-based graph.

Several dense connectome representations have been proposed [32, 26]. These 

representations use parcellations on the voxel or mesh-face level. Sampled continuous 

connectivity on mesh vertices and dense connectomes [26] have, at surface level, the same 

representation. They are both large arrays of connective values, with each element 

representing the connectivity to a very small physical feature; in the representation proposed 

here, however, each of these scalar values is a point density of an underlying function 

defined over the continuum of the cortical surface, with an imposed smoothness constraint. 
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The former requires integration over an area to have matching units to traditional 

connectomes (tracts), while the latter is exactly that count, not a count per unit area. The 

former is equipped with a surface topology that is separate from the network topology; the 

latter abstracts away this surface. In the dense connectome case a joint analysis could surely 

be undertaken with the mesh vertices; indeed, we believe our proposed framework could be 

construed as one such analysis.

Another alternative to atlas-based parcellations are stochastic parcellations [33, 34], such as 

those generated by Poisson disk-sampling. While the resulting representations may have a 

large number regions approaching that of the dense connectomes, the regions are usually 

sampled at the time of processing, and may not have correspondence between studies. The 

normalization of network measures across these random network configurations is still 

possible [35] using a resampling scheme. This still ignores the underlying surface, and does 

not provide insight into the nature of parcellation differences, but appears empirically useful.

The proposed framework can also be put in the context of tractographic probability spaces. 

Ours is a reduction of a tract to its endpoints since traditional connectivity analyses are 

mostly concerted with the gray matter intersections, but more general spaces have been 

proposed. In particular O’Donnell and Westin [36] and the later Wassermann et al. [37] both 

propose implicit spaces via an inner product definition (a kernel trick). More recently, 

Parisot et al. [38] and Gallardo et al. [39] both propose implicit spaces based on similarity 

measures (scalar functions on Ω × Ω), both for the purpose of connectivity based 

parcellation. In their contexts the connective profiles (or transformations thereof) generate 

the similarity measures, whereas we seek to define connectivity as a (non-negative) scalar 

function.

5.1. HCP Analysis

The objective of our analysis of the HCP data is the demonstration of a simple analysis 

based on our proposed parcellation free model. The use of mass univariate regression with 

FDR correction is a compromise; in the best possible case we would prefer a spatial 

regression. However, accounting for spatial covariance is a non-trivial task (especially 

considering the manifold under consideration is not truly S2), and so we leave this challenge 

for later work. Though such a method is desirable, the results recovered from the naïve 

method remain promising.

The identification of changes in the left pre-frontal cortex and anterior cingulate is 

encouraging for simple analyses such as these. The left pre-frontal cortex was identified in 

Ingalhalikar et al. [40] as well as Duarte-Carvajalino et al. [41] as having significant 

connectivity differences between the sexes. The anterior cingulate was also identified in 

Duarte-Carvajalino et al. as a region of significant change. Both of these studies used other, 

more complex measures of network changes, and of course used parcellation based network 

representations. The qualitative result remains similar, that females have “higher 

connectivity” in left pre-frontal cortex, and in the second case, the anterior cingulate. It 

should be noted, however, that these regions are also quite large, and the effects documented 

need not be co-localized.
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While in network analysis the degree statistic taken locally is somewhat heavy-handed, here 

its simplicity makes it easily interpretable. The lack of pre-defined parcels also removes the 

need for areal regularization. In a traditional connectome, it might be advisable to regularize 

by region size in order to make the units into tracts per unit area. This is implicit under the 

proposed representation.

We fail to identify other large contiguous regions outside of the left prefrontal cortex; this 

may, of course, be related to the underlying signal, but there are several confounding factors 

that should be considered. The identified small areas of significance may be artifacts of pre-

processing or tractography biases. In particular, it may be the case that one sex or another is 

more easily registered (or that a correlated trait, such as head-size, adds or detracts from 

such a registration). A similar case may be made for tractography. It may also be the case 

that the use of a stationary kernel (i.e. a kernel that does not change by general cortical 

region) biases our analyses towards regions with matching scale as our chosen bandwidth.

Sex differences in the brain have been studied in a number of other papers, especially with 

respect to connectivity. Alongside Ingalhalikar et al. [40] and Duarte-Carvajalino et al. [41], 

Rymen et al. [42] also measure sex differences in structural connectomes, using a proxy 

measure of creativity to explore phenotypic correlations with estimated connectivity. Of the 

three, only Rymen et al. directly use the degree statistic (in their paper referred to as 

Connectivity, or Sweighted), while both of the other studies use more complex topological 

measures.

As with almost all group difference statistical analyses, we do not make the assertion that all 

males or females exhibit the characteristics we found to be significantly different between 

the groups. These differences are found on average, are necessarily a generalization and not 

the rule, and then only given our model assumptions and procedural choices. Some of these 

differences are probably due to latent factors such as the aforementioned registration bias.

5.2. Kernel Bandwidth Selection

ISE is a global measure, and bandwidth parameters chosen using this criterion will thus be 

set globally. Other forms of bandwidth estimation are actively being researched in the 

literature [43], including local methods which allow σ to vary as function of the location. It 

is not clear as of yet which method or loss function serves best the overall desiderata of brain 

connectivity analysis.

An alternative to the self-tuned kernel is one with specified bandwidth, as demonstrated in 

the previous analysis. While clearly any subsequent results must be conditioned on this 

choice, in our opinion this option simplifies interpretation across multiple subjects, and 

opens up a wealth of theoretical results. Furthermore, it has been suggested, albeit on 

Euclidean spaces, that the estimation of a smoothed form of the underlying density still 

retains its qualitative value.

A general kernel estimate of some general density p with the form
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can be shown to be asymptotically consistent, unbiased, and has known variance in the limit 

as h → 0 (see [44]). Here Z(h) chosen so that λ̂ integrates to 1. More recent work suggests 

the use of fixed h may also be of use [45], i.e. eschewing the asymptotic result in favor of 

estimating a mollified (smoothed or blurred) form of λ. Fixing h, the estimate can be 

rewritten as the convolution of the empirical data function (a sum of delta functions) with 

the kernel Kh. This work was performed on ℝn for a density P estimated with a slightly 

different kernel than the one given above, but we may transport the general concept by using 

spherical convolution [46]. In more general settings outside of density estimation, the value 

of mollified signals has long been accepted [47].

6. Conclusion

We have presented a general framework for structural brain connectivity. This framework 

provides a representation for cortical connectivity that is independent of the choice of 

regions, and thus may be used to compare the accuracy of a given set of regions’ 

connectivity matrix. We provide one possible estimation method for this representation, 

leveraging spherical harmonics for fast parameter estimation. We have demonstrated this 

framework’s viability, as well as provided a preliminary comparison of regions using several 

measures of accuracy. We further have provided an example analysis of the continuous 

connective object.

The results presented here lead us to conjecture that our connectome estimates are more 

reliable compared to standard fiber counting, though we stress that a much larger study is 

required for strong conclusions to be made. However, we believe that it is important to 

explore connectomics beyond the confines of the graph-theoretic abstraction. This particular 

instantiation of continuous connectivity is fairly general, and could be made more nuanced 

with a variety of existing statistical technologies, including regressions accounting for 

spatial auto-correlations, marked processes, and inter-subject hierarchical models of tract 

generation.
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Appendix: Implementation Notes

We optimize σ using grid search using a large linear grid. Using Equation 9 makes the 

marginal time cost of additional grid points low, so we can densely sample any reasonable 

interval quickly (σ is one dimensional). The boundary and spacing of the interval can be 

determined heuristically, and overcautious estimates are, again, relatively cheap.

Both the leave-one-out estimation and the quadrature can be done in parallel. In practice we 

find that caching calls to exp and the Legendre polynomials (i.e. computing a look-up table 

beforehand, or constructing one at run-time), reduces the computational costs of bandwidth 

estimation. The truncation error introduced by using a lookup table is minimal with a 

sufficiently dense table; since this is a one-time cost and can be completely computed in 

parallel, we choose a table optimal for our physical memory constraints. Note that we will 

only be computing exp and the Legendre polynomials for either fixed numbers known a 
priori, fixed grids, or (in the latter case) arguments in on the interval [−1, 1]. After σ has 

been computed or specified by the user, the estimation of λ̂ is relatively fast, as it is a sub-

problem of the bandwidth estimation.

Because these operations are taking place on a mesh and significant mesh pre-processing 

steps are undertaken (e.g. re-meshing), we implemented our method in C++ using a half-

edge structure. We take full advantage of compile time optimization. For repeated loops over 

constant sets (e.g. the spherical harmonic coefficients), loop unrolling and the appropriate 

use of const declared variables in tandem with standard optimizations speed up processing 

by an order of magnitude. (This is usually at the cost of code size, which is, practically 

speaking, almost free.)
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Highlights

• Generalizes traditional connectome count matrices to spatial process of tracts

• Provides fast estimator, with efficient hyper parameter tuning

• Provides results showing improved reliability (as measured by ICC score)

• Includes demonstration analysis using analogous “degree” function

• Significant differences in example analysis between sexes
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Figure 1. 
A visualization of the test-retest ICC scores for connectivity to Brodmann Area 45 

(Destrieux region 14) for the Count connectomes (left) and the proposed Integrated Intensity 

connectomes (right).  denotes a higher score.
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Figure 2. 
A visualization of the marginal connectivity M(x;E) = ∫Eλ̂ (x, y)dy for the Left Post-central 

Gyrus region of the DK atlas (Region 57). The region is shown in  on the inset. 

denotes higher connectivity regions with the  region.

Moyer et al. Page 19

Med Image Anal. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
A visualization of the significant differences of marginal connectivity (Eq. 3) values by 

mesh vertex between healthy normal human males and human females, controlled for age 

and inter-cranial volume, taking a critical value of α = 0.05, using the Benjamini–Hochberg 

[28] False Discovery Rate (FDR) correction for multiple comparisons. The marginal 

connectivity M(x) is the rate at which we observe tracts which have one endpoint at x. 

Regions of significant difference are thus interpreted as areas in which observed tracts are 

more likely to be incident in one group than in another. Note that the medial wall was 

removed and not tested. The results have been projected from registered space to a smoothed 

exemplar subject.  denotes significantly higher marginal connectivity in females, 

denotes significantly higher marginal connectivity in males. Annotations in  denote the 

anterior cingulate (top) and the inferior pre-frontal cortex (bottom), regions with large areas 

of significance.
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Table 1

This table shows mean ICC scores for each connectome generation method. The count method - the standard 

approach - defines edge strength by the fiber endpoint count. The integrated intensity method is our proposed 

method; in general it returns a dense matrix. However, many of the values are extremely low, and so we 

include results both with and without thresholding. Highest ICC scores for each atlas are bolded.

Atlas DK Destrieux DKT31

Number of Regions 68 148 62

Count ICC 0.2093 0.1722 0.2266

Intensity ICC (Full) 0.4868 0.4535 0.4388

Intensity ICC (w/Threshold) 0.5613 0.6481 0.4645
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Table 2

This table shows the means over all subjects of three parcellation selection criteria (Eq. 4, 5, and 6) for three 

different parcellations. In each case, lower is better. Values were rounded to three significant figures.

Type DK Destrieux DKT31

ISE 1.85 × 10−5 2.10 × 10−5 2.13 × 10−5

Negative LogLik 85000 355000 88000

AIC Score 174000 733000 185000
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