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Abstract

Objective—State-of-the-art techniques for surgical data analysis report promising results for 

automated skill assessment and action recognition. The contributions of many of these techniques, 

however, are limited to study-specific data and validation metrics, making assessment of progress 

across the field extremely challenging.
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Methods—In this paper, we address two major problems for surgical data analysis: (1) lack of 

uniform shared datasets and benchmarks and (2) lack of consistent validation processes. We 

address the former by presenting the JHU-ISI Gesture and Skill Assessment Working Set 

(JIGSAWS), a public dataset we have created to support comparative research benchmarking. 

JIGSAWS contains synchronized video and kinematic data from multiple performances of robotic 

surgical tasks by operators of varying skill. We address the latter by presenting a well-documented 

evaluation methodology and reporting results for six techniques for automated segmentation and 

classification of time-series data on JIGSAWS. These techniques comprise four temporal 

approaches for joint segmentation and classification: Hidden Markov Model, Sparse HMM, 

Markov semi-Markov Conditional Random Field, and Skip-Chain CRF; and two feature-based 

ones that aim to classify fixed segments: Bag of spatiotemporal Features and Linear Dynamical 

Systems.

Results—Most methods recognize gesture activities with approximately 80% overall accuracy 

under both leave-one-super-trial-out and leave-one-user-out cross-validation settings.

Conclusion—Current methods show promising results on this shared dataset, but room for 

significant progress remains, particularly for consistent prediction of gesture activities across 

different surgeons.

Significance—The results reported in this paper provide the first systematic and uniform 

evaluation of surgical activity recognition techniques on the benchmark database.

Index Terms

Activity recognition; benchmark robotic dataset; kinematics and video; surgical motion

I. Introduction

In 1889, Dr. William Halsted, one of the early members of the Johns Hopkins Hospital, 

established the classical training program for medical residents [1]–[3]. His teaching 

philosophy of “see one, do one, teach one” is being practiced to this day. His philosophy 

follows the idea that a student reaches a required competency level by deliberately practicing 

and actively participating in mentored cases.

Faculty surgeons conventionally assess and report trainees’ performance by completing 

global and task-specific checklists [4], [5]. However, assessment based on checklists is 

observational and thus susceptible to inter-observer variability [6]. Furthermore, checklists 

require substantial faculty time to be feasible for routine use in surgical training curricula. 

The usability of checklists is especially challenging after 2002 when the Accreditation 

Council for Graduate Medical Education (ACGME) mandated that all medical residents be 

evaluated continuously (not merely periodically) by competency-based measures [7], [8]. 

Consequently, surgeons in many specialties have repeatedly advocated for less resource-

intensive and more objective metrics of surgical skill [9]–[12].

An alternative to checklists is to measure surgical skill by collecting and assessing motion 

and video data from surgical activities using automated tools. Surgical simulators and the da 

Vinci surgical robot (Intuitive Surgical Inc. Sunnyvale, CA) are both examples of devices 
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that support the capture of video and tool motion data on surgical performance. Given such 

data, one common approach to assessing and predicting surgical technical skill is to use 

overall performance statistics, such as time to completion [13], [14], speed and number of 

hand movements [13], distance travelled [14], and force and torque signatures [14]–[16].

Global methods are generally easy to implement, but they provide little to no insight on 

where a learning surgeon is deficient and requires additional training. An alternative pursued 

by our group and others [17]–[25] is to break down surgical task execution into smaller 

components, and to base the assessment of performance on both the quality of those 

components and/or the sequence of components themselves. The core hypothesis in these 

models is that surgical manipulative motion can be described by a relatively compact and 

general language of gestures. Given the many similarities between the structure of a surgical 

task and the structure of natural languages (where words, syllables, and phonemes 

correspond to gestures), the above approach to surgical skill assessment is known as the 
language of surgery. In this approach, fine-grained segmentation and labeling are thus 

necessary steps for surgical skill assessment. Recent studies [26]–[28] have shown that given 

the sequence of surgical gestures and their boundaries, one can predict the surgeon’s skill 

level with up to 90% accuracy for new trails of known (observed) surgeons or 75% accuracy 

for a new trails of unobserved surgeons.

A major limiting factor for research in this area is the lack of standardized benchmark 

databases. Nearly all state-of-the-art methods report prediction results for surgical gesture 

recognition using study-specific datasets, and are evaluated using different validation 

metrics. This makes assessment of progress in the field extremely challenging.

To address this issue we have created the JHU-ISI Gesture and Skill Assessment Working 

Set (JIGSAWS), which is the first public benchmark surgical activity dataset captured from 

the da Vinci robot. The JIGSAWS contains synchronized video and kinematic data from 

three standard surgical tasks performed by subjects with different skill levels. The dataset 

also contains a gesture vocabulary, gesture annotations for all trials, and a unified cross 

validation setup to evaluate the gesture prediction performance of the developed techniques.

In this paper, we describe the JIGSAWS dataset, and we report, using a consistent 

methodology, the prediction performance of six of our representative gesture recognition and 

segmentation techniques. We refer to the latter as “performance” which should not be 

confused with surgical performance of the surgeons. Our major contributions in this paper 

are:

• The description of a freely shareable data set and associated meta-data that 

others can use for comparative performance analysis.

• The description of a consistent methodology for performance assessment in this 

domain.

• A detailed and consistent representation, comparison, and validation of six of our 

techniques using the proposed methodology.
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In the remainder of the paper, we first introduce the elements of the JIGSAWS dataset and 

our evaluation methodology (Section III). We then present, in a consistent format, 

techniques to tackle joint segmentation and classification (Section IV) and only 

classification (Section V) of surgical gestures. The best performance of the techniques are 

discussed in Section VI. We close with a discussion about the shortcomings, strengths, and 

influential factors for each technique.

II. Background

Existing approaches to automatically and objectively assess surgical skill from tool motion 

data can be divided into two main categories: global performance statistics, and time-series-

based analytical models.

Global statistical metrics [13]–[16] use overall measurements of a well-defined task to 

predict skill. Even though these methods are generally easy to implement, they effectively 

produce an average value for a specific measure, such as time of completion, over the entire 

task to which they are applied.

Broad application of a global metric cannot provide local feedback to the trainees on which 

parts of their performance require more practice. On a practical level, they are not able to 

reliably predict skill for multiple-surgeon cases where experts and novices switch roles 

during surgery, which is not uncommon in live surgery.

Developing more refined metrics depends on the ability to segment a surgery or surgical 

training task into logical and well-defined components. While such decompositions are 

increasingly well established in highly structured non-manipulative activities such as dance 

and gymnastics, very few studies have examined the notion of a language of motion in the 

context of manipulative surgical motion. Early work by Rosen and others [17], [18], [23] 

pioneered the idea that the Markov structure of a surgical task was an indicator of skill. Later 

work extended this to hidden Markov models (HMMs) learned from kinematic (hand-

movement) data [19]–[21], [24], [25] using simple statistical models. Recent work [22]–

[25], [29]–[33] extended basic HMM models in a variety of ways, and introduced 

conditional random fields as an alternative discriminative approach. These approaches all 

model each gesture as one or more latent variables. Their main difference is in how they 

model the observations within each gesture.

While most of the statistical techniques use only kinematic data, there are a few studies 

[32]–[43] that have used surgical video data for gesture recognition. For example, authors in 

[34]–[39], [41] focus on coarse-grained surgical activity recognition and model operating 

room workflows using video data. Other recent approaches [32], [33], [38]–[43] have 

focused on fine-grained activity recognition of surgical tools using both kinematic and video 

data. They suggest that combining kinematic and video data can improve the performance of 

automatic gesture recognition. The kinematic-based techniques are challenged by the lack of 

information about the composition of tissue and other external surgical objects in the scene 

such as needle and threads. The challenge of video-based action recognition techniques is to 
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define an efficient and robust technique to model the semantic relationships in the presence 

of noise, occlusions and clutter, and variability of tool pose.

III. JIGSAWS: a Benchmark for Modeling Surgical Gestures

In this section, we first provide the description of the JIGSAWS dataset. We then specify a 

consistent framework for evaluating the performance of the state-of-the-art methods in 

automatic classification and segmentation of surgical time-series data. More detailed 

information about the JIGSAWS is available on our website [44].

A. Data Collection from the da Vinci Surgical Robot

The da Vinci robot can provide both kinematics and stereo video of a surgery. In the 

JIGSAWS dataset, the kinematic data contains variables of both master and slave’s left and 

right manipulators (76 motion variables collected at 30 frames per second: tooltip positions 

and orientation, linear and rotational velocities, and gripper angle). The stereo video is 

recorded at 30 frames per second with 640×480 pixel resolution.

Video and kinematic data carry relevant and complementary information. The kinematic 

data contains 3D trajectories and 3D velocities of the robot’s arms, not directly measurable 

in video, and the video data provides contextual and semantic information such as the 

interaction between tools and tissue, not directly available in kinematic data.

B. Dataset description

The JIGSAWS dataset contains surgical data collected from eight subjects (all right-handed) 

with different skill levels performing three different surgical tasks using the da Vinci surgical 

system. A trial is a part of the data that corresponds to one subject performing one instance 

of a specific task. All the trials performed consecutively by an individual user in one sitting 

are grouped together as a session. Each subject participated in 3 to 5 data collection 

sessions, in which they performed one trial of each task.

The tasks are 4-throw suturing (39 trials), needle-passing (26 trials), and knot-tying (36 

trials) performed on benchtop training phantoms. The suturing phantom had needle insertion 

marker points and a line drawn on it as the wound line (Figure 1). In the needle-passing task, 

the users passed a needle through four small metal loops from right to left. In the knot-tying 

task, they tied a simple-loop knot around a plastic rod.

A surgical gesture is defined as an atomic action or single movement that finishes one small 

clearly identifiable step of the surgery. Gestures represent the lowest level of meaningful 

segments of a surgery and usually appear in some specific patterns, e.g., one gesture often 

follows another or several gestures appear close to each other. The surgical gestures used in 

JIGSAWS were defined by a group of faculty surgeons at the Johns Hopkins University. The 

gestures are:

• (G1) Reaching for the needle with right hand.

• (G2) Positioning the tip of the needle.

• (G3) Pushing needle through the tissue.
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• (G4) Transferring needle from left to right.

• (G5) Moving to center of workspace with needle in grip.

• (G6) Pulling suture with left hand.

• (G7) Pulling suture with right hand.

• (G8) Orienting needle.

• (G9) Using right hand to help tighten suture.

• (G10) Loosening more suture.

• (G11) Dropping suture and moving to end points.

• (G12) Reaching for needle with left hand.

• (G13) Making C loop around right hand.

• (G14) Reaching for suture with right hand.

• (G15) Pulling suture with both hands.

Each trial in the JIGSAWS dataset has been manually annotated with these surgical gesture 

definitions at the frame level.

Figure 2 represents the relationship, order, and flow of different gestures during the 

execution of each task. In the suturing task, gestures G1 to G11 excluding G7 are used. In 

needle-passing, G1 to G6, G8, and G11 are used. In knot-tying, G1 and G11 to G15 are 

used.

C. Evaluation Methodology

We employ two different cross-validation settings to evaluate modeling techniques: (1) 

Leave-One-User-Out (LOUO), and (2) Leave-One-Super-Trial-Out (LOSO). In the former, 

all of the trials performed by a single subject are left out as the test set and the remaining 

trials are used to train our models. In the latter, the ith trial of each subject are left out as the 

test set. These two cross-validation approaches will help to measure models’ generalization 

to new and unknown surgeons or new trials performed by a known surgeon. Please see 

Supplemental document for details on usage of the methodology.

For each cross-validation setting, the performance of each technique is reported using two 

sets of parameters: (1) Micro average accuracy, Macro average recall, and average 

Precision, and (2) the generalization power of each technique by fitting a Beta distribution 

to the results of the cross-validation tests.

The calculation of the Micro, Macro, and Precision averages is as follows: first, for each of 

the F cross-validation folds (of an n-way classification problem), a confusion matrix Cf (f = 

{1, 2, …, F}) of size n × n is computed as:
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The complete confusion matrix, C, is the sum of all of the confusion matrices:

(1)

Given the complete confusion matrix, the Micro average is computed as the average of total 

correct predictions across all classes:

(2)

and the Macro average and std are the mean and standard deviation of true positive rates for 

each class:

(3)

(4)

Similarly, the Precision average and std are calculated as:

(5)

(6)

Note that for the skewed multi-class data (such as the one in JIGSAWS), these two average 

accuracies report two different aspects of the prediction performance: (1) overall prediction 

performance regardless of the number of samples available for training and testing (reflected 

in Micro average) and (2) sensitivity in modeling smaller classes (reflected in Macro 
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average). For example, if one gesture class has many fewer samples and during the 

prediction phase they all are classified incorrectly (or correctly) then the Micro average will 

not change significantly. However, the Macro average will drop (or increase) drastically, 

properly reflecting the prediction accuracy of that particular class.

Beside reporting performance quality in terms of Micro and Macro averages, we also 

provide a probabilistic model for estimating the average and standard deviation of a 

classifier’s accuracy in LOSO and LOUO settings. Here, we explain the LOUO setting for 

concreteness. The LOSO follows identically.

First, suppose that we observe the per-user accuracies p1, p2, …, pF, for F users. One usually 

reports sample mean and variance, which gives the reader some idea of what the accuracy 

for a new user may be. The 95% confidence interval is another way of presenting the 

variance. But the sample mean and sample variance are somewhat misleading in this case, 

because accuracies are not Gaussian; they range between 0 and 1. A better assumption 

therefore is that the pi are Beta distributed with parameters A and B. In this case, we need to 

first fit the parameters A and B (both > 0) to the observed accuracies p1, …, pF, which can 

be done via maximum likelihood (ML). Once we do that, the mean (estimated accuracy for a 

new user) and variance (variance of the accuracy for a new user) are defined as:

(7)

(8)

Computing the ML estimates for A and B from p1, …, pF is trivial, but problem is that (with 

doing cross-validation) we do not observe p1, …, pF. Instead, we observe F pairs (k1, n1), 

(k2, n2), …, (kF, nF), which are respectively the number of correct predictions (kf) and 

number of test samples (nf) for each user (f):

(9)

(10)

In this case, we assume that the outcomes in the nf tests for user f are Bernoulli with 

probability of success pf. Assuming that nf is fixed and known, we can use the Beta-

Binomial formula to write down the probability that the f-th user has kf correct predictions 

as:

Ahmidi et al. Page 8

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(11)

where A and B (both > 0) are parameters of the Beta-Bernoulli distribution and Γ is the 

Gamma function. Therefore, the total log-likelihood of the observed data k1, …, kF is:

(12)

LogL is a function of (A,B) with fixed (kf, nf). The derivative of the LogL function is 

formulated as below:

where  is the logarithmic derivative of the Gamma function. We find the 

values of A and B that maximize the LogL function numerically using both the LogL 

function and its derivative. After finding the optimum values of A and B parameters, we can 

calculate the mean μ and variance σ of the Beta distribution and report mean, variance, and 

the 95% confidence interval (CI) of the distribution.

Note that Beta μ and σ are comparable with Micro average values. The former computes a 

local Micro average in each fold (for local confusion matrices Ci) and report their mean and 

variance, whereas the latter reports a global Micro average operated on the summation of all 

confusion matrices C.

Methods developed in this paper were grouped based on their prediction goal: (1) gesture 
classification: These methods assume that the boundaries (start and end) of each gesture 

segment are known and the goal is to predict a surgical gesture for each data segment in the 

test set, and (2) joint segmentation and classification: These methods predict a surgical 

gesture for each frame in the test set. This problem is significantly more challenging than 

gesture classification since it requires solving simultaneously for both the boundaries and the 

labels. A candidate technique is expected to perform better in the easier case of gesture 

classification and extend well to the more challenging problem of joint segmentation and 

classification.

This entire process is automated in a common script to ensure that (1) all results are directly 

comparable across all the methods and (2) no test data are left out or treated differently 

(down to every frame of data) across different techniques.
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The aforementioned parts of the JIGSAWS dataset including kinematics, videos, 

annotations, cross-validation setups, and evaluation script are accessible at https://

cirl.lcsr.jhu.edu/research/hmm/datasets/jigsawsrelease/.

IV. Surgical Gesture Segmentation and Classification

In this section, we introduce a group of techniques that address the challenging problem of 

joint gesture segmentation and classification using two families of statistical models: Hidden 

Markov Models (HMMs) and Conditional Random Fields (CRFs). In these models the 

prediction of the gesture label is achieved at the frame level (no pre-segmentation of the data 

is assumed) and the temporal coherence of the predicted gesture labels are captured by 

transition probabilities.

HMMs and linear-chain CRFs are closely related. HMMs are generative learning methods 

that model the joint probability of the observation (feature) and gesture label. On the other 

hand, CRFs are discriminative models in which the posterior probability of the predicted 

gesture label given the observation is directly modeled. These models are applicable to both 

kinematic and video data. Aside from different computational complexities, one approach 

may perform better than the other for the dataset at hand [45].

In this paper, we describe several variations on both HMMs and CRFs: Gaussian Mixture 

Model Hidden Markov Model (GMM-HMM), Sparse HMM (S-HMM), Markov Semi-

Markov Conditional Random Field (MsM-CRF), and Skip-Chain Conditional Random Field 

(SC-CRF). These techniques were previously validated on other surgical datasets. In this 

section, we first briefly introduce them using a consistent terminology, emphasizing their 

similarities and differences, and then validate them on the JIGSAWS dataset. Further 

technical details are available in the supplemental material.

The following list defines notation shared throughout this section.

• m: number of training samples.

• ot: frame-level observation at time t.

• zt: gesture label at time frame t.

• xt: latent variable at time frame t.

• st: state at time frame t.

• hi: segment-level observation at segment i.

• li: frame index of the start of the ith segment.

• : a given time series.

• ψ, θ, γ: CRF potential functions.

• p(o|s): emission probability, with p(xt|st) for GMM-HMM and p(ot|zt) in S-

HMM.
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• q(s′|s) = qs′,s: transition probability between two hidden variables. We use q(s′|s) 

for GMM-HMM and q(z′|z) for S-HMM.

A. Gaussian Mixture Model-Hidden Markov Model: GMM-HMM

Following early published techniques [17], [18], [23], we employed a composite Hidden 

Markov Model (HMM) [46] to tackle the problem of surgical activity recognition. This 

technique models each gesture as an elementary HMM where each state corresponds to one 

Gaussian Mixture Model (GMM). By concatenating the elementary HMMs of different 

gestures together, a composite HMM is formed to model the entire trial. Figure 3 illustrates 

the GMM-HMM configuration.

The frame-level observation vector ot ∈ ℛD can be the raw kinematic variables or features 

extracted from the robot’s kinematics or video images at time (frame) t. Let Z and S be the 

sets of all finite discrete indices for all possible gestures and states, respectively. Then at 

time t, zt ∈ Z represents the gesture label, xt ∈ ℛd a latent variable (e.g., a low-dimensional 

representation of ot), and st ∈ S the corresponding HMM state. The factor graph in Figure 3 

shows the dependency between these variables. Since the raw observations ot generally have 

large dimension, the dimensionality of the data is reduced by performing Linear 

Discriminant Analysis (LDA) [47] prior to modeling. In this case, the low dimensional latent 

variable xt is computed from the observations ot and gesture label zt.

Learning—In the training procedure, the parameters for each elementary HMM are learnt 

separately using their corresponding labeled frames. In this configuration, each HMM has S 
states and each state is modeled by a mixture of M Gaussians. All the parameters that define 

the relationship between the states, observations, and gesture labels are learnt.

Let q(st|st−1) denote the transition probability between two consecutive states (based on the 

Markov assumption) and p(x|s) denote the emission probability. Then the sequence of low 

dimensional observations x1..T and states s1,..T are modeled as

(13)

where π(s0) is the distribution of the initial state. The emission probability of xt given st is

(14)

where the superscript st denotes that the GMM is associated with the state st, M is the 

number of mixture components, and wms are the mixture weights. The parameters of the 

composite HMM are estimated via the Baum-Welch [48] algorithm. Specifically, the GMM 
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parameters can be estimated further from the first and second order statistics. After training, 

the GMM-HMM parameters and the LDA projection matrix are saved as the trained model.

Inference—In the decoding procedure, a gesture sequence is predicted for a given test trial 

constrained by a pre-defined gesture grammar. The grammar is represented by a directed 

graph where each node is a gesture and each edge permits a one directional transition 

between two gestures (Figure 2). The grammar graphs for three surgical tasks of the 

JIGSAWS dataset are shown in Figure 2.

In case of using only the GMM-HMM parameters, many sequences of gestures can be 

generated for the test trial. However, the decoder uses the grammar’s constraints to eliminate 

some of the sequences and constructs a composite HMM from all elementary HMMs. Using 

the grammar’s constraints, the Viterbi algorithm [49] is employed to infer the most likely 

state sequence for the test trial.

Implementation and Discussion—The following parameters can affect the 

performance of the GMM-HMM model: number of states for each elementary HMM (S), 

number of Gaussians per state and their configuration (M), LDA dimension (d), and choice 

of feature vector. A larger S and M requires training a larger set of parameters which might 

need more training data. On the other hand, more complex tasks are recommended to be 

modeled with more states or more Gaussian mixture components.

To validate the GMM-HMM technique on the JIGSAWS kinematic dataset, we tested a 

variety of parameter configurations: S from 1 to 15 and M from 1 to 5. We achieve the best 

performance with a medium complexity model of 3 states and one Gaussian per state.

To reduce the dimensionality of the input data, we observe that very large or very small 

values of d ≤  would cause a decrease in performance. We assume that for an n-way 

classification problem, there are at maximum n − 1 linearly independent dimensions. After 

testing a variation of values for d (range 5 to n−1), we chose d to be 9 for our application. 

For data collected with high sampling frequency, we can reshape the data using a splicing 

technique before applying LDA. Since the frame by frame variations of the data is relatively 

small in the JIGSAWS dataset, we can replace each frame with a longer frame constructed 

by concatenation of the frame with its neighboring frames [50]. This method provides more 

robust data for LDA.

To choose the feature vector, the following subsets of the robot kinematics were tested: (f1) 

all kinematics variables from master and slave robot arms, (f2) f1 excluding the tooltip 

position and orientation of the slave robot, (f3) only master robot kinematic data, and (f4) 

only slave robot kinematic data. Feature f1 on average performs 5% to 10% lower than other 

features. The last three features perform similarly on the suturing task. In most of the 

scenarios f4 performs 5% better for needle-passing, while f2 works 4% better for the knot-

tying task. Considering this trade-off, we choose f4 to represent the robot’s kinematics since 

this type of kinematic information is consistent with what other generic robots can provide.

It is important to mention that figure 3 represents an example of the elementary HMM with a 

Simple Left-to-Right (SLR) topology which generated the best performance for activity 
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recognition using the JIGSAWS dataset. In this topology, all connections between the 

elementary HMMs must be from the end-state of one elementary HMM to the start-state of 

another elementary HMM. In general, however, this technique [46] is able to learn any type 

of topologies with interconnected states.

This method can be easily used for gesture classification with known boundaries. The 

training phase remains the same as above, but in the inference phase a new grammar graph is 

used. This graph has no connections between gesture nodes; instead all the nodes are 

directly connected to both the start and end nodes.

B. Sparse Hidden Markov Model: S-HMM

To achieve a richer observation model, we investigated [30] a variation of the HMM called a 

Sparse-HMM (S-HMM). In this model, each observation is a sparse linear combination of a 

dictionary of atomic motions associated with a specific gesture.

Similar to GMM-HMM, in S-HMM, the gesture label zt is the unobserved hidden state, and 

is modeled as a Markov process. This Markov process is characterized by the transition 

probability q(z′,z) = q(zt = z|zt−1 = z′). The observation ot (here, is the robot’s kinematics) is 

modeled as a sparse linear combination of elements from an overcomplete dictionary of 

surgical atomic motions. Therefore, the observation ot also depends on another latent hidden 

state, namely the sparse coefficient xt. Figure 4 illustrates, in a comparable fashion, 

graphical models for a typical HMM and the proposed S-HMM.

The sparse representation of the observation ot with respect to an overcomplete dictionary of 

motion words Dzt is modeled as follows:

(15)

where Dzt ∈ ℝD×N is an over-complete dictionary (D < N), μzt is the feature mean for class 

zt, xt ∈ ℝN is a sparse latent variable, i.e., it has only a few nonzero entries, and et is an 

independent Gaussian noise distributed as . As a result, the distribution of ot 

given the latent variables is

(16)

To have a sparse latent variable, we use a Laplace prior on the distribution of xt for each 

hidden state where

(17)

with a parameter λz > 0.
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Learning—Given m training trials  and their gesture labels , the 

parameters to be learned are the transition probabilities Q = {qz′,z}z,z′=1,…,Z and the 

parameters for each gesture model , for z = 1, …, Z.

Since the gesture labels are given, the transition probabilities can be directly computed from 

the frequency of gesture transitions, and the remaining parameters can be learned separately 

from data corresponding to each gesture z. To learn the other parameters, we adopt an EM-

like algorithm to maximize the log-likelihood of the observations corresponding to gesture z, 

 with respect to the parameters Θz. In the E-step the 

expectation of the complete log-likelihood with respect to the posterior of xt cannot be 

computed in closed form (due to the Laplacian prior), so we approximate the MAP estimate 

of xt as a delta function: , where 

. The E-Step 

reduces to the following ℓ1 minimization:

(18)

which can be solved using sparse coding algorithms such as Basis Pursuit. Thus the 

approximate expectation of the complete log-likelihood can be written as:

(19)

In the M-step, we need to maximize this expression with respect to the parameters Θz. 

Notice that the first two terms in equation (19) are similar to the standard sparse dictionary 

learning cost, and the feature mean μz is set to empirical mean , with Nz being the 

number of frames with label z. Interestingly, the approximate EM algorithm now involves an 

E-step where the MAP estimate of  is calculated given D̂
z (sparse coding) and an M-step 

where the dictionary Dz is updated based on . This is analogous to sparse dictionary 

learning techniques, which alternate between finding the sparse coefficients and updating the 

dictionary. In our proposed algorithm, we employ the KSVD algorithm for sparse dictionary 

learning, which uses the greedy Orthogonal Matching Pursuit (OMP) algorithm by solving 

the ℓ0-seminorm for sparse coding [51]. In particular λz and  are not involved in KSVD, 

we set them to be equal across classes and compute them afterwards using a 2-fold cross-

validation on the training set. We call this approximate learning method KSVD-S-HMM.
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Inference—Given a trial  and the S-HMM parameters, the sequence of gesture 

labels  is inferred using a dynamic programming method similar to the Viterbi 

algorithm [49], where one maximizes the joint probability of the hidden states and the 

observations as

(20)

The technical details of the inference algorithm are described in the supplemental material.

Implementation and Discussion—To validate the S-HMM on the JIGSAWS dataset, 

we use the KSVD-S-HMM algorithm and only slave information in the kinematic data. The 

parameters that might affect the performance of KSVD-S-HMM are the sparsity level and 

the dictionary size.

For the validation, the sparsity level K is varied from 3 to 15. We observe that the 

performance of the algorithm is not sensitive to the choice of K under the LOSO setup, but a 

proper choice of K improves performance under the LOUO setup by 5%. In our application, 

choosing K to be 7 typically leads to the best performance.

Increasing the dictionary size improves the performance, but it saturates for larger dictionary 

sizes. Since larger dictionary sizes require larger computation power, a medium and 

computationally efficient dictionary of 200 words is chosen to validate the S-HMM 

technique on the JIGSAWS dataset.

C. Markov Semi-Markov Conditional Random Field: MsM-CRF

As noted, there are generally two approaches for training a classifier: generative and 

discriminative. In the previous two sections, we described two variations of a generative 

model (HMM). In the following two sections, we employ variations of a discriminative 

statistical model called CRF for modeling the surgical gestures.

A standard linear-chain CRF shares the same Markov assumption as in the HMM where the 

label at the current frame is dependent only on the one from the previous frame. However, 

the frame-to-frame transitions are not representative of transitions among gestures which 

might last for a couple of seconds. In this section, we describe our Markov/semi-Markov 

Conditional Random Field (MsM-CRF) technique [31] (2013), which was developed to 

model gestures at two layers jointly: one at the level of frames (Markov CRF model) and 

another at the level of segments (semi-Markov CRF model). We then validate it on both 

kinematics and video data of the JIGSAWS dataset.

In this model, we represent a time series (kinematic or video data)  with a graphical model 

 = ( F, ℰF, G, ℰG). Each node  denotes a frame It, hence | F| = T, while 

each node  denotes a gesture segment with label , and , where Ili 
is the first frame of segment i = 1, …, L, and L = | G| is the number of segments in . In 
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this graphical model the edges ei ∈ ℰ denote the connection between two consecutive nodes 

Ni and Ni+1.

The conditional probability of the sequence of gesture labels  = {zt} given a time series 

is modeled with a Gibbs distribution: p( | ) ∝ exp(−E( , )), where

(21)

is an energy function obtained as the dot product of a vector of potential functions Ψ = 

[ψFU,ψFP,ψGU,ψGP] and a vector of weights w = [λFU,λFP,λGU,λGP]. Here, ψFU and ψFP 

are the CRF unary and pairwise potentials, and ψGU and ψGP are the semi-CRF unary and 

pairwise potentials.

The CRF potential  gives the score of assigning a gesture label  to a single 

frame It. For kinematic data, the score is computed from the output of an SVM classifier, 

with RBF kernel on the kinematic data . For video data, this score is obtained from the 

output of an SVM classifier applied to the BoF histogram of features. Concretely, first each 

video frame is represented with a histogram of words  extracted from a neighborhood 

around the frame t, and then these histograms are used to train an SVM classifier with a χ2-

RBF kernel. In both kinematics and videos, the logarithm of the probability returned by 

regression of the SVM output is used as a unary score.

The semi-CRF unary potential  gives the score of assigning a gesture 

label to a segment [li, li+1), thereby capturing global features related to the overall gesture. 

For video data, each segment is represented by the histogram of words  accumulated over 

all the frames that correspond to the segment using the same dictionary of visual words 

described before. These histograms are then used to train a new SVM classifier with χ2-

RBF kernel and the logarithm of the probability returned by regression on the SVM output 

as our unary term. In contrast with the approach in [31], we also adopt a BoF representation 

 for kinematic data. A dictionary of kinematic data is used and each segment is then 

represented by a histogram.

The CRF pairwise and the semi-CRF pairwise are set as the logarithm of the transition 

frequency at frame-level and gesture-level, respectively, as in the S-HMM case.

Learning and Inference—Given m training time series  and their corresponding 

labels , structured SVM [52] (a max-margin formulation) is used to train the 

parameters:
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(22)

The intuition behind the first inequality is that we want the energy E at the ground truth 

labeling w⊤Ψ(𝒵̄
i; i) to be less than the energy of any incorrect labeling w⊤Ψ( ; i) by 

the loss ℓ(𝒵̄
i, ), while still allowing some slack ξi. The loss function ℓ(𝒵̄

i, ) measures the 

error in the labeling  as the fraction of misclassified frames. Since the number of 

constraints is exponentially large, we use the cutting plane algorithm [53] to find w.

Given the MsM-CRF model parameters and a test time series , we can perform joint 

gesture segmentation and recognition by solving the inference problem * = arg min  E( , 

), which can be written as an energy that depends only on the segment labels { }. Thus 

the resulting energy can be minimized using a Viterbi-like dynamic programming algorithm, 

as described in [54].

Implementation and Discussion—We use the MsM-CRF approach to perform gesture 

recognition using the robot’s kinematic and video data of the JIGSAWS dataset individually 

and in combination. For the kinematic data, we use all the master and slave information 

combined. For the spatiotemporal features in the video data, we use the dense features 

presented in [55], which are the concatenation of HOG, HOF, and histograms of motion 

boundaries and projected positions computed around dense trajectories. In [31], we show 

that the dense feature vector performs better than STIP features.

For the validation of the MSM-CRF technique on the JIGSAWS, the following combination 

of models and data are tested: (m1) kinematics to train Markov CRF potentials only (λGU = 

λGP = 0), (m2) kinematics to train both Markov CRF and semi-Markov CRF potentials, (m3) 

videos to train Markov CRF potentials, (m4) videos to train both Markov CRF and semi-

Markov CRF potentials, (m5) videos to train Markov CRF and kinematics to train semi-

Markov CRF potentials, and (m6) kinematics to train Markov CRF and videos to train semi-

Markov CRF potentials.

Training both Markov CRF and semi-Markov CRF (m2 and m4) increase the performance 

about 5% as opposed to training only the Markov CRF potentials (m1 and m3). In the mixed 

models, m5 performs 5% to 10% better than m6. Finally, we observe similar performance for 

models trained only on kinematic or video features, while the mixed model m5 achieves 5% 

to 10% higher performance.

D. Semantic Image Model and Skip-Chain Conditional Random Field

As our fourth approach for gesture recognition, we employ [32], [33], an augmentation of 

the Skip Chain CRF (SC-CRF) [56] with the image semantic objects [57]. The former 

captures the transition between gestures and the latter models the deformable relationship 
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between important objects in the scene. We use both kinematic and video data of the 

JIGSAWS as observations and predict a gesture label for each frame.

In HMM and linear-chain CRF methods, we assume that the label at the current frame is 

dependent only on the previous frame’s label and the data. In SC-CRF, we investigate a 

larger dependency between non-neighboring frames to capture higher-order transition 

between the gestures or the flow of the surgery.

We also extract information about the semantic objects in the video as opposed to using 

abstract features as in BoF and MsM-CRF methods. For example in the suturing task, where 

the relative geometry of the insertion points on the phantom are constrained, we can achieve 

better performance by modeling this semantic object information. The JIGSAWS dataset 

contains three dominant objects: a structured set of insertion points and the wound line (in 

suturing task), a set of metal loops (in needle-passing task), and a rod (in knot-tying task). 

Figure 6 shows examples of these objects.

Skip Chain CRF—Following [33], we model the relationship between observations and 

labels at time t and time t − δ using a set of potential functions (Figure 7). Let ot be the 

observation (features extracted from video and kinematics) made at time t with gesture label 

zt, and let δ be the skip-chain length. We model P(Z|O) ∝ exp(−EC(Z, O)), where EC is the 

energy between a sequence of observations O = {o1, … oT} and corresponding labels Z = 

{z1, …, zT}. EC(Z, O) is modeled as

(23)

where the function Ψ(O, Z) represents unary, pairwise, and skip-length features:

(24)

and w = [wcu,wcp,wcs]T denotes the corresponding weight factors. The unary potential ϕC is 

defined to be a linear combination of the features. Therefore the vector wcu has L×F 
elements, where L is the number of gestures and F is the number of features. The pairwise 

potential ψC is defined to return a binary vector of size L2. This vector has only one element 

“1” where the index matches the transition zt−δ to zt. The length of wcp is L2 as well. The 

skip-length data potential γC function is defined to return a vector of size L×Fs, where Fs is 

the number of binary features (such as gripper angle status). For a given gesture index g and 

feature index i, γC is defined as a Dirac delta function: .

Learning and Inference—Similar to the MsM-CRF model, the parameters of the SC-

CRF are learnt using the structural SVM proposed in [52] along with the Block Coordinate 

Frank Wolfe [58] optimizer. For inference, a modified version of Viterbi algorithm [57] is 

used.
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Semantic Image Models and Features—We develop a deformable part model [57] to 

detect and localize the positions of the objects in the video. The part model has the form of a 

graph, with each object (i.e. insertion points in the suturing task) defined as a node. The 

edges act as springs that regulate the distance between objects (Figure 6).

After determining the object locations in the image, we compute two new semantic-driven 

features: (fd) absolute distance between the projection of the tooltip position and the closest 

object in the image, and (fo) the relative position between the projection of the tool and the 

closest object. Training the semantic model and extracting the semantic features are 

described in the supplemental material.

Implementation and Discussion—We validate the SC-CRF for gesture recognition 

using both video and kinematic data of the JIGSAWS dataset. We first evaluate the accuracy 

of the deformable part model on all three tasks (suturing, needle passing and knot-tying) 

using the labeled frames. To do so, we leave a group of frames out (under LOUO setup) 

during testing, learn the parameters (μij, Σij) from the training frames, and then evaluate the 

models on the test frames. The average error for the semantic part model is less than 5 pixels 

(95% accuracy).

For surgical gesture segmentation and classification, we test the model using several 

different parameter configurations: skip-length (δ from 1 to 100) and observation vectors O 
(subsets of kinematic features, subsets of video features, semantic features, and their 

combination). After computing the prediction sequence, we apply a median filter with width 

δ to smooth the results.

For the skip-length parameter δ, we observe that the performance of the system declines 

when δ is very small (δ ≤ 20) or very large (δ ≥ 50) and peaks at 30 ≤ δ ≤ 40. We choose δ 
to be 30 for our application. Notice that our video frequency is also 30 frames per second.

To select a subset of kinematic features for the observation vector, we test the following 

combination of features: (k1) all master data, (k2) all slave data, (k3) concatenation of k1 and 

k2, (k4) k3 excluding the positions, (k5) k3 excluding the linear velocities, (k6) k3 excluding 

the rotational velocities, and (k7) k3 excluding the gripper angles. We observe almost similar 

performance when using only master data, only slave data, or a combination of the two, 

which supports the conclusion that both the slave side and the master side carry almost the 

same information. However, we notice a slightly better performance for the data of the slave 

side (4%), which could be due to the fact that slave side is a more controlled environment in 

terms of noise canceling and tremor control. Features k4 to k6 show similar performance to 

the first three features, but when we remove the gripper angles their performance drops by 

10%. We also observe that if we remove the depth information (z-axis) from k3, the 

performance drops by another 10%.

In the light of these experiments, we conclude that a combination of slave positions, 

velocities, and gripper angle is a fair representation of the kinematic data. This subset of 

features are more consistent with sensor readings from other robots that do not have a master 
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side or cannot report their joint configurations. These conclusions are in agreement with the 

ones concluded from the HMM experiments.

To select a mix of kinematic and video features, we test the following combination of the 

features in the suturing task and measure the system performance with δ fixed at 30: (f1) 

only kinematic positions and velocities and gripper angle of both slaves, (f2) video projected 

positions and velocities, (f3) video projected positions and velocities concatenated with 

semantic feature fd, (f4) video projected positions and velocities concatenated with semantic 

feature fo, (f5) combination of f1 and fd, and (f6) mix of f1 and fo. Based on the results, the 

video features (f2 to f4) perform 15% lower than kinematic features, but when they are 

combined with the kinematic features in f5, they provide the best performance. Feature f6 

performs only 2% lower than f5.

Even though the SC-CRF models are translatable directly to other surgical tasks or other 

human activities [59], [60], the semantic object models are highly dependent on a-priori 

knowledge about the structure of their environment (such as the wound line in the suturing 

task). However, it is important to mention that this particular semantic object model was 

specifically designed for the assessment of surgical skill (via activity detection) in virtual-

reality simulators and bench-top tasks, where the structure of the environment is known a-

priori.

V. Surgical Gesture Classification

The first four techniques introduced in this paper are designed to tackle the difficult problem 

of joint segmentation and classification of time-series data. Solving simultaneously for both 

the boundaries and the labels, they are able to predict a surgical gesture for each frame in the 

test set.

In this section, we present and validate two of representative methods for classifying surgical 

gestures: (1) Bag of Spatio-Temporal Features (BoF) and (2) Linear Dynamical System 

(LDS). In the classification problem, we assume the temporal boundaries (start and end) of 

each gesture segment are known and the goal is to predict a correct gesture label for the 

segment in the test set.

A. Bag of Spatio-Temporal Features: BoF

The bag of features approach was originally introduced for the object recognition problem in 

computer vision [61], [62] and was later applied to action recognition in videos [63]–[65].

Similarly, we developed the Bag of Spatio-Temporal Features approach for surgical gesture 

classification of presegmented video data [42], [43] (2013). In our version of the BoF 

technique, features are, however, extracted from the sequence of images in the video 

segment rather than from a single image, and consists of the following four steps:

Feature extraction—Features are extracted from multiple Space-Time Interest Points 

(STIP [63]) in each video segment. A STIP is a point (x, y, t) in the video that has high 

texture variations (e.g. large gradients) both spatially and temporally. It usually detects the 
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motion in the video and ignores the static background. A 3D cuboid is centered around each 

extracted STIP at different spatio-temporal scales. Then local features are extracted from 

each cuboid: a 72-bin histogram of orientation gradients (HOG), and a 90-bin histogram of 

optical flow (HOF) [66]. In [43], we discuss the results obtained using these features 

individually or in combination, as well as the effect of a multichannel approach [67].

Clustering—After extracting the features, a codebook (a dictionary of spatio-temporal 

words) is built from all the locally computed features using a clustering technique such as K-

means where each cluster of similar features is then represented by its cluster centroid. The 

clustering process is used to reduce the dimensionality of each video segment from a large 

feature set to a smaller set of representative features. In addition, it also provides some 

robustness against small variations in the features. Concretely, if G features of dimension D 
(F = [f1, … fG] ∈ ℝD×G) are extracted from a set of video segments used for training, they 

are then clustered into K centroid points v1, …, vK. We have tested two clustering 

techniques: K-means and Sparse Dictionary Learning (SDL) [68]. If we employ K-means 

for clustering, we would find the codebook, , that satisfies:

(25)

In SDL clustering technique [43], for each feature fg we compute its sparse representation yg 

with respect to the codebook V. Let Y = [y1, …, yG], then both V* and Y* are optimized as 

follows:

(26)

The SDL technique can be seen as a generalization of K-means where K-means provides 

hard assignments, the yg vectors (in absolute value) can be interpreted as soft assignments.

Encoding—The set of features extracted from each video segment can now be represented 

by a histogram of codebook words. To construct the histogram, we employ a variety of 

combinations of encoding schemes (hard, soft and hybrid assignments) and pooling (sum 

and max) methods [43].

The assignment decision can be viewed as the way each feature “votes” for the words of the 

codebook. In hard assignment, votes are binary (i.e., 1 or 0) and each feature is associated 

only with one word. In the case of soft assignment, a feature spreads its votes among all K 
words. A hybrid assignment is a combination of hard and soft assignments, such as the one 

proposed in [43].

Classification—At this stage, each video segment i is represented by its histogram hi. A 

one-vs-one multi-class SVM classifier is trained, using three different types of kernels: 
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linear, intersection (KI), and 2 (K ). For features computed with the multi-channel 

approach, a Radial Basis Function (RBF) (KRBF) is also employed for the SVM classifier. 

(see supplemental material for more details).

Implementation and Discussion—We employ the BoF technique for gesture 

classification on the video data of the JIGSAWS. The parameters that can affect BoF 

classification performance are: feature type, encoding method, dictionary size (number of 

spatio-temporal words), sparsity weights for dictionary learning, and choice of the kernel.

In [43], we tested the BoF using combination of choices among four features (HOG, HOF, 

and combinations of HOG and HOF using concatenation or a multi-channel approach), two 

clustering methods (K-means, SDL), different dictionary sizes (300 to 4000 words), six 

encoding approaches (combination of hard, soft, hybrid assignment, and max, sum-pooling), 

and three SVM kernels (intersection, 2, and RBF).

The HOG features extracted from the whole frame did not capture the differences between 

the surgical gestures due to the large constant background in the videos. On the other hand, 

HOG features extracted from STIP could successfully discard the constant background and 

capture the moving robot arms and hands. In addition, the HOG descriptors (capturing the 

shape and appearance of the objects) alone are more discriminative than HOF (capturing the 

object motion). As expected, their concatenation improved the results 5% to 10%. For BoF 

validation on the JIGSAWS, we use concatenation of HOF and HOG.

Independent of the type of the features, increasing the dictionary size in the tested range 

(300 to 4000 words) improved the performance. This improvement was however saturated 

for larger dictionary sizes. Since larger computation power is required for larger dictionary 

sizes, as suggested in [43], we choose a medium dictionary of size 2000 to validate the BoF 

technique on the JIGSAWS dataset.

For the encoding step, we tested all combinations of assignment techniques and pooling 

methods. Hybrid assignment performed just 1% lower than hard assignment, and combining 

soft assignment with max-pooling outperformed sum-pooling. We noticed that tuning 

parameters in soft and hybrid assignment is very important, and can improve the results by 

up to 25%. Finally, hard membership assignment combined with sum-pooling provided the 

best results. We use the same configuration to validate BoF on the JIGSAWS.

For clustering, SDL (SPAMS toolbox [69]) performance was robust to the choice of 

parameter λ and K-means performance was only 1–2% lower. In addition, 2 and 

intersection kernels performed equally well for SVM classification, independent of the 

choice of the clustering technique, while results obtained using a linear kernel were worse. 

Following these observations, to validate BoF on the JIGSAWS, we use K-means for 

clustering (computationally more efficient than SDL) and 2 for the SVM kernel.

B. Linear Dynamical System

Employing the idea of linear dynamical system, we also validate the LDS technique 

introduced in [42], [43] on the JIGSAWS dataset. This technique consists of the following 
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three steps: (1) the kinematics data or image intensities of a video frames are modeled as the 

output of a LDS with Gaussian noise as an input, (2) After fitting LDS models to the 

manually segmented data, all the pairwise distances between LDSs are measured using 

Martin [70], Frobenius [71], Binet-Cauchy (BC) [72], and alingment [73] metrics, and 

finally, (3) a classifier (k-Nearest Neighbors (k-NN) or SVMs with RBF) is trained for 

classifying novel kinematics and/or video sequences. Below we discuss these steps in 

details:

Training the LDS—Let ot ∈ ℝd be either one image frame with d pixels from the video or 

one frame from the kinematic data. We assume that ot is the output of an LDS:

(27)

(28)

where xt ∈ Rn is the hidden state (with n ≪ d). Matrices A ∈ Rn×n, B ∈ Rn×d, and C ∈ Rd×n 

are the state transition, noise-coloring, and observation matrices, respectively. The stochastic 

processes ut ~ (0, I) and wt ~ (0, R) are assumed to be i.i.d. Gaussian and model the 

process and measurement noise, respectively.

For this LDS model, only ot is known and the parameters M = (A, B, C, R) need to be 

identified using the observations for each pre-segmented data in the training set. To identify 

the parameters of the LDS model, we employ a sub-optimal method based on Principal 

Component Analysis proposed in [74].

Comparing LDSs—One difficulty in assessing the similarity or distance between two 

LDS models is the fact that the identified representation is not unique because (A, B, C, R) 

and (PAP−1, PB, CP−1, R) are equivalent representations of the same LDS for all invertible n 
× n matrices P. To address this challenge, we use three different metrics in the space of 

dynamical systems: (1) metrics based on subspace angles between the observability 

subspaces of the dynamical models [70], [71], (2) metrics based on Binet-Cauchy kernels 

[72], and (3) alignment distance based on the equivalence of representation between models 

[73] (see supplemental material for the descriptions of these metrics).

Classification—After computing all the pairwise distances between the LDS models fitted 

to the segments of the data in training set, a classifier such as k-Nearest Neighbor (k-NN) or 

RBF-kernel SVM is trained to predict a gesture label for novel sequences of data. The RBF 

kernel [75] is defined as:

(29)

Where γ > 0 is a parameter and dX is one of the metric distances described above.

Ahmidi et al. Page 23

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Implementation and Discussion—We validate the LDS technique on the JIGSAWS 

dataset for gesture classification from both video and kinematic data. The videos are 

downsampled to 320×240 pixel resolution and their raw pixel intensities are used as the 

input observation.

The order of the linear dynamical model (n), the choice of the distance metric, classifier 

type, and feature types can affect the classification performance of the LDS. Similar to [43], 

we again test the model with different orders (n = 5 to 21), distance metrics (Martin, 

Frobenius, BC, and alignment), classifiers (k-NN and SVM), and features (optical flow, 

pixel intensities in video, and kinematics).

The LDS is moderately sensitive to the choice of the order: a carefully chosen order would 

increase the performance by up to 10%. However, there are outliers to this conclusion, such 

as the unsuccessful combination of the BC-kernel metric and the SVM classifier. Other 

combinations of parameters performed well when n was chosen to be between 10 and 17.

Similar to the observations made in [43], among different distance metrics, there is no clear 

winner that performs well under both LOSO and LOUO setups for both kinematic and video 

data. Nonetheless, the metrics based on subspace angles (Martin and Frobenius) often 

perform better. In most scenarios, other metrics provide similar results. For a fixed 

dynamical order, one can improve the performance of the LDS model 5% to 10% by 

choosing an appropriate distance metric.

Slightly different from observations made in [43], we observe that different feature types 

performed differently depending on the choice of the model order, classifier and metric. For 

example, kinematic features achieve the highest performance when we choose the following 

combination: n = 15, SVM classifier, and BC metric. The video pixel features perform the 

best with n = 15, SVM, and alignment metric. [43] also tested for optical flow features 

(BoF), and observed that on average, they performed worse than pixel intensities and 

kinematic data. On average, the kinematic data perform the best, with the results from pixel 

intensities following very closely.

Between different choices of classifier, in general, the SVM classifier achieves the best 

performance.

VI. Results

The results reported in this section are generated using the JIGSAWS unified cross-

validation setup, which ensures that they are directly comparable and that no test data are 

left out or treated differently across different methods.

Tables I, II, III, and IV summarize the best performance for the six techniques described in 

this paper. In their corresponding sections, we discussed details of the parameter 

configurations, their effects on classification performance, and the configurations that 

yielded the best overall results for each technique. All the parameter values described in this 

paper were found either by learning them in the validation phase (using the training set) or 
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by consistently sweeping the parameter space in a reasonable range and not by manual 

tweaking.

We report five non-probabilistic performance metrics for each technique: Micro, Macro, 

Macro variance, Precision, and Precision variance and three probabilistic metrics mean μ, 

variance σ, and 95% confidence interval of the Beta distribution.

As noted in the evaluation methodology section, we evaluate and report the performance of 

our techniques under two cross-validation techniques: LOUO (Leave-One-User-Out) and 

LOSO (Leave-One-Super-Trial-Out). These two cross-validation approaches help to 

measure the models’ generalization to new and unknown surgeons or to new trials 

performed by a known surgeon, respectively. We observe that all the techniques perform on 

average 10% lower on the harder test of LOUO. This deficiency is probably not due to the 

training sample size, because the size of the training pool (in all folds) for the LOUO test is 

equal to or larger than those in the LOSO test. The lower performance on the LOUO, 

therefore, suggests a higher inter-surgeon variability – for example, different novice 

surgeons make different mistakes and expert surgeons practice different styles.

The difference between surgeons’ styles could be due to the following two factors: (1) The 

JIGSAWS cross-validation tests combine the trials performed by both experts and novices. 

For example, if trials from a novice surgeon are left out for the test, their executions of the 

gestures may not resemble either those performed correctly by experts or wrongly (but 

differently) by other novices; and/or: (2) For dexterous and mentored tasks such as surgical 

activities, individual subjects develop certain styles, resembling their mentors. Therefore, 

activities performed by expert individuals may differ style-wise from those performed by 

other experts, a potential source of variability even across expert task executions.

The results in Table I show that our techniques can recognize the gesture activities with high 

accuracy (about 80%) when the human performer is observed beforehand (LOSO). For the 

case of predicting a gesture label for a surgery performed by an unobserved surgeon (LOUO 

reported in Table II), the prediction accuracy decreases on average 10% (range 4% to 30%).

There are three factors to notice when comparing the results: (1) the chance baseline for 

gesture recognition (micro average) is 10%, 12.5%, and 8.3% for the suturing, needle 

passing, and knot tying tasks, respectively. This shows that the described techniques perform 

8× to 10× better than chance, (2) for the case of joint segmentation and classification, the 

granularity of the classifier is very fine at frame level which is about 0.03 second long, and 

(3) at this granularity, independent human annotators agree only on 75% to 80% of the 

frames [26], [27]. Therefore for a machine (trained to replicate manual labels) a performance 

of 80% is within the range of human labeling performance. These three factors should put 

into perspective the highest accuracies that a specific algorithm can be expected to achieve.

Since the introduced techniques are implemented with different programming language, a 

direct comparison between their run-time is not justifiable. For a fair comparison, and for the 

first time, we report and compare the time complexity of each algorithm both for the training 

phase and the decoding phase (note supplemental document).
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The supplemental document also includes additional results useful to understand the 

strengths and limitations of the described techniques. Tables I, II, III, and IV report the best 

results for each technique achieved with chosen subsets of kinematic features: e.g. while 

MsM-CRF uses data from both slave and master arms, GMM-HMM and KSVD-S-HMM 

use only slave arms data, and SC-CRF uses a subset of slave arms data. Table I and II in the 

supplemental document present the performance of the described techniques when the same 

input features (both master and slave arms) are used. The results show that even though 

some of the techniques perform lower than the ones reported in Tables I and II, their order 

remains similar. In addition, Tables III and VI in the supplemental document report state-of-

the-art results on skill assessment of the JIGSAWS database.

VII. Conclusion

Processing of surgical time-series data is challenging due to complexity of both the data and 

its purpose, ranging from surgical skill assessment to patient outcome prediction. The 

emerging field of surgical activity recognition aims to facilitate, and ultimately provide 

targeted feedback to improve, e.g., residents’ competency. This is becoming increasingly 

feasible thanks to the availability of methods for automated high-fidelity data collection (e.g. 

using surgical robots) and analysis.

In this paper, we first described the elements of the JIGSAWS dataset – the first public 

benchmark surgical activity dataset. We presented a unified framework supporting 

performance evaluation of state-of-the-art methods for automatic classification and 

segmentation of surgical time-series data. We then presented several methods for 

segmentation and classification using both kinematic and video data, with consistent 

evaluation of their performance using the JIGSAWS benchmark dataset. Note that this 

includes representing and re-evaluating several previously developed methods to be 

consistent with the methodology presented in this paper.

The data used for our research is structurally similar in many ways to that captured using 

other approaches, such as electromagnetic or visual trackers. Consequently, it is possible to 

exchange the data and the techniques introduced in this paper with those from activity 

recognition fields other than on surgical robots or simulators. Our recent publications 

demonstrate that the presented techniques are applicable to the broader category of human 

action recognition [59], [76]. Currently we are expanding them to more complex activities 

with data collected from other trackers which is noisier than robotic data, live patient data 

which is less structured than training tasks, and live patient surgical video data which lacks 

salient features due to the presence of blood.

The methodologies and the results published in this paper aim to provide a comparative 

baseline as well as a rich and insightful direction for future researchers in the emerging field 

of robotic surgery.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Snapshots of the three surgical tasks in the JIGSAWS (from left to right): suturing, needle-

passing, knot-tying.
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Fig. 2. 
Grammar graph for Suturing (left), Needle-Passing (center), and Knot-Tying (right)
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Fig. 3. 
Trial model and gesture model using composite HMM.
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Fig. 4. 
Graphical models for standard HMM (left) and the S-HMM with latent variables (right).
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Fig. 5. 
Graphical model for Markov semi-Markov Conditional Random Field.
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Fig. 6. 
Deformable Part Model for three surgical tasks: (top left) cartoon diagram of the suturing 

model, (top right) Suturing, (botom left) Needle-Passing, and (bottom right) Knot-Tying
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Fig. 7. 
A Skip-Chain Conditional Random Field is used to capture state transitions over large 

periods of time. In this figure we show a skip-length of δ.
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TABLE I

Best performance of joint segmentation and classification techniques validated on the JIGSAWS, for LOSO 

cross-validation. GMM-HMM (S = 3, M = 1, d = 1, feature f4), KSVD-S-HMM (K = 7, 200-word dictionary, 

feature slave arms), MsM-CRF (kinematic m2, video m4, video and kinematics m5), and SC-CRF (δ = 30, 

feature f5).

Method (Data type) Evaluation Suturing Needle-passing Knot-tying

GMM-HMM (kin)

Micro 82.22 70.55 80.95

Macro±std 70.99±22.67 66.10±14.19 79.27±13.06

Precision±std 73.03±27.76 67.86±13.06 81.66±7.75

β (μ ± σ) 82.98±0.13 70.56±0.05 80.59±0.18

β 95%CI 75.20–89.56 65.70–75.20 71.40–88.37

KSVD-SHMM (kin)

Micro 83.40 73.09 83.54

Macro±std 73.05±28.03 68.51±19.28 82.13±4.62

Precision±std 72.82±27.18 69.45±17.33 86.04±7.96

β (μ ± σ) 83.89±0.09 74.01±0.59 83.23±0.23

β 95%CI 77.45–89.43 57.56–87.55 72.71–91.58

MsM-CRF (kin)

Micro 81.99 72.44 79.26

Macro±std 72.56±26.70 67.73±16.93 79.05±7.62

Precision±std 72.23±27.69 67.54±18.97 82.12±7.27

β (μ ± σ) 83.04±0.24 73.24±0.29 79.19±0.14

β 95%CI 72.29–91.57 62.075–83.09 71.15–86.22

MsM-CRF (vid)

Micro 84.43 74.54 82.84

Macro±std 71.77±28.09 66.76±19.08 81.17±6.85

Precision±std 75.84±27.14 72.89±10.42 84.58±9.00

β (μ ± σ) 84.78±0.03 75.27±0.28 82.80±0.02

β 95%CI 80.96–88.24 64.06–84.98 79.90–85.52

MsM-CRF (kin+vid)

Micro 85.10 75.09 84.03

Macro±std 72.68±28.38 66.59±18.88 82.13±6.78

Precision±std 75.79±27.06 74.42±10.00 85.85±7.56

β (μ ± σ) 85.51±0.05 75.65±0.19 84.03±0.02

β 95%CI 80.80–89.66 66.55–83.72 81.07–86.78

SC-CRF (kin)

Micro 85.18 77.30 80.72

Macro±std 74.19±28.14 71.34±17.20 79.75±9.76

Precision±std 77.03±27.51 74.96±9.84 81.19±8.69

β (μ ± σ) 85.87±0.15 78.27±0.36 80.66±0.12

β 95%CI 77.25–92.71 65.39–88.83 73.35–87.04
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Method (Data type) Evaluation Suturing Needle-passing Knot-tying

SC-CRF (kin+vid)

Micro 85.04

Not Available Not Available

Macro±std 74.52±28.44

Precision±std 76.88±27.48

β (μ ± σ) 85.86±0.18

β 95%CI 76.35–93.23

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ahmidi et al. Page 41

TABLE II

Best performance of joint segmentation and classification techniques validated on the JIGSAWS, for LOUO 

cross-validation. GMM-HMM (S = 3, M = 1, d = 1, feature f4), KSVD-S-HMM (K = 7, 200-word dictionary, 

feature slave arms), MsM-CRF (kinematic m2, video m4, video and kinematics m5), and SC-CRF (δ = 30, 

feature f5).

Method (Data type) Evaluation Suturing Needle-passing Knot-tying

GMM-HMM (kin)

Micro 73.95 64.13 72.47

Macro±std 57.99±31.57 55.63±19.54 65.90±25.24

Precision±std 61.75±29.93 57.97±18.26 70.71±15.95

β (μ ± σ) 72.60±1.27 64.28±1.08 73.03±0.53

β 95%CI 48.07–91.32 42.75–83.12 57.56–86.06

KSVD-SHMM (kin)

Micro 73.45 62.78 74.89

Macro±std 52.34±31.68 55.32±18.90 72.73±7.29

Precision±std 66.45±25.69 58.81±21.61 76.41±11.29

β (μ ± σ) 73.17±0.09 64.64±1.25 75.33±0.83

β 95%CI 66.92–78.99 41.43–84.63 55.45–90.71

MsM-CRF (kin)

Micro 67.84 44.68 63.28

Macro±std 51.05±28.62 37.58±12.63 53.05±26.31

Precision±std 54.27±32.20 47.43±27.12 57.95±31.66

β (μ ± σ) 68.24±1.34 46.83±2.14 64.40±1.13

β 95%CI 43.67–88.26 19.36–75.43 42.38–83.58

MsM-CRF (vid)

Micro 77.29 66.98 75.65

Macro±std 57.59±33.78 60.02±21.53 72.82±9.87

Precision±std 61.83±33.83 65.08±16.69 80.3±14.56

β (μ ± σ) 77.54±0.22 66.65±0.69 77.03±0.34

β 95%CI 67.72–86.03 49.41–81.84 64.54–87.48

MsM-CRF (kin+vid)

Micro 78.98 65.871 77.319

Macro±std 59.26±34.14 56.34±20.09 72.66±14.83

Precision±std 63.61±34.15 64.21±17.65 80.88±10.82

β (μ ± σ) 79.10±0.28 65.51±0.69 77.97±0.34

β 95%CI 67.80–88.49 48.42–80.75 65.50–88.28

SC-CRF (kin)

Micro 81.74 74.77 78.95

Macro±std 68.68±29.85 66.41±19.80 77.56±10.81

Precision±std 70.22±26.91 71.33±13.71 76.25±14.05

β (μ ± σ) 82.33±0.39 74.96±0.76 80.09±0.59

β 95%CI 68.47–92.79 56.00–89.89 63.09–92.73

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ahmidi et al. Page 42

Method (Data type) Evaluation Suturing Needle-passing Knot-tying

SC-CRF (kin+vid)

Micro 81.60

Not Available Not Available

Macro±std 67.67±30.01

Precision±std 69.51±27.60

β (μ ± σ) 82.17±0.41

β 95%CI 67.86–92.91
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TABLE III

Best performance of classification techniques validated on the JIGSAWS, for LOSO cross-validation. BoF 

(2000-word dictionary, concatenation of HOG and HOF, hard encoding with sum-pooling, K-means 

clustering, 2 kernel SVM), LDS(n = 15, SVM classifier, BC metric for kinematics and align for video), and 

GMM-HMM (S = 3, M = 1, d = 1, feature f4).

Method (Data type) Evaluation Suturing Needle-passing Knot-tying

BoF (vid)

Micro 92.56 76.98 91.37

Macro±std 82.17±29.51 75.60±16.33 89.95±9.05

β (μ ± σ) 81.12±29.37 75.17±13.60 92.7±7.71

β 95%CI 92.95±0.19 76.99±0.01 91.34±0.007

82.12–98.91 74.66–79.24 89.61–92.93

LDS (kin)

Micro 84.61 59.768 81.67

Macro±std 63.87±30.82 46.55±25.81 74.51±23.73

Precision±std 73.30±28.41 52.91±17.31 76.07±18.72

β (μ ± σ) 84.77±0.06 59.78±0.01 81.67±0.016

β 95%CI 79.36–89.49 57.42–62.12 79.12–84.09

LDS (vid)

Micro 90.29 67.12 89.49

Macro±std 74.73±29.64 56.82±23.29 87.61±7.99

Precision±std 82.26±29.59 73.40±15.09 91.67±7.10

β (μ ± σ) 90.58±0.10 67.12±0.014 89.45±0.008

β 95%CI 83.26–95.96 64.72–69.49 87.58–91.18

GMM-HMM (kin)

Micro 92.56 75.68 89.76

Macro±std 79.66±29.85 72.36±16.99 87.29±12.76

Precision±std 81.20±30.42 73.60±20.43 91.52±7.41

β (μ ± σ) 92.76±0.07 75.66±0.01 89.71±0.43

β 95%CI 86.38–97.234 73.31–77.941 73.72–98.556
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TABLE IV

Best performance of classification techniques validated on the JIGSAWS, for LOUO cross-validation. BoF 

(2000-word dictionary, concatenation of HOG and HOF, hard encoding with sum-pooling, K-means 

clustering, 2 kernel SVM), LDS(n = 15, SVM classifier, BC metric for kinematics and align for video), and 

GMM-HMM (S = 3, M = 1, d = 1, feature f4).

Method (Data type) Evaluation Suturing Needle-passing Knot-tying

BoF (vid)

Micro 82.97 67.11 86.52

Macro±std 67.39±36.32 63.11±19.98 85.41±7.80

β (μ ± σ) 63.47±36.05 64.34±22.39 88.42±10.88

β 95%CI 83.18±0.80 68.32±1.15 86.40±0.09

62.35–96.48 45.64–87.09 79.85–91.83

LDS (kin)

Micro 73.64 47.96 71.42

Macro±std 51.75±32.91 32.59±29.74 63.99±24.51

Precision±std 53.39±32.01 32.01±27.76 65.74±21.54

β (μ ± σ) 73.80±0.30 45.68±1.45 71.44±0.15

β 95%CI 62.31–83.84 22.92–69.44 63.31–78.93

LDS (vid)

Micro 79.32 56.48 82.75

Macro±std 58.53±34.73 45.53±25.14 81.11±11.35

Precision±std 62.48±33.92 60.65±22.11 86.96±12.36

β (μ ± σ) 79.47±0.47 56.62±0.21 82.57±0.18

β 95%CI 64.44–91.16 47.48–65.53 73.45–90.10

GMM-HMM (kin)

Micro 80.83 66.22 78.44

Macro±std 65.03±33.07 62.70±16.38 72.68±21.31

Precision±std 71.98±33.05 66.55±25.45 83.27±13.04

β (μ ± σ) 81.31±1.32 69.19±2.97 78.16±0.58

β 95%CI 54.16–97.47 31.31–95.59 61.47–91.07
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