
NEK1 variants confer susceptibility to amyotrophic lateral 
sclerosis
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Abstract

To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted 

whole-exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a new 

screening strategy, we performed gene-burden analyses trained with established ALS genes and 

identified a significant association between loss-of-function (LOF) NEK1 variants and FALS risk. 

Independently, autozygosity mapping for an isolated community in the Netherlands identified a 

NEK1 p.Arg261His variant as a candidate risk factor. Replication analyses of sporadic ALS 

(SALS) cases and independent control cohorts confirmed significant disease association for both 

p.Arg261His (10,589 samples analyzed) and NEK1 LOF variants (3,362 samples analyzed). In 
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total, we observed NEK1 risk variants in nearly 3% of ALS cases. NEK1 has been linked to 

several cellular functions, including cilia formation, DNA-damage response, microtubule stability, 

neuronal morphology and axonal polarity. Our results provide new and important insights into 

ALS etiopathogenesis and genetic etiology.

In recent years, the combination of exome sequencing, segregation analysis and 

bioinformatic filtering has proven to be an effective strategy to rapidly identify new disease 

genes1. Unfortunately, this method can be difficult to apply to disorders such as ALS, for 

which late age of onset and low-to-modest variant penetrance make it difficult to obtain 

large informative multigenerational pedigrees. Owing to high genetic heterogeneity, ALS is 

also difficult to analyze using filtering methods designed to exploit unrelated patient 

groups2. Recently, we had demonstrated the utility of exome-wide rare variant burden (RVB) 

analysis as an alternate approach, identifying a replicable association between FALS risk 

and TUBA4A in a cohort of 363 cases3. In brief, RVB analysis is used to compare the 

combined frequency of rare variants in each gene in a case–control cohort. Candidate 

associations are identified by significant differences after multiple-test correction. Since this 

initial study, we extended our data set to include complete exome sequencing for 1,376 

index FALS cases and 13,883 controls. Of these, 1,022 cases and 7,315 controls met all 

required data, inter-relatedness and ancestral quality control criteria (Supplementary Figs. 1 

and 2, and Online Methods).

Successful detection of disease associations through RVB analysis can depend heavily on 

the appropriate setting of test parameters. As genetic loci often contain many alleles of no or 

low effect, prior filtering of variants based on minor allele frequency (MAF) and 

pathogenicity predictors can identify disease signatures otherwise masked by normal human 

variability. As appropriate MAF or pathogenicity predictor settings may not be obvious in 

advance, comprehensive assessment of all pursuable analysis strategies is desirable but can 

in turn introduce excessive multiple-test burden. To overcome these limitations, we 

performed 308 distinct RVB analyses of ten well-established ALS genes using 44 functional 

and 7 MAF filters (Fig. 1a). All tests included correction for gene coverage and ancestral 

covariates (Online Methods). In the final cohort, 72 cases and 0 controls harbored known 

ALS pathogenic mutations in these ten genes (Online Methods). An additional 26 cases 

harbored a repeat expansion in the C9orf72 gene. Tests differed in their capacity to detect 

individual known ALS genes (Supplementary Table 1), but we achieved the highest net 

sensitivity when we restricted analyses to variants with MAF < 0.001 and functional 

classifications of either nonsense, splice-altering4 or deemed deleterious by functional 

analysis through hidden Markov models (FATHMM)5. Under these settings, four genes 

exhibited disease association at exome-wide (Bonferroni-corrected P < 2.5 × 10−6) 

significance (SOD1, TARDBP, UBQLN2 and FUS), three achieved near exome-wide 

significance (TUBA4A, TBK1 and VCP), and three displayed modest to marginal disease 

association (PFN1, VAPB and OPTN) (Fig. 1b). Genes exhibiting the strongest disease 

associations included those reported as major ALS genes in population-based studies, 

whereas those exhibiting weaker associations are believed to constitute rarer causes of 

disease.
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Extension of the optimal known ALS gene parameters to all protein-coding genes identified 

one new gene displaying exome-wide significant disease association (Fig. 1b). The gene, 

NEK1 (odds ratio (OR) = 8.2, P = 1.7 × 10−6), encodes the serine/threonine kinase NIMA 

(never in mitosis gene-A)-related kinase. Retesting NEK1 under alternate analysis 

parameters identified strong disease associations across most analysis strategies, particularly 

where we included LOF (nonsense and predicted splice-altering) variants (Supplementary 

Table 2 and Supplementary Fig. 3). We observed no evidence for systematic genomic 

inflation (λ = 0.95), confounding related to sample ascertainment (Supplementary Fig. 4) or 

case–control biases in NEK1 gene coverage (Supplementary Fig. 5). Removal of samples 

carrying rare variants of known ALS genes did not influence the association (OR = 8.9, P = 

7.3 × 10−7).

In an independent line of research, we performed whole-genome sequencing for four ALS 

patients from an isolated community in the Netherlands (population < 25,000). We observed 

high inbreeding coefficients for each of the four patients, confirming their high degree of 

relatedness and supporting a restricted genetic lineage (Supplementary Fig. 6). Autozygosity 

mapping, allowing for genetic heterogeneity, identified four candidate disease variants 

occurring in detectable runs of homozygosity (ROH) (Supplementary Fig. 7). These variants 

included a p.Arg261His variant of NEK1. Two of the four SALS cases were homozygous for 

p.Arg261His and two were heterozygous, raising the possibility that even a single copy of 

the allele may increase disease risk. Clinical evaluation of the four cases did not find any 

overt differences in disease phenotype. None of the other three candidate variants exhibited 

homozygosity in multiple patients or occurred at all in more than two patients. Analysis of 

the region identified a shared p.Arg261His haplotype spanning 3 Mb in all four samples 

(Supplementary Table 3).

To validate the risk effects of p.Arg261His, we tested for disease association among 6,172 

SALS cases and 4,417 matched controls from eight countries (Supplementary Figs. 8 and 9, 

and Online Methods). We genotyped this cohort using the Illumina exome chip or by whole-

genome sequencing, allowing for checking of any overlap or detectable relatedness to the 

FALS case–control cohort, which was not present. Meta-analysis of all independent 

population strata identified a clear minor allele excess in cases with a combined significance 

of P = 4.8 × 10−5 and OR = 2.4 (Fig. 2). We also observed disease association in the FALS 

case–control data (OR = 2.7, P = 1.5 × 10−3) and a meta-analysis of FALS, SALS and all 

controls combined (OR = 2.4, P = 1.2 × 10−7).

DNA availability facilitated segregation analysis of only one NEK1 LOF variant, a 

p.Arg550* variant, which we also detected in the affected mother of the identified proband. 

To validate the effect of LOF variants observed in FALS and assess any potential 

contribution to sporadic disease, we analyzed full sequencing data of the NEK1 coding 

region for 2,303 SALS cases and 1,059 controls (Supplementary Fig. 3 and Online 

Methods). RVB analysis confirmed a significant excess of LOF variants in cases (23/2,303 

SALS samples versus 0/1,059 controls, OR = 22.2, P = 1.5 × 10−4; Supplementary Table 2). 

Meta-analysis of discovery and replication LOF analyses yielded a combined significance of 

P = 3.4 × 10−8 and OR = 8.8.
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In total, we detected 120 predicted nonsynonymous NEK1 variants in FALS samples, SALS 

samples and controls. These were distributed throughout the gene including in the sequence 

encoding protein kinase domain (PKD) and six coiled-coil domains thought to be involved 

in mediating protein–protein interactions (Supplementary Fig. 3). After conditioning for 

LOF variants and p.Arg261His, we observed tentative excesses of case variants in analyses 

of rarer variant categories, but larger sample sizes will be required to confirm the 

pathogenicity beyond p.Arg261His and LOF variants (Supplementary Table 4). Analysis of 

other members of the NEK gene family (NEK2–NEK11) identified no associations in the 

FALS data set meeting multiple-test criteria (Supplementary Table 5).

Although no other gene achieved discovery significance, ten candidate loci exhibited P < 1.0 

× 10−3 in the FALS discovery analysis (Table 1). These included the gene encoding the 

SNARE (soluble NSF attachment protein receptor) complex protein synataxin 12 (STX12, 

OR = 33.1, P = 9.7 × 10−5). Analysis of the SALS replication cohort identified missense 

variants in 5/2,303 cases versus 0/1,059 in controls. However, the cohort was not sufficiently 

powered to assess events of this frequency, and larger sample sizes will be required to 

establish effects on ALS risk (Supplementary Table 6). Another identified candidate gene 

was the known hereditary spastic paraplegia gene KIF5A6 (OR = 7.1, P = 4.8 × 10−4); 

however, no observed elevations in patient variant frequencies within the SALS replication 

cohort reached statistical significance (Supplementary Table 7).

NEK1 has been previously described as a candidate gene for ALS7,8. Here our findings 

show that NEK1 in fact constitutes a major ALS-associated gene with risk variants present 

in ~3% of European and European-American ALS cases. We identified LOF variants in 

1.2% of FALS samples (OR = 8.2) and 1.0% of SALS samples (OR = 22.2) versus 0.17% of 

controls, whereas we identified the p.Arg261His variant in 1.7% of FALS samples (OR = 

2.7) and 1.6% of SALS samples (OR = 2.4) versus 0.69% of controls. We identified variants 

of unknown clinical importance (missense, MAF < 0.001) in a further 1.8% of FALS 

samples and 1.3% of SALS samples versus 1.2% of controls. In comparison, risk variants in 

previously established ALS genes occur at approximately the following percentages: 

C9orf72, <10%; SOD1, <2%; TARDBP, <1%; FUS, <1%; and others, <<1% or 

uncertain9–12. However, caution must be taken when comparing the frequency of variants or 

mutations that differ in penetrance (i.e., highly penetrant mutations to lower-penetrance risk 

variants). Furthermore, assessment of the true odds ratio for variants in a gene may be 

difficult because of the presence of neutral variants that dilute out the observed effect. The 

actual odds ratio may therefore be even higher for specific subsets of patient variants. The 

LOF variants in NEK1 displayed a higher odds ratio relative to p.Arg261His. The 

p.Arg261His variant occurs adjacent to the protein kinase domain and is classified as 

deleterious by most bioinformatic prediction algorithms (SIFT, PolyPhen, LRT, 

MutationTaster, Mutation Assessor, PROVEAN, CADD, GERP and SiPhy). One model to 

account for the difference in p.Arg261His and LOF variant toxicity could be a correlation 

between phenotypic expression and the predicted extent of NEK1 LOF. This model would 

also be consistent with previous findings that homozygosity for NEK1 LOF variants causes 

a severe developmental phenotype; short rib polydactyly syndrome type II (SRPS)13. In the 

current study, no individuals carried multiple LOF alleles. However, in SRPS, homozygous 

Kenna et al. Page 4

Nat Genet. Author manuscript; available in PMC 2017 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



carriers of NEK1 LOF variants have been reported to exhibit a 64% reduction of NEK1 
mRNA levels whereas unaffected heterozygous parents exhibit a 30–40% reduction13.

NEK1 represents one of 11 members of the highly conserved NIMA kinase family, which 

has conserved functions in cell-cycle progression and mitosis. In postmitotic cells, NEK1 is 

a primary regulator of the formation of nonmotile primary cilium14,15. Disruption in the 

structure or function of primary cilia has been linked to neurological defects such as brain 

dysgenesis, hydrocephalus and intellectual disability16,17, and abnormalities in cilia number, 

structure and microtubule state occur in fibroblasts derived from SRPS patients homozygous 

for NEK1 truncation variants13. In vitro disruption of the activity of other neuronally 

expressed NEK family members has similarly been shown to disrupt neuronal morphology, 

neurite outgrowth, microtubule stability and microtubule dynamics18,19. Microtubule 

integrity and kinesin and dynein intraflagellar transport are essential to maintain cilia 

structure and function. This is of particular relevance as disruption of the microtubule 

cytoskeleton has been associated to the development of ALS3, and mutations of the dynein 

subunit dynactin are associated with motor neuron degeneration20. Additionally, motor 

neurons derived from mice expressing human SOD1 G93A show a selective loss of cilia 

both in vitro and in vivo21. Besides its role in ciliogenesis, NEK1 is also known to regulate 

mitochondrial membrane permeability22 and DNA repair23. Both of these processes have 

been extensively investigated in relation to ALS, and have been postulated to explain the 

toxicity of ALS- associated mutations in SOD1 and FUS24,25. Mutations in DNA-repair 

genes cause several early-onset neurological phenotypes, and multiple lines of evidence 

suggest defective DNA repair may contribute to both late-onset neurodegeneration and brain 

aging in general26. For example, oxidative damage and DNA strand breaks have been 

observed to be elevated in ALS, Alzheimer’s disease and Parkinson’s disease cases27, and a 

recent large-scale genome-wide association study (GWAS) implicated DNA-repair genes as 

age-of-onset modifiers in Huntington’s disease28. The pathological importance of DNA 

damage in ALS, and whether modifier effects observed in Huntington’s disease may 

generalize to repeat-expansion disorders such as C9orf72-associated ALS, constitute 

important questions to be addressed. Finally, through its coiled-coil domain, NEK1 has been 

shown to interact with multiple other proteins of potential importance, including the ALS-

associated proteins VAPB and ALS2 (ref. 7) and the axonal outgrowth regulator FEZ1 

(ref. 29).

METHODS

Methods and any associated references are available in the online version of the paper.

ONLINE METHODS

FALS discovery cohort

The FALS discovery cohort included 1,376 FALS patients and 13,883 non-ALS controls 

analyzed by exome sequencing. Patients were recruited at specialist clinics in Ireland (n = 

18), Italy (n = 143), Spain (n = 49), the UK (n = 219), the United States (n = 511), the 

Netherlands (n = 50), Canada (n = 34), Belgium (n = 12), Germany (n = 202), Turkey (n = 

47) and Australia (n = 91). Variants occurring at very low frequency in the general 
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population (ExAC MAF <0.0001), which have been both previously reported as ALS-

associated and annotated as either ‘pathogenic’ or ‘likely pathogenic’ by ClinVar within the 

ten genes, were considered to be pathogenic mutations. The breakdown of the 72 mutations 

observed in the final cohort included the following: SOD1 (28), TARDBP (12), FUS (9), 

PFN1 (6), TBK1 (1), TUBA4A (4), UBQLN2 (4), VAPB (2) and VCP (6). An additional 26 

cases harbored a repeat expansion in the C9orf72 gene. Controls included 29 internal 

samples and samples obtained from dbGAP30. Sequencing obtained from dbGAP was 

generated under the following projects: Genetic Epidemiology of chronic obstructive 

pulmonary disease (COPD) (COPDGene) phs000179; NHLBI Grand Opportunity Exome 

Sequencing Project (GO-ESP): Lung Cohorts Exome Sequencing Project (cystic fibrosis) 

phs000254; NHLBI GO-ESP: Women’s Health Initiative Exome Sequencing Project (WHI)-

WHISP phs000281; NHLBI GO-ESP: Lung Cohorts Exome Sequencing Project (pulmonary 

arterial hypertension) phs000290; NHLBI GO-ESP: Lung Cohorts Exome Sequencing 

Project (Lung Health Study of Chronic Obstructive Pulmonary Disease) phs000291; NHLBI 

GO-ESP: Lung Cohorts Exome Sequencing Project (COPDGene) phs000296; NHLBI 

Framingham Heart Study Allelic Spectrum Project phs000307; NHLBI GO-ESP: Family 

Studies (Thoracic aortic aneurysms leading to acute aortic dissections) phs000347; NHLBI 

GO-ESP Family Studies: pulmonary arterial hypertension phs000354; NHLBI GO-ESP: 

Family Studies: (familial atrial fibrillation) phs000362; NHLBI GO-ESP: Heart Cohorts 

Exome Sequencing Project (ARIC) phs000398; NHLBI GO-ESP: Heart Cohorts Exome 

Sequencing Project (CHS) phs000400; NHLBI GO-ESP: Heart Cohorts Exome Sequencing 

Project (FHS) phs000401; NHLBI GO-ESP: Heart Cohorts Exome Sequencing Project 

(JHS) phs000402; NHLBI GO-ESP: Heart Cohorts Exome Sequencing Project (MESA) 

phs000403; NHLBI GO-ESP: Lung Cohorts Exome Sequencing Project (asthma) 

phs000422; Jackson Heart Study Allelic Spectrum Project phs000498; NHLBI GO-ESP 

Family Studies: Idiopathic Bronchiectasis phs000518; Alzheimer’s Disease Sequencing 

Project (ADSP) phs000572; NHLBI GO-ESP: Family Studies (Hematological Cancers) 

phs000632; Building on GWAS for NHLBI diseases: the US CHARGE consortium 

(CHARGE-S): FHS phs000651; Building on GWAS for NHLBI diseases: The US 

CHARGE Consortium (CHARGE-S): CHS phs000667; Building on GWAS for NHLBI 

Diseases: the US CHARGE Consortium (CHARGE-S): ARIC phs000668; NIH Exome 

Sequencing of FALS Project phs000101.v4.p1. Familial history was considered positive for 

ALS if the proband had at least one affected relative within three generations. We received 

approval for this study from the institutional review boards of the participating centers, and 

written informed consent was obtained from all patients (consent for research).

SALS replication cohort

The SALS replication cohort included 2,387 SALS cases and 1,093 controls analyzed by 

whole-genome sequencing, and 5,834 SALS cases and 4,117 controls analyzed by exome 

chip. All individuals were recruited at specialist clinics in Ireland, Italy, Spain, the UK, the 

United States, the Netherlands and Belgium. Details of sample contributions per country are 

shown in Figure 2. Evaluation of C9orf72 status was performed in 2,387 SALS cases and 

166 (7%) displayed a repeat expansion. We received approval for this study from the 

institutional review boards of the participating centers, and written informed consent was 

obtained from all patients (consent for research).
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Exome sequencing

Exome sequencing of patients was performed as previously described3. Raw sequence data 

for controls was obtained from dbGaP. Sequence reads were aligned to human reference 

GRCh37 using Burrows–Wheeler aligner (BWA) and processed according to recommended 

best practices31. Variant detection and genotyping were performed using the GATK 

HaplotypeCaller. Variant quality control was performed using the GATK variant quality 

score recalibration method, with a VQSLOD cutoff of 2.27 (truth set sensitivity of 99%). A 

minimum variant quality by depth (QD) score of 2 was also imposed and all genotypes 

associated with genotype quality (GQ) < 20 were reset to missing. Variants were also 

excluded in the event of case or control call rates < 70% (post genotype QC). Exome 

sequencing data was not used to infer the presence or absence of indels due to the limited 

sensitivity and comparatively high false positive rates associated with available calling 

algorithms32.

Genome sequencing

Whole-genome sequencing of 2,387 SALS samples and 1,093 controls was performed with 

Illumina’s FastTrack services using PCR free library preparation and paired-end (100 bp or 

150 bp) sequencing on the HiSeq 2500 or Hiseq X platform (Illumina) to yield 35× coverage 

at minimum. BWA was used to align sequencing reads to genome build hg19, and the Isaac 

variant caller was used to call single-nucleotide variants (SNVs), insertions and deletions 

(indels)33. Both the aligned and unaligned reads were delivered in binary sequence 

alignment/map format (BAM) together with variant call format (VCF) files containing the 

SNVs and indels. gVCF files were generated per individual, and variants that failed the 

Isaac-based quality filter were excluded.

Exome chip

A total of 5,815 ALS patients and 4,614 healthy controls from the Netherlands, Belgium, 

Germany, Ireland, Italy, Spain and the UK were included. Genotyping was conducted using 

Illumina HumanExome-12v1 BeadChips in accordance with the manufacturer’s 

recommendations. The GenTrain 2.0 clustering algorithm was used for genotype calling, as 

implemented in the Illumina GenomeStudio software package. Initial genotype calls were 

made based on the HumanExome clusterfile provided by Illumina. More accurate cluster 

boundaries were determined based on the actual study data, after the exclusion of samples 

with a GenCall quality score in the lower 10th percentile of the distribution across all 

variants genotyped (p10GC) < 0.38 or call rate < 0.99. Subsequently, the excluded samples 

were added back into the data set, and new genotypes calls were made using the previously 

obtained cluster boundaries.

Sample filtering

Samples from the FALS discovery and SALS replication cohorts were excluded from 

analysis in the event of failing to meet genotype call rate, heterozygosity, gender 

concordance, duplication, relatedness or population stratification filters as summarized in 

Supplementary Figures 1 and 7. All samples from the FALS cohort were required to exhibit 

filtered exome-wide call rates > 70%. For both the FALS and SALS cohorts, PLINK 
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(v1.07)34 was used to define an LD-pruned (r2 < 0.5, window size = 50, step = 5) set of 

autosomal markers with MAF > 0.01 and P > 0.001 for deviation from Hardy–Weinberg 

equilibrium. These marker sets were then used to calculate inbreeding coefficients for use in 

heterozygosity filtering, identify study duplicates, conduct relatedness filtering, perform 

tests of pairwise population concordance for stratification filtering, conduct PCA for a 

second round of stratification filtering and conduct PCA to generate covariates for 

stratification correction in RVB analysis and single-variant analysis of filtered cohorts. 

Samples from the SALS replication cohort were required to exhibit no relatedness/

duplication with samples from the FALS discovery cohort. PLINK was used to calculate 

inbreeding coefficients, test for discordance in reported and SNV predicted gender and 

conduct tests of pairwise population concordance. Identification of sample duplicates and 

sample relatedness was performed using KING35. PCA was conducted using genome-wide 

complex trait analysis (GCTA)36. Details of results from population stratification analysis 

are provided in Supplementary Figures 2 and 8.

Statistical analyses

RVB analyses were performed by logistic regression of case–control status to number of 

minor alleles observed per sample per gene3,37. Results from underpowered tests (≤3 

observations in combined case–control cohort) were excluded and did not contribute to 

assessments of genomic inflation. Variants were included for RVB analyses on the basis of 

MAF within the combined case–control cohort, MAF within the 1000 Genomes project38, 

and pathogenicity predictions generated using snpEFF (single nucleotide polymorphism 

effect)39, PolyPhen2 (polymorphism phenotyping version 2)40, SIFT (sorting intolerant from 

tolerant)41, LRT (likelihood ratio test)42, MutationTaster43, MutationAssessor44, FATHMM 

(functional analysis through hidden Markov models)5, CADD (combined annotation 

dependent depletion)45, PROVEAN (protein variation effect analyzer)46, GERP (genomic 

evolutionary rate profiling)47, phyloP (phylogenetic P value)48, SiPhy (SiPhylogenic)49, 

dbNSFP (database nonsynonymous SNP functional prediction)50 and dbscSNV (database of 

splice site consequences of single nucleotide variants)4 as described in Supplementary Table 

1. All RVB analyses were conditioned for a missing variant MAF-weighted measure of 

sample gene call rate and the first four PCs derived from common variant profiles. 

Homozygosity mapping was performed using HomozygosityMapper51 allowing for genetic 

heterogeneity. ROH were selected as all loci achieving a homozygosity score ≥ 8,483 (0.6 × 

max). Single variant analyses were allele-count-based, conducted using PLINK, and also 

included correction for the first four PCs derived from common variant profiles. Meta-

analyses were conducted using METAL52 under a fixed-effect model with weighting by 

inverted effect size standard error. All statistical tests were two-sided.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
RVB analysis of FALS exomes. (a) RVB analyses of 1,022 index FALS cases and 7,315 

controls for 10 known ALS genes, to assess 308 different combinations of MAF and 

functional prediction filters (Supplementary Table 1). The set of analysis parameters 

achieving the highest sensitivity for known ALS genes was identified as that achieving the 

highest area under the curve (AUC) in a plot of sensitivity (proportion of training genes 

achieving significance) across an increasing minimum P-value threshold. Dotted vertical line 

denotes Bonferroni-corrected P value for exome-wide significance. (b) Extension of the 

highest performing known gene-trained analysis to the entire exome. Threshold for exome-

wide significance is denoted by the dotted red line. λ, observed genomic inflation factor. 

‘Obs’ describes the P-value distribution for the observed data. ‘Exp’ describes the P-value 

distribution under null expectation.
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Figure 2. 
Replication analysis of NEK1 p.Arg261His. NEK1 p.Arg261His genotypes were ascertained 

for 1,022 FALS samples, 6,172 SALS samples and 11,732 controls. The SALS cohort was 

divided into seven geographically based case–control strata. Logistic regression was used to 

conduct tests of allelic association for all subcohorts and was followed by a fixed-effects 

meta-analysis. In the distribution of OR estimates across study cohorts (right), vertical 

dotted line denotes OR estimated under meta-analysis. CI, confidence interval.
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