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Abstract

Purpose—Abnormal activation of the NF-κB pathway induces a more aggressive phenotype of 

cutaneous melanoma. Understanding the mechanisms involved in melanoma NF-κB activation 

may identify novel targets for this pathway. KPC1, an E3 ubiquitin ligase, is a regulator of NF-κB 

pathway. The objective of this study was to investigate the mechanisms regulating KPC1 

expression and its clinical impact in melanoma.

Experimental Design—The clinical impact of KPC1 expression and its epigenetic regulation 

were assessed in large cohorts of clinically well-annotated melanoma tissues (tissue micro-arrays; 

n=137, JWCI cohort; n=40) and The Cancer Genome Atlas database (TCGA cohort, n=370). 

Using melanoma cell lines, we investigated the functional interactions between KPC1 and NF-κB, 

and the epigenetic regulations of KPC1, including DNA methylation and microRNA expression.

Results—We verified that KPC1 suppresses melanoma proliferation by processing NF-κB1 p105 

into p50, thereby modulating NF-κB-target gene expression. Concordantly, KPC1 expression was 

down-regulated in AJCC stage IV melanoma compared to early stages (stage I/II p=0.013, stage 

Address correspondence and reprint requests to: Dave S.B. Hoon; Dept. of Translational Molecular Medicine, Division of 
Molecular Oncology, John Wayne Cancer Institute at Providence Saint John’s Health Center, 2200 Santa Monica Blvd, Santa Monica, 
CA, 90404, USA, hoond@jwci.org, Tel: 310-449-5264, Fax: 310-449-5282. 

Conflict of Interest: The authors declare no potential conflicts of interest.

HHS Public Access
Author manuscript
Clin Cancer Res. Author manuscript; available in PMC 2018 August 15.

Published in final edited form as:
Clin Cancer Res. 2017 August 15; 23(16): 4831–4842. doi:10.1158/1078-0432.CCR-17-0146.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



III p=0.004), and low KPC1 expression was significantly associated with poor overall survival in 

stage IV melanoma (n=137, Hazard Ratio 1.810, p=0.006). Furthermore, our data showed that 

high miR-155-5p expression, which is controlled by DNA methylation at its promoter region 

(TCGA; Pearson’s r −0.455, p<0.001), is significantly associated with KPC1 down-regulation 

(JWCI; p=0.028, TCGA; p=0.003).

Conclusions—This study revealed novel epigenetic regulation of KPC1 associated with NF-κB 

pathway activation, promoting metastatic melanoma progression. These findings suggest the 

potential utility of KPC1 and its epigenetic regulation as theranostic targets.
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Introduction

Cutaneous melanoma is a highly aggressive cancer in patients with metastatic disease (1,2). 

Despite recent advances in molecular targeted therapies and immunotherapies, the long-term 

survival of these patients remains poor, particularly in metastatic melanoma (3–6). One of 

the mechanisms that switch non-aggressive melanoma to an aggressive phenotype is 

dysregulation in the nuclear factor-κB (NF-κB) pathway (7–11). NF-κB is a key 

transcription factor regulating the expression of multiple genes involved in various cellular 

functions, such as immune or inflammatory responses, cell proliferation, differentiation, and 

progression of multiple tumor types (7,8,12–14). In melanoma, up-regulation of the NF-κB 

pathway is correlated with melanoma progression through suppression of the apoptosis and 

promotion of metastasis (7–11). Furthermore, there are autocrine mechanisms promoting 

constitutive activation of the NF-κB pathway in melanoma cells (7,8). However, the 

mechanisms that control abnormal activation of NF-κB pathway in cutaneous melanoma 

remain poorly understood.

One of the most important steps in NF-κB regulation, particularly NF-κB1, is the processing 

of precursor NF-κB1 p105 into mature p50 (13,15). We recently identified that, following 

p105 phosphorylation by IKKβ, ubiquitination mediated by KPC1 (Kip1 ubiquitination-

promoting complex subunit 1, gene name; RNF123 (Ring finger protein 123), an E3 

ubiquitin ligase) leads to proteasomal processing of p105 into p50, which resulted in 

downstream regulation of the NF-κB pathway (15). Although p105 ubiquitinated by β-

Transducin Repeat Containing Protein (βTrCP) E3 ubiquitin ligase is completely degraded 

via the 26S proteasome (16), ubiquitination by KPC1 leads to proteasomal processing of 

p105, which results in accumulation of p50 and regulation of NF-κB pathway (15). KPC1 

has a suppressive effect on cell proliferation through NF-κB pathway regulation (15).

We hypothesized that KPC1 is involved in abnormal NF-κB pathway activation in cutaneous 

melanoma progression. In this study, we demonstrated that KPC1 induces NF-κB1 p105 

processing into p50, which modulates NF-κB-target gene expression and exerts a 

suppressive effect on melanoma cell proliferation. The clinical impact of this mechanism is 

evinced by the significant association of KPC1 down-regulation with poor prognosis in 

American Joint Committee on Cancer (AJCC) stage IV melanoma. We further investigated 
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epigenetic mechanisms that regulate KPC1 expression in melanoma. In particular, we 

examined the mechanistic role of miR-155-5p, whose expression is controlled by DNA 

methylation at its promoter region, targeting KPC1 mRNA to down-regulate KPC1 

expression. Overall, this study revealed epigenetic regulation of KPC1 associated with 

abnormal NF-κB pathway activation, suggesting KPC1 and its epigenetic regulation’s 

potential as theranostic targets in cutaneous melanoma.

Materials and Methods

Institutional approval and informed consent

This study followed the principles in the Declaration of Helsinki. All human samples and 

clinical information for this study were obtained according to the protocol guidelines 

approved by the Saint John’s Health Center (SJHC) / John Wayne Cancer Institute (JWCI) 

Western Institutional Review Board. Informed consent was obtained from all participants.

Melanoma cell lines

Twenty seven established cutaneous melanoma cell lines were used in this study. Twenty 

three early-passage (<20) melanoma lines were established from AJCC stage III and IV 

melanoma patients who received elective surgery at JWCI and were authenticated with 

autologous peripheral blood leukocytes. Stage I/II melanoma lines (WC00060, WC00080, 

WC00081 and WC00062) were obtained from Coriell Institute (Camden, NJ) and have been 

tested by short tandem repeat DNA profiles. Cells were cultured in a humidified chamber 

with 5% CO2 at 37°C in either RPMI-1640 (Corning, Corning, NY) supplemented with 10% 

heat-inactivated fetal bovine serum (FBS, Gemini Bio-Products, Sacramento, CA) and 1% 

penicillin-streptomycin, or MCDB-153 (Sigma-Aldrich, St. Louis, MO) / Leibovitz’s L-15 

(Life Technologies, Carlsbad, CA) supplemented with 2% FBS, Insulin (5 μg/ml, Sigma-

Aldrich), and 1% penicillin-streptomycin (9,17). All the cell line experiments were 

completed within 12 passages or <4 months from thawing.

Cell viability, colony-formation, and 3D spheroid formation assays

Cells (2.5 × 103) were cultured in a 96-well plate (Thermo Fisher Scientific, Waltham, MA), 

and the number of viable cells was assessed every 24 hours using CellTiter-Glo Luminescent 

Cell Viability Assay (Promega, Madison, WI) according to the manufacturers’ instructions. 

A soft agar colony-formation assay was performed as follows: 1.5 ml phosphate-buffered 

saline (PBS; Life Technologies) containing 0.7% low melting point agarose (Lonza, 

Allendale, NJ) was poured into 6-well dishes (Thermo Fisher Scientific), and the layer was 

covered with 5.0 × 103 cells suspended in 3 ml medium containing 0.35% low melting point 

agarose and 10% heat-inactivated FBS (Gemini Bio-Products). After two weeks incubation, 

colonies were stained with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) (5 mg/ml, Sigma-Aldrich) and counted using ImageJ software (http://imagej.nih.gov/

ij/). For assessing the 3-dimentional (3D) spheroid formation assay, 2.5 × 103 cells were 

cultured on a 96-well Corning Spheroid Microplate (Corning) for up to 9 days, and images 

were obtained every 48 hours (18). The number of viable cells in spheroids at days 7 or 9 

was quantified using the CellTiter-Glo Luminescent Cell Viability Assay (Promega).
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Cell migration and invasion assays

Cell migration and invasion was quantified using transwell migration chambers and BD 

BioCoat Matrigel Invasion Chambers (BD Biosciences, Franklin Lakes, NJ) according to 

manufacturer’s instructions. Cells (2.5 or 5 × 104 cells) were incubated for 24 hours in the 

24-well chambers. Cells that had migrated were fixed with 100% methanol and stained with 

2% crystal violet solution. The membranes were mounted on a slide and observed under a 

Nikon Eclipse Ti microscope and NIS elements software (Nikon, Melville, NY). The 

number of cells from four randomly selected fields was evaluated for each membrane (19).

Transfection of KPC1

To establish stable KPC1-overexpressing clones, cells (5 × 105 in 60 mm dishes (Corning)) 

with low KPC1 expression (IM-0223 and MH-0331) were transfected with Myc-tagged 

KPC1 vector (KPC1; OriGene, Rockville, MD) using jetPRIME (Polyplus transfection, New 

York, NY) and were selected using Geneticin (500 μg/ml, Life Technologies). 

Overexpression of KPC1 was validated using western blot (WB) after establishment of 

stable transfected clones. All experiments were performed within ten passages after the 

establishment of cell line clones.

Mimic micro-RNA (miR) transfection

Cells (2 × 105) with high KPC1 expression (SR-0788 and LP-0024) were transfected with 

30 nM of miR-155-5p precursor (Ambion, Austin, TX) or negative control in 6-well dishes 

using jetPRIME (Polyplus transfection). Transfection was repeated on the cells 48 hours 

following the initial transfection. RNA and protein extraction were performed 48 hours after 

the second transfection, and miR-155-5p overexpression was validated using reverse 

transcriptional-quantitative polymerase chain reaction (RT-qPCR) (20).

siRNA for KPC1 and NF-κB1

Cells (2 × 105) were transfected with 10 nM ON-TARGETplus SMARTpool siRNA 

(Dharmacon, Lafayette, CO) to down-regulate human KPC1 or NF-κB1 using jetPRIME 

(Polyplus transfection). The following siRNA were used: KPC1 

(GCGCUACUAUUGGGAUGAA, CAACUGGGCCUUCUCUGAA, 

GCACAUGGCGGACCUCCUA, GGUGAAGCUUCUAGGUAUA), NF-κB1 

(GGAGACAUCCUUCCGCAAA, GAUGGGAUCUGCACUGUAA, 

GAAAUUAGGUCUGGGGAUA, GCAGGAAGGACCUCUAGAA), or Non-targeting Pool 

(UGGUUUACAUGUCGACUAA, UGGUUUACAUGUUGUGUGA, 

UGGUUUACAUGUUUUCUGA, UGGUUUACAUGUUUUCCUA). The suppression of 

gene expression was validated 48 hours after transfection by WB or RT-qPCR.

Cycloheximide chasing assay

IM-0223 or SR-0788 cells (1 × 105) in 12-well dishes were transiently transfected with 

cDNA coding for human p105 in pFLAG-CMV2 as previously described (15), using 

jetPRIME (Polyplus transfection). 24 hours after transfection, cycloheximide (50 μg/ml, 

Sigma-Aldrich) was added, and protein extraction was performed at the hours indicated for 

WB.
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Demethylating agent treatment

Cells with low miR-155-5p expression (JT-1045 and WP-0614) were treated with 2.5 μM of 

5-Aza-2′-deoxycytidine (5-Aza-2-dC, Sigma-Aldrich). Medium supplemented with 5-

Aza-2-dC was refreshed every 24 hours. Dimethyl sulfoxide (DMSO) (Thermo Fisher 

Scientific) was used as a non-treated control. RNA extraction was performed after 72 hours 

of treatment.

RNA isolation

Total RNA isolation from cell lines was performed using Direct-zol RNA MiniPrep kit 

(Zymo Research, Irvine, CA), according to manufacturer’s instructions. Total RNA for 

formalin-fixed paraffin-embedded (FFPE) tissues from 40 melanoma patients who 

underwent surgery at SJHC were isolated by microdissection as previously described 

(21,22).

RT-qPCR analysis of KPC1 and miR-155-5p

RT-qPCR for mRNA and miRNA was performed as previously described (20,23,24). 

Quantitative expression of KPC1 was referenced by the expression of human SDHA 

(Succinate Dehydrogenase Complex, Subunit A). Gene-specific oligonucleotide primers and 

probe were designed as follows: KPC1, 5′-GTGGGTGTCTCCGATGATGTC-3′ (forward), 

5′-CAAGGATGTCCTTCCTCCTCTT-3′ (reverse) and 5′-/56-FAM/TGAATACGC/ZEN/

TATGGCTCTGAGGGACACA/3IABkFQ/-3′ (probe); SDHA, 5′-

TCAGCATGCAGAAGTCAAT-3′ (forward) and 5′-GAACGTCTTCAGGTGCTTT-3′ 
(reverse). Quantitative expression of miR-155-5p was referenced by the expression of small 

nuclear RNA, RNU6. Primers (miR-155-5p and RNU6) were acquired from PerfeCTa 

miRNA Assays (Quanta Biosciences, Gaithersburg, MD).

Western blot

Protein extraction and WB were performed as previously described (25). The following 

antibodies (Abs) were used: mouse anti-human KPC1 Ab (1:300, #ab57549; Abcam, 

Cambridge, MA), rabbit anti-human NF-κB1 p50 Ab (1:200, #sc-114; Santa Cruz 

Biotechnology, Dallas, TX), mouse anti-Myc-tag Ab (1:1000, #05-724; Millipore, Billerica, 

MA), mouse anti-Flag Ab (1:1000, #TA50011-100; OriGene), mouse anti-human β-actin Ab 

(1:10000, #A5441; Sigma-Aldrich), or horseradish peroxidase-conjugated Abs (sheep anti-

mouse Ab (1:4000, #NA931; GE Healthcare, Pittsburgh, PA) or donkey anti-rabbit Ab 

(1:4000, #NA934; GE Healthcare)). Immunoreactive bands were visualized with the 

SuperSignal West Femto Maximum Sensitivity Substrate (Life Technologies), and the 

densities of protein bands were quantified using ImageJ software (http://imagej.nih.gov/ij/).

Genomic DNA extraction and detection of methylated MIR155HG

DNA isolation from cells was performed using Quick-gDNA MiniPrep kit (Zymo Research), 

according to the manufacturer’s instructions. Sodium bisulfate modification was applied to 

500ng of extracted genomic DNA using EZ DNA Methylation-Direct kit (Zymo Research). 

DNA methylation level of MIR155HG gene promoter region was analyzed in bisulfate-

modified DNA with a quantitative methylation-specific PCR (MSP) assay (17,26). The 

Iida et al. Page 5

Clin Cancer Res. Author manuscript; available in PMC 2018 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://imagej.nih.gov/ij/


methyl-specific primers for MIR155HG gene were designed as follows: 5′-

GTCGAGTTCGGGTTTAGC-3′ (forward) and 5′-GCGAAACTAAAATCGACGTAC-3′ 
(reverse). DNA methylation level was referenced against the amplification of the human 

ACTB gene promoter region that is free of CpG sites using the following primers: 5′-

GTGGTGATGGAGGAGGTTTAGTA-3′ (forward), 5′-

ACCAATAAAACCTACTCCTCCCTTA-3′ (reverse) (27). The quantitative amplification of 

MIR155HG-methylated alleles and ACTB alleles were performed and evaluated using a 

standard curve of serial dilutions consisting of the universal methylated control DNA as 

previously described (26).

Protein-protein interactions

Whole cell lysate from IM-0223 cells overexpressing both Flag-p105 and myc-KPC1 was 

incubated with anti-NF-κB1 p105 Ab (#sc-114; Santa Cruz Biotechnology) or rabbit-IgG 

control Ab (#NB810-56910; Novus Biologicals, Littleton, CO) and immunoprecipitated 

using Protein A-Agarose beads (Roche, Indianapolis, IN). Beads were washed twice with 

RIPA lysis buffer (Santa Cruz Biotechnology) and three times with PBS. The 

immunoprecipitated proteins were analyzed by WB with anti-KPC1 Ab or anti-p105 Ab.

IHC for tissue microarrays

Paraffin-embedded tissue microarrays (TMA) for AJCC stage IV melanoma established at 

JWCI included 262 stage IV metastatic tumors with paired stage III tumor tissues, each in 

duplicate, from 137 patients (28,29). TMA also contained seven normal tissues with limited 

or no proliferation (adrenal gland, brain, kidney, and liver), in duplicate. TMA were 

clinically well-annotated with greater than 5 years follow-up (28,29). Immunohistochemistry 

(IHC) was performed as previously described (28,29), using the following Abs: mouse anti-

human KPC1 Ab (1:50 dilution, #ab57549; Abcam), rabbit anti-human NF-κB1 p50 Ab 

(1:200 dilution, #sc-114; Santa Cruz Biotechnology), or mouse anti-human p27 Ab (1:100 

dilution, #610241; BD Biosciences). Photographs were obtained using a Nikon Eclipse Ti 

microscope and NIS elements software (Nikon). To exclude the influence of pigmentation 

and background staining, IHC staining without primary Ab was subtracted from the 

corresponding specimen. Immunostaining was assessed by two independent observers, 

blinded to the patients’ data. Specimens were scored for KPC1 according to the intensity of 

cytoplasmic staining (0: none, 1: weak, 2: moderate, 3: strong) and for p50 based on 

localization of the staining (no staining, cytoplasmic or nucleus staining) as previously 

described (15). Nucleus p27 staining was scored (0: <5%, 1: 5–50%, 2: >50% positive cells) 

and classified as low (score 0, 1) or high (score 2).

Immunofluorescence staining

IM-0223 cells (2 × 104 cells) were incubated in 8-well chamber slides (Thermo Fisher 

Scientific), and stained for immunofluorescence as previously described (28), using the 

following Abs: mouse anti-human KPC1 Ab (1:50 dilution, #ab57549; Abcam), rabbit anti-

human NF-κB1 p50 Ab (1:50 dilution, #sc-114; Santa Cruz Biotechnology), Alexa Fluor 

488-conjugated goat anti-mouse IgG (2.5 μg/ml, #115-545-003, Jackson ImmunoResearch, 

West Grove, PA) or Cy3-conjugated goat anti-rabbit IgG (2.5 μg/ml, #111-165-003, Jackson 

ImmunoResearch). The slides were stained with 4′,6-diamidino-2-phenylindole (DAPI, 
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Thermo Fisher Scientific) in mounting medium. Images were obtained using a Nikon 

Eclipse Ti microscope and NIS elements software (Nikon).

Luminescent reporter gene transfections and luciferase assay

2×104 cells (SR-0788) in a 96-well plate were co-transfected with 30 nM of miR-155-5p 

precursor (Ambion) and 100 ng of KPC1-Wild, KPC1-Mutant 3′-untranslated region (3′-

UTR) GoClone reporter constructs or an empty 3′-UTR vector (Switch Gear Genomics, 

Menlo Park, CA). After 24 hours incubation, LightSwitch Luciferase Assay Reagent 

(Switch Gear Genomics) was added to each well, and luciferase signal intensity was 

assessed by GloMax-Multi Detection System (Promega).

RNA sequencing (RNA-seq)

Total RNA was extracted from melanoma line (IM-0223) stably transfected with either Myc-

tagged KPC1 or empty-vector (OriGene). mRNA libraries were constructed from total RNA 

with high quality (RIN≥8.0) and high purity (OD 260/280 1.8–2.0) scores using the Illumina 

TruSeq RNA Sample Preparation Kit v2 (Illumina Inc., San Diego, CA) as previously 

described (24). The libraries were sequenced on the Illumina HiSeq 2500 (Illumina Inc.) in 

Rapid Mode using 50 bp single-end reads and achieved an average read depth of over 30 

million reads per sample at the JWCI Sequencing Center. Base calling and demultiplexing 

were processed using CASAVA v1.8 (Illumina Inc.), reads were mapped to the GENCODE 

release 19 reference using STAR version 2.4.2a (30), and read counts were generated using 

the quantMode GeneCounts option in STAR. The GFOLD version 1.1.4 algorithm was used 

to detect fold change differences in expression between conditions (31).

Reverse-phase protein array (RPPA)

Protein lysate from melanoma lines (IM-0223 and MH-0331) stably transfected with either 

Myc-tagged KPC1 or empty-vector (OriGene) was extracted as previously described (32), 

and RPPA analysis was performed by the CCSG-supported RPPA Core Facility at the 

University of Texas MD Anderson Cancer Center (32). A total of 232 authenticated Abs for 

total protein expression and 62 Abs for protein phosphorylation were analyzed in this study. 

A list of the Abs can be accessed from https://www.mdanderson.org/education-and-research/

resources-for-professionals/scientific-resources/core-facilities-and-services/functional-

proteomics-rppa-core/antibody-lists-protocols/functional-proteomics-reverse-phase-protein-

array-core-facility-antibody-lists-and-protocols.html (Ab set 107). Heat maps and Volcano 

plots were generated from load-corrected log2 data using MultiExperiment Viewer (MeV) 

v4.7.1. Differences in protein expression between groups were determined using student’s t 
test with a two-sided p-value < 0.05.

Bioinformatics analysis

Online computational tool, miRANDA (http://www.microrna.org/microrna/) was used to 

predict miR that effectively binds to 3′-UTR of KPC1 mRNA based on miRSVR score. The 

prediction was validated using three other computational tools (TargetScanHuman 7.0 

(http://www.targetscan.org/), DIANA-microT CDS (http://diana.imis.athena-innovation.gr/

DianaTools/), and miRDB (http://mirdb.org/miRDB/)). The Cancer Genome Atlas (TCGA) 
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data sets in melanoma for DNA methylation, mRNA expression, miR expression, somatic 

mutation and clinical information were obtained in Nov, 2015 (http://

cancergenome.nih.gov/). Of 466 samples, 370 tumor samples from primary tumor, regional 

lymph node, or distant metastasis were included to analyze the correlation between KPC1 

expression and NF-κB-target gene expression (http://www.bu.edu/nf-kb/gene-resources/

target-genes/) and the correlation between DNA methylation level and expression of KPC1 

or miR-155-5p. 272 samples were available for mutation data analyses. Genomic regions 

with significant focal amplification or deletion and significant arm-level change were 

identified using TCGA data (n=367, http://www.firebrowse.org, doi:10.7908/C1445KXQ).

Data access

DNA methylation data for the Infinium HumanMethylation450K (HM450K) platform 

obtained in our previous study (26) and gene expression data for RNA-seq can be accessed 

from Gene Ontology Omnibus (GEO) under the accession number GSE44661 and 

GSE79111, respectively.

Statistical analysis

Continuous variables were assessed by using Student’s t test or Wilcoxon rank-sum test and 

categorical variables were assessed by using χ2 test, Fisher’s exact test, or Cochran-

Armitage trend test. The correlation between DNA methylation and gene expression levels 

was analyzed using the Pearson’s r correlation coefficient for TCGA cohorts (n=370) and 

ten melanoma lines as previously described (26). Overall survival (OS) was analyzed based 

on the time from diagnosis with stage IV melanoma using the Kaplan-Meier method and 

log-rank test, and multivariate analysis was performed by the Cox proportional hazard 

model. All statistical analyses were performed with JMP, version 11.0 (SAS Institute Inc., 

Cary, NC), and a two-sided p-value < 0.05 was regarded as statistically significant.

Results

KPC1 overexpression suppresses melanoma cell proliferation

To evaluate the involvement of KPC1 in melanoma proliferation, cells with low KPC1 

expression (IM-0223 and MH-0331) were stably transfected with a cDNA coding Myc-

KPC1 (Supplementary Fig. S1A, S1B) and were assessed for proliferation. The 

overexpression resulted in inhibition of melanoma cell proliferation (IM-0223; p<0.001, Fig. 

1A, MH-0331; p<0.001, Fig. 1B). Cell proliferation was also evaluated in a 3D condition 

using a 3D spheroid formation assay. As expected, KPC1 overexpression significantly 

reduced spheroid growth in both lines (Supplementary Fig. S1C, S1D). Similarly, the 

percentage of colony-formation of KPC1-overexpressing cells was lower than that of control 

cells (Supplementary Fig. S1E, S1F). Despite the effect of KPC1 on cell proliferation, KPC1 

overexpression did not affect the ability of cell migration or invasion of either line (data not 

shown). In concordance with the suppressive role of KPC1 on melanoma cell proliferation, 

melanoma lines from stage IV (n=8) showed lower KPC1 expression compared to those 

from stage I/II (n=4) or stage III (n=15) at both the mRNA and protein expression levels 

(Fig. 1C, Supplementary Fig. S1G, S1H), indicating the involvement of KPC1 in advanced 

metastatic melanomas. The down-regulation of KPC1 in advanced melanomas was also 
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validated in a clinically well-annotated JWCI cohort of melanoma specimens representing 

different clinical stages (JWCI, n=40); AJCC stage IV tissues (n=19) showed significantly 

lower KPC1 expression compared to stage I/II (n=11, p=0.013) or stage III tissues (n=10, 

p=0.004) (Fig. 1D). Interestingly, mitotic rate, which represents proliferation of the primary 

melanoma (1), was negatively correlated with KPC1 mRNA expression in TCGA primary 

melanoma (Spearman’s rho −0.51, p=0.03, Supplementary Figure 1I). These results 

suggested a suppressive role of KPC1 on melanoma proliferation, and indicate that KPC1 

down-regulation is involved in advanced metastatic melanoma compared to early stages.

KPC1 induces processing of NF-κB1 p105 into p50 in melanoma

We recently demonstrated that KPC1 interacts with NF-κB1 p105 in human embryonic 

kidney cells (15). This interaction results in an increase in p50 levels, a negative regulator of 

the NF-κB pathway (15). To evaluate potential interactions between p105 and KPC1 in 

melanoma cells, we performed co-immunoprecipitation using cell lysate from IM-0223 cells 

overexpressing Flag-p105 and Myc-KPC1 (Fig. 1E). p105 and KPC1 were co-

immunoprecipitated, demonstrating that KPC1 directly interacts with p105 in melanoma 

cells. To evaluate the involvement of KPC1 in the processing of p105 into p50, 

cycloheximide chasing assays with transient Flag-p105 transfection were performed on 

IM-0223 cells (Fig. 1F). KPC1 overexpression induced significantly higher levels of p50 

produced from exogenous Flag-p105 (p=0.005), but not in control cells (V0), demonstrating 

that KPC1 is involved in processing into p50. Despite lower accumulation of p50 observed 

in IM-0223 V0, p105 diminished strongly, presumably due to other factors such as 

proteasomal degradation of p105 through ubiquitination by βTrCP ubiquitin ligase (16). In 

concordance with exogenous p105 processing, endogenous p50 expression was also higher 

in KPC1-overexpressing cells compared to control cells (p=0.013, Supplementary Fig. S2A). 

Conversely, KPC1 suppression in melanoma cells with high KPC1 expression (SR-0788) 

attenuated the processing of exogenous Flag-p105 into p50 (p=0.026, Fig. 1G). We further 

evaluated p50 expression and cellular location in KPC1-overexpressing IM-0223 cells using 

immunofluorescence staining (Supplementary Fig. S2B). In accordance with the functional 

interaction between KPC1 and p105 observed in melanoma cells, control cells demonstrated 

weak p50 expression in the nucleus, while KPC1-overexpressing cells presented increased 

p50 staining in both the nucleus and cytoplasm. To discern whether the suppressive effect of 

KPC1 overexpression on proliferation is not due to some non-specific effects, we evaluated 

the effect of NF-κB1 p105 knock-down on cell proliferation using IM-0223. NF-κB1 p105 

knock-down abrogated the suppressive effect of KPC1 overexpression on melanoma cell 

proliferation (IM-0223, p=0.011, Fig. 1H, Supplementary Fig. S2C), indicating that the 

effect of KPC1 overexpression is specific to the increase of p50. These results strongly 

suggested the suppressive effect of KPC1 on melanoma cell proliferation is due to its 

regulatory activity on processing p105 into p50.

KPC1 regulates the expression of NF-κB-target genes

To investigate the regulation of KPC1 on NF-κB pathway, we assessed correlation between 

KPC1 expression and expression of 413 genes recognized as direct targets for the NF-κB 

transcription factor (http://www.bu.edu/nf-kb/gene-resources/target-genes/) using melanoma 

TCGA cohort (n=370). Compatible with the role of KPC1 as a potential negative regulator 
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of the NF-κB pathway (15), 189 target genes were negatively correlated with KPC1 

expression, whereas 53 were positively correlated (Fig. 1I, p<0.05). To further investigate 

the downstream mechanisms controlled by KPC1, we performed RNA-seq and RPPA for 

IM-0223 cells overexpressing KPC1 and evaluated associated changes in mRNA expression 

and protein levels of NF-κB-target genes (Fig. 1J). 28 NF-κB-target genes were screened 

both on RNA-seq and RPPA, and seven genes were significantly affected at mRNA and 

protein levels after KPC1 overexpression. Interestingly, these changes included significant 

down-regulation of the genes PTGS2 (Cox-2) and MYC (c-Myc) (IM-0223, p<0.05, Fig. 1J, 

Supplementary Fig. S2D (i)), known tumor promoters (33–36), and significant down-

regulation of Cox-2 and c-Myc was also validated in MH-0331 from RPPA analysis (p<0.05, 

Supplementary Fig. S2D (ii)).

KPC1 expression is regulated by miR-155-5p

We then investigated the potential mechanisms that regulate KPC1 expression in melanoma. 

Analysis of amplification or deletion in the genomic region 3p21, where the RNF123 gene is 

located, showed no significant changes in the TCGA melanoma cohort (data not shown). 

After stratification of cutaneous melanoma into four subtypes characterized by genomic 

mutation pattern (mutation in BRAF, RAS (N/H/KRAS), NF1 and Triple-wild-type) (37), 

mutation status was not associated with KPC1 mRNA expression in the TCGA cohort 

(n=272, Supplementary Fig. S3A–D), suggesting KPC1 expression is independent of this 

genomic classification or these known melanoma driver gene mutation. Additionally, DNA 

methylation level of 17 CpG sites (Chr3:49,723,947–49,727,474) associated with the 

RNF123 gene including the promoter region was analyzed using the HM450K platform in 

metastatic melanoma lines (n=10) and melanoma tissue specimens (TCGA cohort, n=370). 

We identified no significant correlation (melanoma lines) or weak correlation (TCGA, 

Pearson’s r −0.189) between KPC1 mRNA expression and DNA methylation levels of each 

17 CpG sites (Supplementary Fig. S3E), indicating that KPC1 expression is independent of 

the DNA methylation level of KPC1 promoter region. Therefore, to further investigate other 

potential epigenetic mechanisms affecting KPC1 expression, we evaluated the role of 

specific miR in KPC1 mRNA stability. Initially, putative miRs that bind to 3′-UTR on KPC1 

mature mRNA were assessed using miRANDA. This computational tool predicted five 

different miRs that potentially targets 3′-UTR of KPC1 mRNA, and miR-155-5p presented 

strongest score. Effective binding of miR-155-5p on KPC1 mRNA was validated in other 

different computational tools, TargetScan, DIANA TOOL, and miRDB, and importantly, 

miR-155-5p was the only miR commonly predicted to target KPC1 mRNA by all these tools 

(Fig. 2A). To verify whether miR-155-5p regulates KPC1 expression, melanoma lines with 

high KPC1 expression (SR-0788 and LP-0024) were transfected with pre-miR-155-5p 

(miR-155-5p) or miR control (miR-Cntl). miR-155-5p overexpression induced reduction of 

KPC1 expression at both mRNA and protein expression levels (Fig. 2B, Supplementary Fig. 

S3F). Importantly, in accordance with the regulation of NF-κB p50 by KPC1, miR-155-5p 

overexpression reduced NF-κB p50 expression (SR-0788, Supplementary Fig. S3G). 

Furthermore, KPC1 overexpression on melanoma cells overexpressing miR-155-5p 

abrogated the decrease of NF-κB p50 expression, indicating that miR-155-5p 

overexpression in melanoma cells results in down-regulation of KPC1 and affects NF-κB 

p50 expression. Contrarily, miR-155-5p overexpression in melanoma cells with low KPC1 
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expression (IM-0221) induced KPC1 reductions, however did not affect the amount of NF-

κB p50 (Supplementary Fig. S3H), suggesting less involvement of KPC1 on NF-κB p50 

regulation in this context. To demonstrate direct binding of miR-155-5p to the KPC1 3′-

UTR, a luciferase reporter activity assay was performed. SR-0788 cells were co-transfected 

with miR precursor and KPC1-Wild 3′-UTR (WT) or KPC1-Mutant 3′-UTR (Mutant) on a 

RenSP vector (Fig. 2C, 2D). miR-155-5p suppressed luciferase reporter activity by targeting 

the KPC1-Wild 3′-UTR, but did not affect the activity of the construct containing the KPC1-

Mutant 3′-UTR. The luciferase reporter activity assay demonstrated that miR-155-5p 

directly and specifically targets the 3′-UTR of KPC1 mRNA.

To further validate the regulation of KPC1 expression by miR-155-5p in melanoma tissue, 

we analyzed miR-155-5p expression and KPC1 expression in the above melanoma tissue 

JWCI cohort (n=40). AJCC stage IV tissues exhibited significantly higher expression of 

miR-155-5p compared to those from stage I to III (JWCI, p=0.019, Fig. 2E). Importantly, 

higher miR-155-5p expression was associated with lower KPC1 expression in both JWCI 

(p=0.028, Fig. 2F) and TCGA (p=0.003, Fig. 2G) cohorts, supporting that up-regulation of 

miR-155-5p leads to down-regulation of KPC1 in melanoma. Overall, these results strongly 

suggested that miR-155-5p regulates KPC1 expression in cutaneous melanoma.

miR-155-5p expression is regulated by miR promoter DNA methylation

To further investigate the mechanisms that regulate miR-155-5p expression in melanoma, we 

assessed DNA methylation level of seven CpG sites including the MIR155HG gene 

promoter regions (Chr21:26,934,197–26,934,885). Remarkably, in both melanoma lines 

(n=10) and melanoma tissue specimens (TCGA cohort, n=370), there was a strong negative 

correlation between miR-155-5p expression and DNA methylation level of its promoter 

region (TCGA; Pearson’s r −0.455, p<0.001, melanoma lines; Pearson’s r −0.908, p<0.001, 

Fig. 3A). To confirm the role of DNA methylation in the regulation of miR-155-5p 

expression, melanoma lines with low miR-155-5p expression were treated with DNA 

methyltransferases inhibitor, 5-Aza-2-dC, which significantly enhanced miR-155-5p 

expression in cell lines (JT-1045; p=0.005, WP-0614; p=0.004, Fig. 3B). Furthermore, MSP 

analysis revealed that 5-Aza-2-dC treatment significantly reduced the DNA methylation 

level of the MIR155HG gene promoter region (JT-1045, p=0.008, Fig. 3C). We further 

validated the regulation of miR-155-5p expression by DNA methylation level of its gene 

promoter region in the TCGA cohort (n=370). Tissues with lower DNA methylation 

exhibited significantly higher miR-155-5p expression compared to tissues with higher DNA 

methylation (Fig. 3D). Importantly, in concordance with the regulatory role of miR-155-5p 

on KPC1 expression, lower DNA methylation of the miR was associated with lower KPC1 

expression (Fig. 3E). These results confirmed that miR-155-5p is regulated by DNA 

methylation of its CpG island spanning the promoter region in melanoma cell lines and 

clinical tumor specimens.

Low KPC1 expression is associated with poor prognosis

To further investigate the clinical relevance of KPC1 and p50 in melanoma tissues, we 

performed IHC using tissue microarrays (TMA) (n=262 from 137 stage IV patients, Fig. 4A, 

Supplementary Fig. S4) (28,29). Initially, stage IV melanoma tissues demonstrated lower 
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KPC1 expression compared to normal tissues (n=7) (KPC1 IHC score 3, 19.1% vs 57.1%, 

respectively, Fisher’s exact text, p=0.032). Supporting our previous observation in the 

functional interaction between KPC1 and p50, we observed a strong positive association 

between KPC1 and cytoplasmic p50 staining (n=262, χ2 test, p<0.0001, Fig. 4B). Indeed, 

there was also a positive association between KPC1 and nucleus p50 staining (Fisher’s exact 

test, p=0.016, Fig. 4B). KPC1 also ubiquitinates p27, which results in p27 degradation by 

the 26S proteasome (38); however, there was no association between KPC1 and p27 (χ2 test, 

p=0.18, Fig. 4B). Finally, we evaluated the association between KPC1 expression and 

clinically relevant features (n=137). While there was no significant association between 

KPC1 expression and known clinicopathological variables of stage IV melanoma patients 

(Supplementary Table S1), overall survival (OS) analysis revealed that KPC1 low expression 

group (n=44) had significantly shorter OS compared to KPC1 high expression group (n=93, 

log rank test, p=0.004, Fig. 4C). Importantly, in multivariate analysis, independent factors 

associated with poor OS were low KPC1 expression (Hazard Ratio 1.810, 95% Confidence 

Interval (CI) 1.196–2.702, p=0.006, Table 1) and advance M substages (p=0.035).

Discussion

In this study, we demonstrated a down-regulation of KPC1 expression in AJCC stage IV 

melanoma tissue specimens compared to stage I/II or stage III melanomas, indicating the 

importance of KPC1 during melanoma progression to advanced metastatic disease. Our 

previous study has shown down-regulation of KPC1 in tumor tissues compared to respective 

normal tissues in squamous cell carcinoma of head & neck and glioblastoma (15). 

Consistently, analysis from stage IV melanoma TMA used in this study demonstrated lower 

KPC1 expression in stage IV melanoma tissues compared to normal tissues. These results 

suggested the involvement of KPC1 in early primary tumor development; however, this 

study further emphasizes the importance of KPC1 expression during melanoma progression.

Our study revealed epigenetic mechanisms regulating KPC1 expression in cutaneous 

melanoma. We demonstrate, for the first time, the detailed mechanisms regulating KPC1 

expression in tumor; methylation regulates miR-155-5p expression, and miR-155-5p 

controls KPC1 expression. The importance of the miR-155-5p-KPC1-NF-κB-axis in 

melanoma suggested new prospects in melanoma therapy. Abnormal activation of the NF-

κB pathway switches non-aggressive melanoma to an aggressive phenotype (7–11), thus, 

inhibiting NF-κB pathway activation holds therapeutic promise for cutaneous melanoma. 

Inhibitors that directly target NF-κB pathway, such as IKKβ inhibitors, have been 

developed; however these drugs also exert NF-κB-independent effects, leading to high risk 

of side effects and toxicity (12,39–41). Our study widens the potential therapeutic options, 

regulating KPC1 through targeting the ubiquitin-proteasome system (42) and miR (43–45). 

We also demonstrated that low KPC1 expression is an independent variable that predicts 

poor prognosis in melanoma TMA. This suggested the potential of using KPC1 expression 

as a theranostic target in melanoma.

Besides promoter DNA methylation of miR-155-5p, we investigated other potential 

mechanisms that regulate miR-155-5p expression in cutaneous melanoma. Genomic region 

21q21, where MIR155GH gene is located, was not significantly amplified or deleted in the 
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TCGA melanoma cohort (data not shown). Interestingly, higher miR-155-5p expression was 

associated with mutation in BRAF (p=0.014, TCGA cohort, n=272, data not shown), one of 

the major driver gene mutations involved in melanoma progression (37). Although the 

regulatory mechanisms of miR-155-5p expression with BRAF mutation remains unknown, 

gene-mutation status is another potential mechanism leading to high miR-155-5p expression 

and advanced metastatic melanoma.

Our study suggested that KPC1 down-regulates NF-κB-target genes known to promote 

tumor progression (33–36). The presumable regulatory mechanism involves a KPC1-

induced generation of p50, resulting in an increase of p50-p50 homodimers rather than 

tumor-promoting p65-p50 heterodimers. Because the p50-p50 homodimer lacks 

transcriptional activity, it is a transcriptional repressor competing with tumor-promoting 

p65-p50 heterodimers or a modulator of the NF-κB pathway together with other 

transcriptional modulators such as Bcl-3, p300, or HDAC-1 (46). Although the detailed 

mechanisms by which excess p50 down-regulates NF-κB-target genes have not been 

identified, these changes resulted in a suppressive effect on melanoma cell proliferation, as 

schematically shown in Fig. 5.

In conclusion, this study identified miR-155-5p, which is epigenetically controlled by its 

promoter methylation, as an epigenetic regulator of KPC1. These interactions promote to 

down-regulation of KPC1 and abnormal NF-κB pathway activation, leading to highly 

proliferative melanoma and poor clinical outcomes.
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Refer to Web version on PubMed Central for supplementary material.
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miR micro-RNA

MSP methylation-specific PCR

NF-κB nuclear factor-κB

OS overall survival

RNA-seq RNA sequencing

RPPA reverse-phase protein array

RT-qPCR reverse transcriptional-quantitative polymerase chain reaction
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Translational relevance of this study

NF-κB pathway activation promotes a more aggressive phenotype of cutaneous 

melanoma. Hence, understanding the mechanisms regulating the NF-κB pathway is of 

critical importance. In this study, we unraveled novel epigenetic mechanisms affecting 

miR-155-5p and KPC1 expression that lead to an abnormal activation of the NF-κB 

pathway in melanoma. The importance of the miR-155-5p-KPC1-NF-κB-axis in 

controlling melanoma proliferation opens new prospects in melanoma therapy, such as 

targeting the ubiquitin-proteasome system and manipulating micro-RNA. In addition to 

potential therapies, we demonstrated that KPC1 down-regulation is significantly 

associated with poor prognosis in advanced melanoma patients, suggesting that 

assessment of KPC1 expression may contribute to stratification of stage IV melanoma 

patients. These findings suggest that targeting the miR-155-5p-KPC1-NF-κB-axis holds 

theranostic promise for melanoma patients.
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Figure 1. KPC1 suppresses melanoma cell proliferation by inducing NF-κB1 p105 processing 
into p50
(A & B) IM-0223 or MH-0331 were stably transfected with empty vector (V0) or cDNA 

coding Myc-KPC1 (KPC1). Melanoma cell proliferation after the transfection was assessed. 

KPC1 overexpression inhibited melanoma cell proliferation in (A) IM-0223 (B) MH-0331 

compared to control at 120 hours (t-test, *** p<0.001). (C) Box plot of KPC1 expression in 

melanoma lines from AJCC stage I/II (n=4), stage III (n=15), and stage IV (n=8) assessed 

by RT-qPCR (Wilcoxon-test, * p<0.05, ** p<0.01). (D) KPC expression was analyzed in 

melanoma patients’ tissues. Boxplot of KPC1 expression in melanoma FFPE samples from 

AJCC stage I/II (n=11), stage III (n=10), and stage IV (n=19) assessed by RT-qPCR (JWCI 
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cohort, n=40) (Wilcoxon-test, * p<0.05, ** p<0.01). (E) Co-immunoprecipitation of KPC1 

and p105. Immunoprecipitation (IP) was performed using anti-p105 or control IgG Abs for 

IM-0223 cell lysate overexpressing both KPC1 and p105. p105 was detected using anti-p105 

Ab (i), and KPC1 was detected using anti-KPC1 Ab (ii) by WB. Whole cell lysate (WCL) 

was used as a positive control. (F) (i) Cycloheximide chasing assay was performed in 

IM-0223. Cycloheximide (Chx, 50 μg/ml) was added after transfection of cDNA coding for 

human p105 and incubated for the indicated time before protein extraction. WB was 

performed using anti-KPC1 Ab, anti-Flag Ab (to detect exogenous p105 and p50), or anti-β-

actin Ab. (ii) p50 expression relative to 0 hour was quantified. p50 expression was higher in 

KPC1-overexpressing cells compared to control cells at 9 hours (t-test, ** p<0.01). (G) (i) 
SR-0788 was transfected with control si-RNA (siCntl) or siRNA for KPC1 (siKPC1), and 

cycloheximide chasing assay was performed. WB was performed using anti-KPC1 Ab, anti-

Flag Ab, or anti-β-actin Ab. (ii) p50 expression relative to 0 hour was quantified. p50 

expression was lower in cells with KPC1 suppression compared to control cells at 9 hours (t-
test, * p<0.05). (H) IM-0223 cells (V0 and KPC1) were transfected with control siRNA 

(siCntl) or siRNA for NF-κB1 (siNF-κB1). p105 knock-down promoted proliferation in 

KPC1-overexpressing cells at 120 hours (t-test, * p<0.05). (I) Correlation (Spearman’s rank 

correlation rho) between KPC1 expression and expression of NF-κB-target genes (413 

genes) from TCGA cohort (n=370) was analyzed. Bar plots showing the negative correlation 

for 189 genes (green bars, p<0.05) and positive correlation for 53 genes (red bars, p<0.05)). 

Red dotted lines indicate the statistical significant threshold (p=0.05) for correlation 

analysis. (J) RPPA and RNA-seq were performed for IM-0223 (V0 and KPC1) to 

demonstrate the downstream regulation of NF-κB-target genes. Scatter plots showing 

protein expression change (RPPA) and RNA expression change (RNA-seq) from 28 

proteins / genes that are targeted by NF-κB pathway. Targets were considered to be up-

regulated (red dots) when z score change for RPPA (p<0.05) and GFOLD change for RNA-

seq were both more than one, and down-regulated (green dots) when less than -1. Error bars 

represent means ± standard deviation (SD) from replicates (n=3). WB images were cropped 

for clarity and focus on relevant bands.
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Figure 2. Epigenetic regulatory mechanism of KPC1 expression
(A) Venn diagram showing putative miRs that target 3′-UTR of KPC1 mRNA predicted by 

different computational tools (TargetScan, miRANDA, DIANA TOOL, and miRDB). (B) 
SR-0788 and LP-0024 were transfected with pre-miR-155-5p (miR-155-5p) or miR control 

(miR-Cntl). KPC1 expression was quantified using (i) RT-qPCR (ii) WB after miR-155-5p 

transfection (t-test, ** p<0.01, *** p<0.001). (C) miR-155-5p sequence aligned with human 

KPC1-Wild 3′-UTR (WT) and KPC1-Mutant 3′-UTR (Mutant) sequences. (D) A luciferase 

reporter activity assay to determine miR-155-5p targets 3′-UTR of KPC1 using human 

KPC1-Wild 3′-UTR (WT) and KPC1-Mutant 3′-UTR (Mutant) sequences on RenSP vector 

(t-test, NS p≥0.05, ** p<0.01). (E) Boxplot of miR-155-5p expression in JWCI cohort 

assessed by RT-qPCR (n=40, Wilcoxon-test, * p<0.05). (F) Boxplot of KPC1 expression in 

the patients with miR-155-5p low (n=20) or high (n=20) expression (classified based on 

median of miR-155-5p expression) from JWCI cohort (n=40, Wilcoxon-test, * p<0.05). (G) 
Boxplot showing KPC1 expression in patients with miR-155-5p low (n=185) and high 

(n=185) expression (classified based on median of miR-155-5p expression) from TCGA 

cohort (t-test, ** p<0.01). Error bars represent means ± SD from replicates (n=3). WB 

images were cropped for clarity and focus on relevant bands.
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Figure 3. Regulatory mechanism of miR-155-5p expression in melanoma
(A) Promoter DNA methylation level of MIR155HG gene were analyzed to investigate the 

regulatory mechanism of miR-155-5p expression. (i) MIR155HG gene structure [based on 

RefSeq Feb. 2009 (GRCh37/hg19) assembly] and CpG Context at promoter region. Blue 

box represents exon and green box CGI (CpG island). (ii) Correlation analysis between 

DNA methylation and miR-155-5p expression levels from ten melanoma lines and TCGA 

cohort (n=370). The correlations were calculated using the Pearson’s r correlation 

coefficient for each CpG sites. Each point represents one CpG site and solid lines indicate 

the variation of correlation at the promoter region of MIR155HG gene. Dotted lines indicate 

the statistical significant threshold (p=0.05) for correlation analysis. CpG sites which 

demonstrated the strongest negative correlation are indicated by red arrows with its 

Pearson’s r in the figure. (B) JT-1045 and WP-0614 were treated with medium 

supplemented with 5-Aza-2-dC or control (DMSO), and miR-155-5p expression was 

quantified using RT-qPCR (t-test, ** p<0.01). (C) Boxplot showing DNA methylation level 

of miR-155-5p promoter region quantified by MSP from JT-1045 treated with 5-Aza-2-dC 

or control (DMSO) (t-test, ** p<0.01). (D & E) Association between miR-155-5p promoter 

DNA methylation level (Chr21:26,934,456, cg23433889) and miR-155-5p or KPC1 

expression were analyzed for TCGA cohort (n=370). Boxplot showing (D) miR-155-5p 

expression or (E) KPC1 expression in patients with low (n=123), intermediate (n=124) and 

high (n=123) DNA methylation level (classified based on tertile of DNA methylation level) 

(t-test, ** p<0.01, *** p<0.001). Error bars represent means ± SD from replicates (n=3).

Iida et al. Page 21

Clin Cancer Res. Author manuscript; available in PMC 2018 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. KPC1, p50 and p27 expression in melanoma patients’ tissues
KPC1, NF-κB1 p50, and p27 expression were analyzed in melanoma patients’ tissues. (A) 
Representative images of AJCC stage IV melanoma TMA samples immunostained using 

anti-KPC1 Ab are shown. Staining intensity was evaluated from 0 (negative) to 3 (strong). 

The magnifications of the low-power and high-power images are ×100 and ×200, 

respectively. Scale bar = 100 μm. (B) Association between KPC1 expression and 

cytoplasmic p50, nucleus p50 or p27 expression in stage IV melanoma TMA samples 

(n=262). (C) Kaplan-Meier curves showing OS for KPC1 high (Score 2 and 3) or low (Score 

0, 1) expression patients from stage IV melanoma TMA (n=137). Significance of log rank is 

shown.
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Figure 5. Schematic representation of DNA methylation, miR-155-5p, KPC1, and p105 
processing into p50 in melanoma
(A) In primary melanoma, where methylation represses miR-155-5p expression and KPC1 is 

highly expressed, excess p50–p50 homodimers suppress tumor-promoting p65–p50 

heterodimers or modify transcription of NF-κB-target genes with other transcriptional 

modulators, resulting in suppressive effect on melanoma cell proliferation. (B) Contrarily, 

metastatic melanoma, which has low DNA methylation / high miR-155-5p and low KPC1 

expression, lacks excess p50–p50 homodimers, promoting cell proliferation.
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