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Increased concentrations of kynurenic acid (KYNA) in the prefrontal cortex (PFC) are thought to contribute to the development of
cognitive deficits observed in schizophrenia. Although this view is consistent with preclinical studies showing a negative impact of
prefrontal KYNA elevation on executive function, the mechanism underlying such a disruption remains unclear. Here, we measured
changes in local field potential (LFP) responses to ventral hippocampal stimulation in vivo and conducted whole-cell patch-clamp
recordings in brain slices to reveal how nanomolar concentrations of KYNA alter synaptic transmission in the PFC of male adult rats. Our
data show that prefrontal infusions of KYNA attenuated the inhibitory component of PFC LFP responses, a disruption that resulted from
local blockade of �7-nicotinic acetylcholine receptors (�7nAChR). At the cellular level, we found that the inhibitory action exerted by
KYNA in the PFC occurred primarily at local GABAergic synapses through an �7nAChR-dependent presynaptic mechanism. As a result,
the excitatory–inhibitory ratio of synaptic transmission becomes imbalanced in a manner that correlates highly with the level of GABAe-
rgic suppression by KYNA. Finally, prefrontal infusion of a GABAAR positive allosteric modulator was sufficient to overcome the
disrupting effect of KYNA and normalized the pattern of LFP inhibition in the PFC. Thus, the preferential inhibitory effect of KYNA on
prefrontal GABAergic transmission could contribute to the onset of cognitive deficits observed in schizophrenia because proper GABAe-
rgic control of PFC output is one key mechanism for supporting such cortical functions.
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Introduction
The functional maturation of GABAergic circuits in the prefron-
tal cortex (PFC) is one key mechanism for enabling proper pro-

cessing of ventral hippocampal afferent information (Thomases
et al., 2013; Caballero et al., 2014) and for supporting PFC-
dependent cognitive functions (Floresco, 2013; Tse et al., 2015).
It is thought that a disruption of such GABAergic control in the
PFC underlies the onset of cognitive deficits seen in a variety of
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Significance Statement

Brain kynurenic acid (KYNA) is an astrocyte-derived metabolite and its abnormal elevation in the prefrontal cortex (PFC) is
thought to impair cognitive functions in individuals with schizophrenia. However, the mechanism underlying the disrupting effect
of KYNA remains unclear. Here we found that KYNA biases the excitatory–inhibitory balance of prefrontal synaptic activity
toward a state of disinhibition. Such disruption emerges as a result of a preferential suppression of local GABAergic transmission
by KYNA via presynaptic inhibition of �7-nicotinic acetylcholine receptor signaling. Therefore, the degree of GABAergic dysregu-
lation in the PFC could be a clinically relevant contributing factor for the onset of cognitive deficits resulting from abnormal
increases of cortical KYNA.
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psychiatric disorders including schizophrenia (Tseng et al.,
2009; Tse et al., 2015; Caballero et al., 2016). Further understand-
ing of the different synaptic mechanisms that enable proper
regulation of GABAergic function in the PFC is therefore a
critical step toward gaining insights on how to restore normal
cognition in schizophrenia and related psychiatric syndromes
(Caballero and Tseng, 2016).

Of special interest in this context is the abnormal elevation of
the tryptophan metabolite kynurenic acid (KYNA) in the PFC of
individuals with schizophrenia, a biochemical dysregulation that
is not secondary to antipsychotic medication (Schwarcz et al.,
2001; Ceresoli-Borroni et al., 2006; Sathyasaikumar et al., 2011;
Larsson et al., 2015). Brain KYNA is an astrocyte-derived me-
tabolite that is present in the mammalian CNS at nanomolar
concentrations (Moroni et al., 1988; Turski et al., 1988) and neg-
atively modulates �7-nicotinic acetylcholine receptor (�7nAChR)
function under physiological conditions (Albuquerque and
Schwarcz, 2013). At higher concentrations, KYNA can also func-
tion as a competitive inhibitor of the glycine coagonist (glycine-B)
site of the NMDA receptor (NMDAR) (Kessler et al., 1989; Par-
sons et al., 1997). Therefore, the increased PFC levels of KYNA
observed in schizophrenia may be clinically relevant and mecha-
nistically linked to the onset of cognitive impairments as a result
of deficits in �7nAChR and/or NMDAR function in cortical cir-
cuits (Robbins and Murphy, 2006; Timofeeva and Levin, 2011).
Accordingly, studies from animal models converge to indicate
that increased cortical levels of KYNA can lead to deficits in ex-
ecutive function (Chess et al., 2007; Akagbosu et al., 2012; Alex-
ander et al., 2012, 2013; Pocivavsek et al., 2012; Pershing et al.,
2015; Pershing et al., 2016). However, the precise mechanism
underlying the disrupting action of KYNA in cortical circuits
remains elusive despite the fact that fluctuations in endogenous
KYNA levels in the PFC are known to modulate bidirectionally
the extracellular concentrations of glutamate (Konradsson-Geuken
et al., 2010; Wu et al., 2010), GABA (Beggiato et al., 2014), dopa-
mine (Pocivavsek et al., 2016; Valentini et al., 2016), and acetyl-
choline (Zmarowski et al., 2009).

The goal of the present study is to gain insights into how KYNA
disrupts cortical circuits by determining the functional impact of
elevations of nanomolar concentrations of KYNA in the PFC. We
used local field potential (LFP) recordings to assess disruptions in the
pattern of PFC response to ventral hippocampal train stimulation
(10, 20, and 40 Hz) following PFC infusions of KYNA in vivo. This
protocol of train stimulation was chosen because of its sensitivity in
revealing changes in the relative contribution of excitatory and in-
hibitory transmission in the PFC (Cass et al., 2013; Thomases et al.,
2013). At the cellular level, whole-cell patch-clamp recordings in
brain slices were then used to identify the mechanisms by which
nanomolar concentrations of KYNA regulate synaptic transmission
onto pyramidal output neurons in the PFC.

Materials and Methods
Procedures. All experimental procedures were approved by the Rosalind
Franklin University Institutional Animal Care and Use Committee in
accordance with National Institutes of Health guidelines. All recordings
were conducted from adult (�80-d-old) male Sprague Dawley rats (Har-
lan Laboratories). Rats were allowed to habituate for at least 7 d upon
arrival, group housed (3/cage), and maintained under constant temper-
ature (21–23°C) in a 12/12 h light/dark cycle with food and water avail-
able ad libitum. All chemicals were purchased from Sigma-Aldrich except
for Indiplon, which was obtained from Tocris Bioscience.

In vivo recordings of LFPs in the medial PFC. All LFP recordings were
conducted in the medial PFC (prelimbic and infralimbic regions) using a
concentric bipolar electrode (SNE-100x 50 mm; Rhodes Medical Instru-

ments) attached to a 28-gauge cannula to enable local administration of
artificial CSF (aCSF)-containing agonists and antagonists as described
previously (Thomases et al., 2013). Here, single infusions of 0.8 �l of
aCSF alone (control) or in combination with one of the following
neuromodulators were delivered into the PFC at 0.1 �l/min: (1) KYNA
(100–300 nM), (2) methyllycaconitine (MLA; 300 nM), (3) 7-chlorokynurenic
acid (7Cl-KYNA; 300 nM), (4) Indiplon (10 �M), (5) KYNA � Indiplon,
or (6) MLA � Indiplon. The chemical composition of the aCSF solution
was as follows (in mM): 122.5 NaCl, 3.5 KCl, 25 NaHCO3, 1 NaH2PO4,
2.5 CaCl2, 1 MgCl2, 20 glucose, and 1 ascorbic acid, pH 7.40, 295–305
mOsm. For stimulation, another concentric bipolar electrode (NE-100x
50 mm; Rhodes Medical Instruments) was lowered into the ventral hip-
pocampus (Fig. 1) and trains of electrical pulses (300 �s square pulses at
0.75 mA) were delivered every 15 s through a computer-controlled pulse
generator (Master-8; A.M.P.I.). Changes in the pattern of LFP at 10, 20,
and 40 Hz were assessed by the amplitude of the evoked LFP as described
previously (Thomases et al., 2013). All example traces of LFP shown are
averages of six evoked responses.

Whole-cell patch-clamp recordings of IPSCs in the medial PFC. All ex-
perimental procedures (brain slicing and patch-clamp recordings) were
conducted as described previously (Cass et al., 2014; Flores-Barrera et al.,
2014). Briefly, all recordings were conducted from layer V pyramidal
neurons of the medial PFC (infralimbic and prelimbic regions; 350-�m-
thick coronal slices) at 33–35°C using a cesium-based internal solution
containing 0.1% Neurobiotin (Vector Laboratories) and the following
(in mM): 140 CsCl, 10 HEPES, 2 MgCl2, 5 NaATP, 0.6 NaGTP, and
3 QX-314, pH 7.23–7.28, 280 –282 mOsm. The recording aCSF con-
tained 10 �M CNQX and 50 �M APV and the following (in mM): 122.5
NaCl, 3.5 KCl, 25 NaHCO3, 1 NaH2PO4, 2.5 CaCl2, 1 MgCl2, 20 glucose,
and 1 ascorbic acid, pH 7.40 –7.43, 295–305 mOsm. Both GABA-A
receptor-mediated spontaneous and evoked IPSCs were obtained in
voltage-clamp mode (holding potential: �70 mV). Only neurons exhib-
iting stable baseline activity (i.e., 10 min) were included for analyses.
Typically, the mean baseline IPSC frequency obtained from at least two
noncontiguous epochs of 60 s each was compared with equivalent mea-
sures taken 10 min after bath application of 300 nM KYNA, MLA, or
7Cl-KYNA. The effects of KYNA, MLA, and 7Cl-KYNA were also assessed
by measuring changes in the amplitude of electrically evoked IPSCs. Data
from the evoked response were collected from another cohort of neurons
by means of local stimulation elicited every 10 s using a Teflon-coated

Figure 1. Ventral hippocampal-evoked LFP responses in the adult PFC. a, coronal sections of
the ventral hippocampus and PFC showing the anatomical location (asterisks) of the stimulat-
ing and recording electrodes, respectively. b, Characteristic response pattern of LFP in the adult
PFC (n � 6) elicited by ventral hippocampal train stimulation at 10, 20, and 40 Hz (calibration:
10 mV/100 ms at 10 Hz; 10 mV/50 ms at 20 Hz; 10 mV/25 ms at 40 Hz).
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bipolar electrode placed �200 �m from the cell body along the apical
dendritic axis. The stimulation intensity (300 �s square pulses at 50–100 �A
range) was chosen from the minimum current required to elicit an IPSC
response with �20% variability in amplitude. For the frequency analysis,
relative changes from baseline IPSC amplitude were determined after 10
min bath application of KYNA or MLA.

Whole-cell patch-clamp recordings of excitatory and inhibitory synaptic
currents within a single pyramidal neuron in the medial PFC. All re-
cordings were conducted from layer V pyramidal neurons using a
low-chloride-based internal solution and an external solution free of
glutamate and GABA blockers to enable concurrent acquisition of excit-
atory and inhibitory synaptic currents at the single-cell level. The low-
chloride-based internal solution contained 0.1% Neurobiotin (Vector
Laboratories) and the following (in mM): 10 CsCl, 130 Gluconic acid, 10
HEPES, 2 MgCl2, 5 NaATP, 0.6 NaGTP, and 3 QX-314, pH 7.23–7.28,
280 –282 mOsm. As a result, both spontaneous glutamatergic and
GABAergic events could be assessed readily by recording the frequency of
postsynaptic currents (PSCs) at the �60 mV (PSC�60 mV) and �15 mV
(PSC�15 mV) holding potentials, respectively. As described above, only
neurons with at least 10 min of stable baseline activity were included for
analyses. The frequency of PSC�60 mV and PSC�15 mV events from at least
two noncontiguous baseline epochs of 60 s each was compared with
equivalent measures taken 10 min after bath application of KYNA,
KYNA � MLA, or KYNA � 7Cl-KYNA.

The impact of KYNA was also assessed on locally evoked PSC�60 mV

and PSC�15 mV at the single-cell level following the same experimental
design used to record glutamatergic and GABAergic events. This dataset
was obtained from another cohort of layer V pyramidal neurons by
means of local stimulation elicited every 10 s (as described above) and
only neurons with at least 15 min of stable baseline recordings were
included for analyses. Relative changes of evoked PSC�60 mV and PSC�15 mV

amplitude were determined after 10 min bath application of KYNA or
KYNA � Indiplon.

Experimental design and statistical analysis. Data were summarized as
mean � SEM and differences among experimental conditions (within- and
between-subjects design) were considered statistically significant at p � 0.05.
Paired t test was used for two-group within-subject comparison involving a
single continuous variable (e.g., predrug vs postdrug application),
whereas one- and two-way ANOVAs were applied to assess between-
subject comparisons along three or more dependent variables (e.g., ve-
hicle vs drug A vs drug B), followed by the appropriate post hoc tests
(StatSoft).

Results
We first determined how single PFC infusion of KYNA (50–300 nM)
affects LFP responses to ventral hippocampal train stimulation at
10, 20, and 40 Hz (Fig. 1). These frequencies of stimulation were
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Figure 2. Disruption of prefrontal LFP response by local infusion of KYNA. a, PFC infusions of aCSF (n � 6) or KYNA (50, 100, and 300 nM; n � 5– 8/group) failed to alter the pattern of LFP
facilitation resulting from ventral hippocampal train stimulation at 10 Hz. Note the similar magnitude of LFP facilitation across the different treatment groups (*p � 0.05 vs first pulse, LSD post hoc
test after significant ANOVA). Inset traces of LFP show the response pattern elicited by hippocampal stimulation at 10 Hz (calibration: 5 mV/100 ms). b, At 20 Hz, PFC infusions of aCSF or 50 nM KYNA
resulted in similar patterns of transient LFP inhibition (*p � 0.05 vs first pulse, LSD post hoc test after significant ANOVA). Such a pattern of LFP inhibition was absent after the infusion of 100 nM

KYNA, whereas a facilitation emerged with 300 nM KYNA (*p � 0.05 vs first pulse, �p � 0.05/ ��p � 0.005 vs aCSF, LSD post hoc test; main effect of treatment F(1,120) � 57.2, p � 0.0001,
two-way ANOVA). Bar graph summarizes the mean LFP response calculated from pulses 2–10 (**p � 0.005 vs any other group, Tukey’s post hoc test; F(3,20) � 9.6, p � 0.0005, one-way ANOVA).
Inset traces illustrate the abnormal LFP facilitation at 20 Hz resulting from PFC infusion of 300 nM KYNA (calibration: 5 mV/50 ms). c, Stimulation at 40 Hz typically suppresses LFP in the PFC. Both the
aCSF and 50 nM KYNA groups showed similar patterns of LFP inhibition ( ��p � 0.005/ �p � 0.05 vs aCSF, ***p � 0.0005 vs first pulse, LSD post hoc test after significant ANOVA). However, the
magnitude of LFP suppression was markedly attenuated following PFC infusion of 300 nM KYNA ( ���p � 0.0005/ ��p � 0.005/ �p � 0.05 vs aCSF, ***p � 0.0005 vs first pulse, LSD post hoc
test; main effect of treatment, F(1,120) � 60.7, p � 0.0001, two-way ANOVA). Bar graph summarizes the mean LFP response calculated from pulses 2–10 (**p � 0.005 vs any other group, Tukey’s
post hoc test; F(3,20) � 7.4, p � 0.002, one-way ANOVA). Inset traces of 40 Hz-induced LFP illustrate the disruption elicited by 300 nM KYNA (calibration: 5 mV/30 ms).
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chosen to reveal changes in the balance of excitation and inhibi-
tion in the PFC in vivo (Thomases et al., 2013). Relative to aCSF,
PFC infusions with 50, 100, and 300 nM KYNA failed to alter the
pattern of LFP facilitation observed at 10 Hz (Fig. 2a). This was
not the case at 20 Hz. Although the normal pattern of transient
inhibition (i.e., second pulse) remained unchanged after PFC
infusion of 50 nM KYNA, a marked LFP facilitation emerged
when 300 nM KYNA was administered (Fig. 2b). Notably, the 100
nM KYNA concentration was sufficient to block the transient
inhibition without causing any LFP facilitation. A similar dose-
dependent effect was observed at 40 Hz after PFC infusion of
KYNA (Fig. 2c). Typically, ventral hippocampal stimulation at 40
Hz suppresses the amplitude of LFP in the PFC (Thomases et al.,
2013). Although the overall pattern of PFC response at 40 Hz
remained largely unaffected by KYNA, the magnitude of LFP
suppression began to appear slightly diminished at 100 nM. Such
attenuation of LFP inhibition became markedly significant after
PFC infusion of 300 nM KYNA (Fig. 2c). Together, these results
indicate that increasing prefrontal KYNA levels within nano-
molar concentrations is sufficient to disrupt PFC processing of
afferent drive in a frequency-dependent manner, as revealed by
the reduced inhibitory control of ventral hippocampal-evoked
LFP responses.

Nanomolar concentrations of KYNA are known to negatively
modulate �7nAChRs (Hilmas et al., 2001) and to block the
glycine-B site of the NMDAR (Kessler et al., 1989; Hilmas et al.,
2001). Therefore, inhibition of these receptors could contribute
to the frequency-dependent disruption of LFP inhibition ob-
served following PFC infusions of KYNA. To begin testing these
mechanisms, we first assessed the impact of 7Cl-KYNA, which
blocks the glycine-B site of the NMDAR without affecting the
�7nAChR (Kemp et al., 1988; Hilmas et al., 2001). Results re-
vealed no apparent changes in the pattern of LFP response after
PFC infusions of 300 nM 7Cl-KYNA (Fig. 3a–c). The magnitude of
LFP facilitation (10 Hz) and suppression (20 and 40 Hz) recorded in
the presence of 7Cl-KYNA were indistinguishable from aCSF con-
trols. In contrast, PFC infusion of the �7nAChR antagonist MLA
(300 nM) effectively disrupted the pattern of LFP response in a
frequency-dependent manner resembling that induced by KYNA
(Fig. 3d–f). Similar to the latter, PFC infusion of MLA revealed a
pattern of sustained LFP facilitation at 20 Hz (Fig. 3e) and a marked
attenuation of LFP suppression at 40 Hz (Fig. 3f). Collectively, these
results indicate that the disrupting effects of KYNA in the PFC could
result from local blockade of �7nAChR function (Fig. 3g–i).

GABAergic function in the PFC plays a critical role in me-
diating the distinctive frequency-dependent pattern of LFP

Figure 3. PFC infusion of the �7nAChR antagonist MLA mimics the frequency-dependent disruption induced by KYNA. a–c, Summary of the results obtained after PFC infusion of 300 nM

7Cl-KYNA (n � 5). Note that the patterns of LFP response to ventral hippocampal stimulation after 7Cl-KYNA infusions are indistinguishable from the aCSF controls (*p � 0.05/***p � 0.0005 vs
first pulse, LSD post hoc test after significant ANOVA). d–f, In contrast, PFC infusion of 300 nM MLA (n � 5) disrupted the LFP response at 20 and 40 Hz without altering the pattern of facilitation at
10 Hz. Two-way ANOVA revealed a main effect of pulse at 10 Hz (F(1,90) � 10.6, p � 0.0001) and main effects of treatment at both 20 Hz (F(1,90) � 54.8, p � 0.0001) and 40 Hz (F(1,90) � 95.6, p �
0.0001). A main effect of pulse (F(9,90) � 106.9, p � 0.0001) and treatment 	 pulse were also observed at 40 Hz (F(9,90) � 3.3, p � 0.002). LSD post hoc tests: ***p � 0.0005/*p � 0.05 versus
first pulse, ���p � 0.0005/ ��p � 0.005/ �p � 0.05 versus aCSF. g–i, Summary of the frequency-dependent LFP changes calculated from pulses 2–10 (**p � 0.005/*p � 0.05 vs aCSF or
7Cl-KYNA, Tukey’s post hoc test after significant one-way ANOVA: F(3,20) � 12.4, p � 0.0001 at 20 Hz and F(3,20) � 9.5, p � 0.0005 at 40 Hz). Inset traces illustrate the pattern of LFP response
following PFC infusions of 7Cl-KYNA or MLA (calibration: 5 mV/100 ms at 10 Hz; 5 mV/50 ms at 20 Hz; 5 mV/30 ms at 40 Hz).
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inhibition resulting from ventral hippocampal train stimulation
(Thomases et al., 2013). Therefore, it is conceivable that a
GABAergic component contributes to the disinhibitory action of
KYNA in the PFC. To test this, we conducted whole-cell patch-
clamp recordings in PFC brain slices obtained from adult rats to
assess the impact of KYNA on GABAAR-mediated IPSC onto
layer V pyramidal neurons. Relative to baseline activity, bath ap-
plication of 300 nM KYNA significantly reduced the number of
spontaneous IPSC events (Fig. 4a,e). A comparable level of IPSC
suppression was observed after bath application of MLA (Fig.
4b,e,f), but not of 7Cl-KYNA (Fig. 4c,e,f). However, the mean
amplitude of spontaneous IPSC events remained unchanged af-
ter bath application of KYNA (from 24.9 � 3.1 pA to 25.1 � 3.4
pA), MLA (from 24.5 � 3.2 pA to 24.8 � 3.6 pA), or 7Cl-KYNA
(from 24.6 � 3.8 pA to 25.1 � 3.5 pA). Notably, the inhibitory
effect of KYNA on IPSC frequency was occluded by MLA (Fig.
4d). Similarly, bath application of 300 nM KYNA diminished the
amplitude of locally evoked IPSC concurrently with a facilitation
of the paired-pulse ratio (Fig. 4g,h). No further suppression of
IPSC amplitude by KYNA was observed when recordings were
conducted in the presence of MLA (Fig. 4i). Together, these re-

sults indicate that the inhibitory action of KYNA on PFC GABAe-
rgic transmission occurs via presynaptic �7nAChR antagonism,
as revealed by the reduction in IPSC frequency and increased
paired-pulse ratio accompanying the attenuation of the evoked
IPSC amplitude.

In addition to attenuating prefrontal GABAergic function,
nanomolar concentrations of KYNA could also diminish the level
of glutamatergic drive onto pyramidal output neurons. The bal-
ance of excitatory–inhibitory (E–I) synaptic activity within a sin-
gle pyramidal neuron is expected to remain unaltered if KYNA’s
inhibition of GABAergic and glutamatergic transmission is com-
parable. To address this, recordings from layer V pyramidal neu-
rons in the PFC were collected using a protocol that enables the
acquisition of GABAergic and glutamatergic synaptic activity
within a single cell (Fig. 5a,b; see Materials and Methods for
details). Bath application of 300 nM KYNA also reduced the fre-
quency of glutamatergic synaptic activity, as determined by the
number of spontaneous postsynaptic current events recorded at
the �60 mV (PSC�60 mV) holding potential (Fig. 5c). However,
KYNA induced a much greater suppression of GABAergic synap-
tic activity (i.e., picrotoxin-sensitive PSC�15 mV) within the same
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cell (Fig. 5d) such that a major shift toward a higher E–I ratio
emerged (Fig. 5e). Further analyses of the data revealed that the
magnitude of E–I imbalance elicited by KYNA correlates highly
with the level of IPSC (PSC�15 mV) frequency suppression (Fig.
5f). A similar inhibitory effect was found with MLA, but not with
7Cl-KYNA (Fig. 5g). Notably, bath application of KYNA failed to
further reduce the diminished PSC�15 mV frequency elicited by
MLA (Fig. 5g). Such an occlusion was not observed when record-
ings were conducted in the presence of 7Cl-KYNA (Fig. 5g). To-
gether, these results indicate that the E–I imbalance induced by
KYNA in the PFC results from a preferential suppression of local
GABAergic transmission via presynaptic �7nAChR antagonism
(Fig. 5h).

If the frequency-dependent disruption elicited by KYNA is
due to a presynaptic attenuation of GABAergic function, it is
anticipated that a postsynaptic facilitation of GABAAR transmis-
sion would restore the normal pattern of LFP inhibition in the
PFC. To test this hypothesis, we first investigated whether the
inclusion of the GABAA�1-positive allosteric modulator Indip-
lon (10 �M) (Thomases et al., 2013) into the perfusion solution
prevents the disrupting effect of KYNA on locally evoked E–I
synaptic events using the same protocol as in Figure 5, which
enables the acquisition of GABAergic and glutamatergic transmis-

sion (Fig. 6a). Data show that KYNA reduced the amplitude of
locally evoked PSC�15 mV without altering the PSC�60 mV response
(Fig. 6b). As a result, the balance of the evoked postsynaptic cur-
rents becomes disrupted and a shift toward a higher E–I ratio
emerges (Fig. 6c). The inclusion of Indiplon effectively prevented
the effects of KYNA at both PSC�15 mV amplitude (Fig. 6d) and
E–I ratio of the evoked response (Fig. 6e). Next, Indiplon was
coinfused with KYNA into the PFC and changes in hippocampal-
evoked LFP were compared with those induced by KYNA alone
(Fig. 7). Whereas the pattern of LFP response at 10 Hz remained
unaffected (Fig. 7a), the abnormal facilitation of LFP at 20 Hz
resulting from PFC infusions of KYNA was no longer apparent
with the inclusion of Indiplon (Fig. 7b). Similarly, the addition of
Indiplon was sufficient to prevent the attenuated LFP suppres-
sion induced by KYNA at 40 Hz (Fig. 7c). Indiplon alone does not
alter the pattern of LFC response in the PFC. Together, these
results provide a mechanistic link between the level of prefrontal
GABAergic function and the frequency-dependent LFP disrup-
tion elicited by nanomolar concentrations of KYNA in the PFC.

Discussion
The present study showed that local administration of nanomo-
lar concentrations of KYNA into the PFC attenuated the inhibi-
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tory component of LFP responses (20 – 40 Hz) without affecting
the pattern of LFP facilitation. This is consistent with data obtained
from PFC brain slices revealing an inhibitory action of KYNA, which
primarily reduces GABAergic transmission through a presynaptic
�7nAChR-dependent mechanism. Accordingly, PFC infusion of
the GABAA�1 positive allosteric modulator Indiplon effectively
prevented the disrupting effect of KYNA and restored the normal
pattern of LFP inhibition. Together, these results indicate that
local prefrontal GABAergic function is the preferential target of
KYNA’s inhibitory effect in the PFC.

Brain KYNA is an astrocyte-derived metabolite of the kynure-
nine pathway of tryptophan degradation and its dysregulation is
thought to be implicated in schizophrenia (Plitman et al., 2017).
Evidence for such a pathophysiological link arises from studies
showing increased levels of KYNA in the brain and CSF (Erhardt
et al., 2001; Schwarcz et al., 2001; Linderholm et al., 2012), and
abnormal expression and activity of key kynurenine pathway en-
zymes in the brain (Miller et al., 2004; Sathyasaikumar et al.,
2011; Wonodi et al., 2011) of patients with schizophrenia. Cer-
tainly, a causal link between relatively modest elevations of cor-
tical KYNA and deficits in executive function has been well
documented in preclinical studies (Chess et al., 2007; Akagbosu
et al., 2012; Alexander et al., 2012, 2013). At the mechanistic level,
KYNA is known to modulate �7nAChR negatively (Hilmas et al.,
2001) and to block the glycine coagonist site of the NMDAR
(Parsons et al., 1997). Notably, however, the negative impact of
KYNA on PFC-related cognitive functions has been suggested to
occur mainly through inhibition of �7nAChR signaling (Alexan-
der et al., 2012, 2013). This interpretation is consistent with the
results of the present study showing that the disrupting effect of
KYNA in the PFC is also �7nAChR dependent, primarily at local
GABAergic synapses. Thus, the degree of GABAergic dysregula-
tion in the PFC could be a clinically relevant contributing factor
for the onset of cognitive deficits resulting from abnormal in-
creases of cortical KYNA as seen in schizophrenia.

In addition to downregulating GABAergic function and de-
creasing extracellular GABA levels (Beggiato et al., 2014), nano-
molar KYNA also reduces extracellular glutamate levels in the
PFC (Konradsson-Geuken et al., 2010; Wu et al., 2010). How-
ever, the extent of GABAergic synaptic inhibition by KYNA was

much greater than the effect on glutamatergic synapses. As a
result, a disinhibitory imbalance of E–I synaptic activity emerges
in the PFC. Accordingly, the frequency-dependent LFP disinhi-
bition elicited by PFC infusion of KYNA is indistinguishable
from that induced by the GABAAR antagonist picrotoxin (Cass et
al., 2013; Thomases et al., 2013). The disruption of LFP by KYNA
was no longer apparent after strengthening of prefrontal GABAA�1R
function with Indiplon, indicating that local GABAergic synapses
are more sensitive to the inhibitory effect of KYNA. Future stud-
ies will determine whether distinct functional expression of
�7nAChR between excitatory and inhibitory synapses contrib-
utes to bias the inhibitory action of KYNA onto GABAergic trans-
mission in the PFC. It is also possible that differences in the
localization rather than expression per se of �7nAChR receptors
are critical to the observed effects (Frazier et al., 1998).

Proper maturation of prefrontal GABAergic function during
adolescence and its control of PFC output are critical for support-
ing adult cognitive functions such as working memory, decision
making, and impulse control (Tse et al., 2015; Caballero et al.,
2016). Although massive functional remodeling takes place in the
PFC during adolescence (Caballero and Tseng, 2016), it is also the
local GABAergic system that renders the PFC labile during this
developmental period (Caballero et al., 2016). Therefore, it is
possible that persistent elevations of KYNA in the PFC during
adolescence may elicit enduring GABAergic dysfunction and dis-
rupt the acquisition of inhibitory control that normally emerges
in the adult PFC (Caballero et al., 2016). Elevations of KYNA
levels during sensitive periods of perinatal development (Po-
civavsek et al., 2012; Alexander et al., 2013; Forrest et al., 2013; Liu
et al., 2014; Pisar et al., 2014; Pershing et al., 2015, 2016) or
adolescence (Akagbosu et al., 2012; DeAngeli et al., 2014, Persh-
ing et al., 2016) may alter the balance of E–I in the PFC and
contribute to the onset of cognitive deficits later in life, as seen in
schizophrenia and other major psychiatric disorders.

Collectively, the results of the present study suggest a mecha-
nism by which endogenous KYNA could affect PFC-dependent
cognitive functions adversely. We showed for the first time that
the inhibitory effect of KYNA in the PFC occurs primarily at
GABAergic synapses through a presynaptic blockade of �7nAChR
signaling. Although KYNA can also function as a competitive
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inhibitor of NMDAR function via the glycine-B site (Kessler et
al., 1989; Parsons et al., 1997), its contribution to disrupting PFC
synaptic activity is not apparent because both the pattern of LFP
responses and GABAergic transmission remained unaltered after
application of the highly selective glycine-B site antagonist 7-Cl-
KYNA (Kemp et al., 1988).
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