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A B S T R A C T

Chronic lymphocytic leukemia (CLL) is a common B-cell malignancy with a remarkably heterogeneous
course, ranging from indolent disease with no need for immediate therapy to rapidly progressive
disease associated with therapeutic resistance. The recent US Food and Drug Administration ap-
provals of novel targeted therapies such as inhibitors of B-cell receptor signaling andB-cell lymphoma2
have opened up new opportunities in the clinical management of patients with CLL and heralded
a new era in the clinical treatment of this disease. In parallel, the implementation of novel sequencing
technologies has provided new insights into CLL complexity, identifying a growing list of putative
drivers that underlie inter- and intratumor heterogeneities in CLL affecting disease progression and
resistance. The identification of these novel genomic features that can indicate future drug resistance
or guide therapeutic management is now becoming a major goal in CLL so that patients can best
benefit from the increasingly diverse available therapies, as discussed herein.
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Chronic lymphocytic leukemia (CLL) is char-
acterized by the accumulation and proliferation of
clonal B cells in the blood,marrow, and lymph nodes.
The clinical course of CLL is remarkably variable
among patients, with median overall survival (OS)
ranging from less than 3 years, despite the use of
effective combination chemotherapy regimens,
to more than 10 years without need of therapeutic
intervention.1,2 Genetic features underlying this var-
iability in clinical course have been long identified.
Conventional karyotype banding and fluorescent
in situ hybridization (FISH) analysis are the bases of
the existing widely used hierarchic prognostic model.3

The recent advent of transformative next-generation
sequencing (NGS) has uncoveredmanynovel putative
disease-driving somatic alterations and accurately
quantified intrasample heterogeneity. With the recent
US Food and Drug Administration approval of in-
hibitors targeting CLL pathways,4-6 the identification
of the connections between each therapy and po-
tentially vulnerable genomically defined disease sub-
populations has become a priority in CLL.

UNCOVERING SOMATIC ALTERATIONS AND
GENOMIC COMPLEXITY IN CLL

Over the last decade, new genome-wide sequencing
approaches have identified numerous somatic al-
terations associated with cancer. These studies have

provided awealth of fresh insights into the underlying
mechanisms driving cancer.7 The study of CLL has
particularly benefited from the availability of these
transformative technologies. With its ease of tissue
accessibility and indolent disease kinetics, enabling
repeated sampling within the same individual, CLL
has been an optimal setting for examining questions
of tumor heterogeneity and clonal evolution.

Earlier genetic studies of CLL that focused
on the detection of copy numbers confirmed
the recurrence of key cytogenetic abnormalities
previously identified by FISH.3,8 When consid-
ering data from an aggregate of 1,590 cases of
CLL worldwide9-13 (Fig 1A), the most common
alterations and their frequencies have been focal
deletions of chromosomes 13q [del(13q); 55%
to 60%], 17p (3.5% to 10%), and 11q (6% to
27%) and trisomy 12 [tri(12); 10% to 16%]. Of
note, the minimal deleted regions of these de-
letions were identified to encompass important
putative CLL drivers: ATM and BIRC3within del
(11q), TP53 within del(17p), and the microRNA
15a/16-1 encoded within an intron of DLEU2
in 13q23.14 Other cytogenetic alterations were
found at lower incidence, including chromo-
some 2p gains [amp(2p); 2% to 7%] containing
MYCN, REL, and BCL11A,15,16 amp(8q) (2% to
4%) responsible for MYC amplification,9 and
del(8p) [2% to 5%] and del(15q) encompassing
TNFRSF10A/B17 and MGA,11 respectively.
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Even more recently, NGS technologies such as whole-genome
(WGS) and whole-exome sequencing (WES) have provided a more
granular investigation of the genomic landscape of CLL.18-24

Rather than revealing any universal genetic event accounting
for all CLL cases, these technologies have demonstrated the
diverse recurrent gene mutations associated with CLL and the
high level of genetic heterogeneity among samples, consistent
with the high degree of clinical variability characteristic of CLL.
The development of robust algorithms and statistical modeling
of these sequencing data have led to the uncovering of gene
mutations likely positively selected and hence identified as putative
CLL drivers.25,26

Two recent efforts using WES and WGS have together re-
ported on approximately 1,000 patient cases of CLL, identifying
recurrent gene mutations even of low frequency by highlighting
a total of 75 significantly mutated genes.12,27 In aggregate, mu-
tations in 28 genes were found, common to both studies (Fig 1A).
Conversely, the frequencies of gene mutations were dependent on
the composition of the investigated cohort; 16 genes were unique
to the Dana-Farber Cancer Institute (DFCI)/Broad Institute study,
with SF3B1 as the most frequently mutated gene, whereas 31 were
only detected within the Spanish International Cancer Genome
Consortium cohort, in which NOTCH1 was the top mutated gene.
This latter study also showed that relevant mutations can affect the
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Scandinavian SCALE trial13 (n = 369), Ouillette et al10 study (n = 255), and Dana-Farber Cancer Institute (DFCI)/Brown et al9 study (n = 161), identified through single-
nucleotide polymorphism array (except as identified by whole-exome sequencing [WES] for Spanish ICGC cohort). Also shown are the frequencies of somatic single-
nucleotide variants (from DFCI/Broad Institute14 [n = 548] and from Spanish ICGC12 [n = 452]) identified through WES. Only the events over 1% in frequency in the
combined cohorts are reported. IGLL5, MAP2K1, and SAMHD1 have been reported in DFCI cohort only, whereas ZNF292, KLH6, SETD2, and PAX5 enhancer have been
reported in Spanish ICGC cohort only. All remaining genes were consistent among cohorts. Mutations in the 39UTR of NOTCH1were detected in four of 150 patient cases
with whole-genome sequencing. (B) Summaries of the characteristics of frequently mutated genes in CLL. amp, amplification; ANK, ankyrin repeat; del, deletion; EGF,
epidermal growth factor; ERK, extracellular signal-regulated kinase; FAT, FRAP-ATM-transformation/transcription domain associated protein; HD, heterodimerization
domain; MAPK, mitogen-activated protein kinase; PD, programmed death; PEST, proline, glutamic acid, serine, and threonine; PI3K, phosphatidylinositol 3-kinase; SCALE,
Scandinavian Lymphoma Etiology; TAD, transaction activation domain; TET, ten-eleven translocation.

jco.org © 2017 by American Society of Clinical Oncology 985

Novel Genomic Discoveries in CLL

http://jco.org


noncoding genome (ie, NOTCH1 39UTR and PAX5 enhancer).
Although these two studies are the largest cohorts characterized by
NGS to date, it has been estimated that at least 2,000 patient cases
would be required to achieve saturation in driver discovery.26

Examination of the growing list of putative CLL drivers has
implicated the involvement of several key pathways in CLL biology
(Fig 1A). TP53 and ATM are well-known tumor suppressor genes
that are commonly inactivated by gene mutations or chromosomal
deletions in CLL [del(17p) and del(11q), respectively; Fig 1B]. Such
observations have identified the DNA-damage response pathway as
a crucial CLL node. The application of NGS to CLL has also
unexpectedly uncovered an important role of RNA processing in
CLL. As a striking example, SF3B1 is a commonly mutated gene
and encodes a component of the splicesome, which orchestrates
the removal of introns from precursor mRNA.19,21 Recently, SF3B1
mutations were shown to cause alternative splicing (with prefer-
ential alteration in 39 splice site selection)28,29 and a complex of
changes, including impairment of the DNA-damage response30

and alteration in telomere biology.31 Other frequently mutated
genes involved in RNA processing and splicing have been identified
(XPO1, RPS15, DDX3X, ZNF292,MED12, and NXF1), supporting
the importance of this cellular process to CLL. NOTCH is another
key pathway because it can be affected by either gain-of-function
mutations of NOTCH1 (2 basepair frameshift deletion),23 muta-
tion ofNOTCH1 39UTR,12 alternative splicing (by mutated SF3B1)
of a pathway regulator,31 or FBXW7 loss-of-function mutations.32

B-cell receptor (BCR) signaling and the B-cell transcriptional
program can also be impaired by mutations in EGR2, BCOR,
IRF4, and IKZF3. Chromatin maintenance (CHD2, BAZ2A,
ZMYM3, ASXL1, and SETD2), the inflammatory pathway (BIRC3
MYD88, TRAF3, and SAMHD1), mitogen-activated protein kinase
(MAPK) –extracellular signal-regulated kinase (ERK;BRAF,KRAS, and
MAP2K1), andMYC-related signaling (MGA and PTPN11) are other
relevant pathways affected by mutations.

With the increase in the number of cases of CLL worldwide
characterized by WES or WGS, it has been increasingly feasible to
examine the likelihood that diverse somatic alterations cooperate
to contribute to the oncogenic phenotype. Indeed, in the DFCI/
Broad Institute study, most patients (approximately 60%) carried
more than one driver.27 Several studies have detected recurrent
patterns of co-occurrence, highlighting likely preferred interactions
between putative drivers. Del(17p) has been consistently associated
with TP53 mutation,33 del(11q) with ATM and/or SF3B1 muta-
tion,34 and NOTCH1mutation with tri(12).35,36 Conversely, low
co-occurrence between SF3B1mutation and tri(12) orNOTCH1
mutation suggests redundancy in their functional activities, as
recently suggested by the finding that a target of SF3B1mutation is
a splice variant that dysregulates NOTCH signaling.31

In a reanalysis of our reported DFCI/Broad Institute data,27

we found most CLL samples to display a unique combination of
genetic alterations not occurring in any other patient sample,
suggesting that each leukemia embarks on an independent evo-
lutionary path (Fig 2). This analysis also revealed that for ap-
proximately 5% of patients, del(13q) is the sole detectable genetic
abnormality. This event alone seems to be sufficient to drive CLL,
because deletion in mice of the region corresponding to the human
13q14 led to the development of CLL-like disease, although at low
penetrance and latency. Tri(12) andmutations of CHD2 and SF3B1

are also found as sole abnormalities in patients and could be
sufficient drivers for CLL as well. Two thirds of recurrent com-
binations involved at least two of the following drivers: del(13q),
del(11q), and SF3B1 and/or ATMmutations. Finally, 8% of CLLs in
this cohort did not carry any known driver.27 In these cases, there
may have been putative genetic drivers not yet discovered; other
factors such as epigenetic deregulation or microenvironmental
factors could have played a role in driving disease.

Such genomic complexity defies single gene–based approaches for
understanding cancer biology. Definitive understanding of the exact
function of novel drivers and how they cooperate will require
studies in in vitro and in vivo models.37,38 Emerging single-cell
technologies will likely transform our ability to decipher genomic
complexity in CLL and highlight new drivers that could be
relevant to individual patients. An expectation, however, is that
these private drivers will nonetheless affect common core CLL
pathways.

UNDERSTANDING CLL LEUKEMOGENESIS THROUGH ITS
PHYLOGENETIC RECONSTRUCTION

Identifying founding genomic lesions and establishing when they
were acquired may facilitate better understanding of the natural
history of a case of CLL and suggest points of intervention. Because
each mutation essentially supplies a molecular barcode for NGS
reads, clustering of reads with similar variant allele frequencies
(corrected for local ploidy and tumor purity) has feasibly allowed
for accurate quantification of intratumor heterogeneity and in-
vestigation of clonal architecture and disease phylogeny. These
types of studies have revealed events that are preferentially clonal,
consistent with earlier events, and others that are preferentially
subclonal, consistent with later events. On the basis of this principle,
several studies have consistently categorized del(13q), del(11q), tri
(12), and MYD88 mutations as early lesions, suggesting their role
as CLL initiators, and ATM, SF3B1, and TP53mutations as later
lesions.24,27 Likewise, the application of machine learning–based
approaches has supported the idea that CLL-associated lesions are
temporally ordered in a specific fashion rather than being randomly
accumulated, again revealing del(13q) and tri(12) as early and
potentially initiating events leading to preferred evolutionary
trajectories.39

A further layer of complexity that likely contributes to CLL
disease heterogeneity is the impact of cell of origin on acquisition
of subsequent somatic alterations. The methylome of CLLs with
IGHV-unmutated status is more consistent with that of naı̈ve
B cells, whereas the epigenetic state of CLLs with mutated IGHV is
more similar to antigen-experienced B cells,40,41 although recent
work has suggested that CLL cells can become fixed across diverse
stages of B-cell differentiation.42 The state of B-cell differentiation
seems to be associated with a preferential acquisition of certain
somatic mutations, with mutated IGHV having a narrow spectrum
of drivers (ie,MYD88, CD79A/B, and TLR2) and unmutated IGHV
having a broad spectrum of events.27 CLL-associated genomic
abnormalities have been found even in the hematopoietic pro-
genitor cells of patients with CLL. Deep sequencing of CD34+CD19-
sorted cells of patients with CLL has revealed the detection of
mutations in NOTCH1, SF3B1, and BRAF.43 These findings are in
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line with murine xenograft studies in which engrafted hemato-
poietic progenitor cells from patients with CLL could produce
a mature CD5+-expressing clonal B-cell population with a pheno-
type of CLL.44

IMPACT OF SOMATIC EVENTS IN CLL ON RESPONSE TO THERAPY

The treatment landscape of CLL is currently evolving considerably.
For more than a decade, the combination of fludarabine, cyclo-
phosphamide, and rituximab has been the conventional first-line
regimen for fit patients, providing a high response rate (90%) and
prolonged progression-free survival (PFS; median, 57 months).1

Although patients treated with this combination almost uniformly
experience relapse, a subset of those with mutated IGHV can
particularly benefit from this approach, with long-term PFS.45-47

Other common chemoimmunotherapy-based monotherapy or
combination regimens have included purine analogs (bend-
amustine, pentostatin, and cladribine),48-50 alkylating agents
(chlorambucil and cyclophosphamide),51,52 and anti-CD20
(rituximab, ofatumumab, and obinutuzumab)53-55 or anti-CD52
antibodies (alemtuzumab).56 In addition to these chemotherapy-
based regimens, recent US Food and Drug Administration
approvals of novel therapies targeting BCR signaling (ie, idelalisib,
an inhibitor of phosphatidylinositol 3-kinase,5 and ibrutinib, the
irreversible inhibitor of Bruton tyrosine kinase [BTK]4) and the
B-cell lymphoma 2 signaling pathway (ie, venetoclax6) have opened
up the possibility of specifically targeting crucial CLL pathways, with
less toxicity. Despite high response rates in patients for whom cy-
totoxic drugs have failed, resistance to these therapies is increasingly

emerging.57 In this setting, genomic characterization can identify
the sources of resistance and help guide subsequent therapeutic
decisions.

Intratumoral Heterogeneity Fuels CLL Resistance
It is increasingly evident that intratumoral heterogeneity

not only fuels clonal evolution and leukemic progression but
also provides the seeds for the development of therapeutic
resistance.24,27 Although therapy itself can potentially incite
mutational events and increase genomic diversity,58 multiple
longitudinal studies using WES characterization in CLL have
supported a scenario in which the genetic capacity for resistance
is already present in the pretreatment sample as pre-existing
subclones (Fig 3).24,47,59-62 Alternatively, leukemic tumor cells
at relapse could also be progeny of dormant parental cells.
Recent findings showing the presence of somatic alterations in
early hematopoietic progenitors are in line with this idea.43

Characterizing the Treatment-Specific Genomic
Landscape of CLL

In the setting of exposure to broadly cytotoxic agents, TP53
disruption has been clearly identified as the most crucial and
independent factor of resistance. Indeed, multiple studies have
shown that patients with TP53 loss experience poor response and
worse outcome after chemotherapy treatment.63 In NGS studies
tracking the fate of subclonal populations in patient samples be-
fore and after chemoimmunotherapy, subclones with disrupted
TP53 clearly undergo clonal expansion by the time of relapse
(Fig 3).24,27,64 Importantly, small subclones with TP53 mutations
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detected at diagnosis only by sensitive techniques are associated
with the same adverse prognosis as macroscopic subclones and can
indicate future fludarabine refractoriness.65,66 Subclones with
TP53 mutations are also associated with lower death rates during
therapy compared with subclones with TP53 wild type, suggesting
diminished sensitivity to therapy and higher growth rates during
repopulation.67 These mechanisms underlying clonal dynamics
have not been yet observed with other drivers and highlight once
again the leading role of TP53 mutations in providing fitness
advantage to the clone.

SF3B1 and ATM mutations seem to have variable evolution,
with distinct clones rising or falling over time, suggesting that they
likely do not bring the same advantage as TP53 when considered
individually. By contrast, targeted characterization of the relapsing
CLL genome has shown that combinations of mutations involving
TP53,ATM, and SF3B1 could act synergistically to provide resistance
to immunochemotherapy.68 Thus, rather than sole abnormalities,
combinations of somatic alterations could drive chemotherapy
resistance in CLL.

By contrast, resistance to the targeted pathway inhibitor
ibrutinib has been attributed to mutations directly affecting its
target (BTK) or its downstream effector (PLCg2).57 BTK muta-
tions (at the C481S site) are located in the ibrutinib binding site,

resulting in a protein that is only reversibly inhibited by ibrutinib.69

PLCG2 mutations likewise provide gain of function and lead to
activation of BCR signaling in a BTK-independent manner.70

Resistance to ibrutinib has been also associated with marked
clonal evolution.71 Aside from BTK or PLCG2mutations, relapsing
subclones have been shown to be progeny of parental del(8p)
leukemic cells, present before therapy. Del(8p) was found to
generate haploinsufficiency of the tumor necrosis factor–related
apoptosis-inducing ligand (TRAIL) receptor, resulting in TRAIL
insensitivity that could contribute to ibrutinib resistance (Fig 3).
Although ibrutinib represents a major advance in the treatment of
patients with TP53 disruption,72 those treated with ibrutinib in this
group of patients could nonetheless still have an adverse prog-
nosis.73 However, complex karyotype has been shown to be an even
stronger predictor than del(17p) in this setting.74 Thus, distinct
modes of therapy may shape the CLL architecture differently.

Novel Approaches to the Detection and Monitoring of
Subclonal Populations

Given that the bulk of recurrent putative CLL drivers have
been discovered in WES or WGS studies (down to 3% frequency
within the population), targeted NGS approaches are increasingly
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42 (167)

66 (154)

[1.2]

5 (63)

42 (91)

40 (119)

84 (118)

90 (90)

29 (17)

28 (36)

41 (34)

63 (78)

24 (24)

5 (8)

14 (19)

(—)80 (30)

100 (39)

114 (22.8)

90 (90)

21 (16)

33 (32)

NA

54 (80)

20 (20)

NA

12 (21)

628 (11.5)

328 (8.5)

463 (7)

1,626 (4)

309 (10.7)

1,151 (7.1)

2,309 (10.4)

360 (5)

57 (86)

55 (167)

61 (87)

[2.1]

56 (151)

58 (90)

35 (106)

4 (64)

30-42

(90-NR)

29 (85)

26 (76)

67 (91)

52-75

(92-98)

27 (83)

12-15

(36-59)

23 (62)

4 (27)

46 (96)

37 (118)

2 (58)

65 (87)

[1.6]

64 (147)

77 (121)

76 (85)

*

*

*

Fig 4. Summary of prognosis impact of somatic
mutations evaluated in retrospective studies or clin-
ical trials in chronic lymphocytic leukemia (CLL). The
medians of time to first treatment (TTFT), overall
survival (OS), and progression-free survival (PFS) in
subgroups of patients with CLL with mutations are
indicated in months and compared with subgroups
of patients with wild type (in parentheses). When
medians were not available in studies, the value of
the hazard ratio in multivariable analyses is reported
in square brackets. The UK Leukaemia Research
Fund (LRF) CLL4 trial83 comparedmedianmonths for
the ATM biallelic inactivation subgroup with ATM
wild type andATMmutation subgroup. Data from the
German CLL Study Group (GCLLSG) CLL3X trial84

were inferred from Kaplan-Meier curves. ERIC, Eu-
ropean Research Initiative on CLL; FILO, French
Intergroup on CLL; IPI, International Prognostic In-
dex; MLL, Munich Leukemia Laboratory; NA, not
available; NCRN, National Cancer Research Net-
work; NR, not reached; ORR, overall response rate;
R/R, relapsed/refractory; SCALE, Scandinavian
Lymphoma Etiology. *5-year OS rate (%). †10-year
rate (%).
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attractive as a means of efficiently and more routinely sampling the
mutational landscape of CLL in a cost-effective fashion.68,75 Deep-
targeted sequencing displays high sensitivity, with the ability to
detect mutated alleles in down to one in 100 or 1,000 cells, but it is
still prohibitively expensive for the detection of rarer events.

Single-cell technologies are emerging as another powerful tool
to probe the genomic composition in heterogeneous cellular
populations.76 Single-cell WGS approaches can potentially provide
a comprehensive snapshot of the subclonal composition of
a population,77,78 but this is not high throughput nor cost effective
at the present time. Droplet digital polymerase chain reaction
technology is an alternative method for analyzing single cells
by compartmentalizing them using water-oil emulsion at high
throughputs. Using this strategy, the presence of ibrutinib-resistant
subclones was recently been quantified before treatment initiation,
demonstrating that drug-resistant populations were present in
small quantities even in advance of ibrutinib exposure71 and that
capacity for drug resistance was already inherent within the patient
sample.

DEVELOPING GENOMICS-BASED SCHEMA
FOR PROGNOSTICATION

Over the past decade, clinical prognostication in CLL has relied
on the Rai and Binet clinical staging systems,2,79 knowledge of
the mutational status of immunoglobulin variable region (which
separates CLL into either mutated or unmutated IGHV groups, the
latter with worse outcome80,81), and FISH assessment of the most
recurrent chromosomal aberrations in CLL. In a hierarchic clas-
sification scheme, del(17p) was found to confer the poorest sur-
vival, followed by del(11q), tri(12), normal karyotype, and then del
(13q) as the sole abnormality.3

A key question in the field is whether the increasing array of
discovered putative drivers holds prognostic relevance and could
improve the accuracy of prognostication. A growing body of
validation studies has evaluated the associations between genotype
and parameters such as time to first treatment (TTFT), OS,
therapeutic response, and PFS (Fig 4).

Despite variability in the design and size of these studies,
several consistent findings can be gleaned. First, TP53 disruption
has clearly emerged as a reliable factor conferring adverse TTFT,
PFS, and OS after first-line therapy.33,63,82-84 In the recently re-
ported CLL International Prognostic Index study, which evaluated
3,472 patients treated in prospective first-line trials, mutation in
TP53 contributed the greatest weight to the score.85

Second, the impact of SF3B1 and NOTCH1 mutations has
been variably reported, which likely points to the importance of
therapeutic context and patient status in evaluating this effect. In
aggregate, several clinical trial studies have highlighted the in-
dependent poor prognostic influence of SF3B1 mutations on PFS
or OS.33,82,84,86-88 Although NOTCH1 mutations have indepen-
dently conferred adverse OS in multiple studies, their impact on
PFS has been inconsistent.87-90 Interestingly, an analysis of the
international CLL8 study reported a lack of benefit from the
addition of rituximab in patients with NOTCH1 mutations.91

Fewer studies have evaluated the role of ATMmutations; those
that have been conducted have suggested an association with

shorter OS.92 More recent studies, however, have argued for
a notable role of biallelic rather than monoallelic inactivation in
significantly shorter PFS and OS in the first-line setting.93

Impact of other recurrent mutations remains under in-
vestigation. KRAS and POT1 mutations have been associated with
refractoriness and adverse outcome.94 EGR2 mutations were ob-
served to be associated with shorter OS.43 Although linked with
poor prognostic features, MED12 mutations do not affect OS.97

WES of large CLL cohorts recently identified additional novel
prognostic factors associated with shorter TTFT (BRAF, ZMYM3,
and IRF4), OS (ASXL1), and PFS (RPS15 and SETD2).12,27,96

Given the genomic complexity and co-occurrence in drivers in
CLL, sophisticated models and external validation are now required
to understand the relative prognostic value of the host of diverse
genomic events. Hierarchic models have been widely used for
classifying cytogenetic lesions.3 By focusing on OS, a scoring system
integrating both recurrent chromosomal aberrations and gene
mutations was proposed to define four CLL risk groups: high (TP53
and/or BIRC3 abnormalities), intermediate [NOTCH1 6 SF3B1
mutations and6 del(11q)], low [tri(12) or normal karyotype], and
very low risk [del(13q) as sole alteration], where survival is similar to
the general population.83 Prognostic scoring integrating a larger
number of somatic alterations and focusing on both PFS and OS
remains to be performed for accurately determining prognosis. The
respective impact of somatic alterations is also expected to drastically
change with the use of targeted agents, the resistance mechanisms of
which may differ from those of conventional chemotherapies. An
alternative approach would be to assign patients to subgroups based
on distinct nonoverlapping molecular features, as recently proposed
for acute myeloid leukemia, although this is challenging for a disease
as genetically heterogeneous as CLL.97

Given the consistent poor prognosis associated with inacti-
vating TP53 lesions, clinical TP53 mutation testing [by FISH for
the chromosome 17p locus and TP53 sequencing in cases without
del(17p)]98 is now highly recommended before each therapeutic
line. Indeed, chemotherapy-based approaches have proven un-
satisfactory in the presence of TP53 mutations and are now no
longer the therapy of choice for these patients. Conversely, allo-
geneic transplantation remains a valid strategy for patients with
TP53 disruption, as does the use of novel agents such as ibrutinib,
idelalisib plus rituximab, and venetoclax.6,89,99-101 Beyond TP53,
sequencing of SF3B1, NOTCH1, and ATM may provide additional
prognostic information, although therapeutic context will play
a major role in assigning their relative importance. For analysis of
clinical samples, a common panel of genes to integrate in patients
with CLL could include TP53, SF3B1, NOTCH1, and ATM, given
their frequency and potential prognostic impact. In the setting of
ibrutinib treatment, the monitoring of gene mutations associated
with ibrutinib resistance (ie, BTK and PLCG2) can define the
potential need for alternative therapies. Larger panels of genes may
be informative, but their prognostic impact remains to be de-
termined (MYD88, BIRC3, KRAS, POT1, EGR2, MED12, BRAF,
ZMYM3, IRF4, ASXL1, RPS15, SAMHD1, and SETD2).

In conclusion, the application of advanced genomic tech-
nologies has rapidly uncovered new mechanisms underlying CLL
biology, disease progression, and therapeutic resistance. To fulfill
the promise of precision oncology, future studies will need to
address the challenge of translating these findings into the routine
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management of CLL so that patients can maximally benefit from
recent therapeutic advances.
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Quantitative clonal dynamics define mechanisms of
CLL evolution in response to combination chemo-
therapy. Blood 126:362, 2015 (abstr)
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95. Kämpjärvi K, Järvinen TM, Heikkinen T, et al:
Somatic MED12 mutations are associated with poor
prognosis markers in chronic lymphocytic leukemia.
Oncotarget 6:1884-1888, 2015

96. Parker H, Rose-Zerilli MJ, Larrayoz M, et al:
Genomic disruption of the histone methyltransferase
SETD2 in chronic lymphocytic leukaemia. Leukemia
30:2179-2186, 2016

97. Papaemmanuil E, Gerstung M, Bullinger L, et al:
Genomic classification and prognosis in acute myeloid
leukemia. N Engl J Med 374:2209-2221, 2016

98. Pospisilova S, Gonzalez D, Malcikova J, et al:
ERIC recommendations on TP53 mutation analysis
in chronic lymphocytic leukemia. Leukemia 26:
1458-1461, 2012

99. HallekM: Chronic lymphocytic leukemia: 2015
Update on diagnosis, risk stratification, and treat-
ment. Am J Hematol 90:446-460, 2015
100. Dreger P, Corradini P, Kimby E, et al: In-

dications for allogeneic stem cell transplantation in
chronic lymphocytic leukemia: the EBMT transplant
consensus. Leukemia 21:12-17, 2007
101. Stilgenbauer S, Eichhorst B, Schetelig J, et al:

Venetoclax in relapsed or refractory chronic lympho-
cytic leukaemiawith 17p deletion: Amulticentre, open-
label, phase 2 study. Lancet Oncol 17:768-778, 2016

Affiliations
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