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Abstract

Objective—BMSCs create a special microenvironment for hematopoiesis and immunity and also 

display robust immunomodulatory properties which are impaired in SLE. This study was 

undertaken to define the mechanisms of defects in human SLE BMSCs.

Methods—Patients fulfilling SLE classification criteria and healthy controls were recruited under 

an Institutional Review Board approved protocol (n=6 each). BMSCs were isolated with low 

density Ficoll/Hypaque. BMSCs were verified by flow cytometry and studied using 

immunocytochemistry, real-time PCR, western blotting, comet assay, beta-galactosidase assay, and 

RNA interference.

Results—SLE BMSCs have a senescent phenotype characterized by reduced proliferation rate, 

increased production of reactive oxygen species (ROS), increased DNA damage and repair, 

increased expression of p53 and p16 which block the cell cycle, and altered cytokine production 

(increased pro-inflammatory cytokine and decreased immunomodulatory cytokine production). 

Moreover, SLE BMSCs have a 5 fold increase in IFNβ (p<0.05) and increased IFNβ-induced 

mRNAs including mRNA for the intracellular nucleic acid sensing adaptor protein MAVS whose 

expression was highly correlated with IFNβ levels (r > 0.9, p < 0.01). Since MAVS is known to 

induce IFNβ production, we hypothesized a positive feedback loop between MAVS and IFNβ. 

Strikingly, silencing MAVS markedly decreased IFNβ, p53, and p16 protein levels and expression 

of mRNAs for pro-inflammatory cytokines.

Conclusions—This study demonstrates a novel pathway for elevated IFNβ signaling in SLE that 

is not dependent on stimulation by immune complexes but rather is cell-intrinsic and critically 

mediated by IFNβ and MAVS, implicating new pathways as potential therapeutic targets.
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Introduction

SLE is a multisystem autoimmune disease with substantial morbidity and mortality 

disproportionately targeting young women. SLE pathogenesis is characterized by 

autoantibody production, immune complex formation, and systemic or organ-specific 

inflammation (1). Bone marrow mesenchymal stem cells (BMSCs) provide a supportive 

microenvironment for maintenance of hematopoietic stem cells (HSCs) and for 

hematopoiesis. BMSCs are also capable of differentiating into various cell types such as 

bone, fat and cartilage. In recent years, human MSC transplantation has become an 

interesting but controversial approach to treating SLE and other human autoimmune diseases 

(2). MSC transplantation in murine models of lupus has been promising (3), and the 

immunomodulatory potential of human MSCs have been clearly demonstrated in these 

murine models (4). Open trials of MSC transplantation in humans have also shown promise, 

but well-controlled clinical trials are lacking (5). Interestingly, MSCs from humans with 

lupus are abnormal and even the earliest studies have speculated these abnormalities might 

be related to the pathogenesis of lupus (6). BMSCs from humans with lupus and from 

murine models of lupus do not grow well, show evidence of senescence, and have poor 

immunomodulatory capacity compared to health controls (6, 7). The present study was 

aimed at determining the mechanism of the BMSC abnormalities in SLE and in particular 

the role of type I interferon.

A predominant paradigm in SLE research is that self-nucleic acids, particularly when 

oxidized or complexed with auto-antibodies, are able to stimulate leukocytes via Fc receptor 

(FcR)-mediated uptake and ligation of TLR7/8 and TLR9 in endocytic vesicles (8). Chronic 

TLR stimulation is presumed to drive ongoing elevation in type I interferon production, 

particularly IFNα, driving elevated levels of type I IFN biological activity in serum and a 

type I IFN signature in peripheral blood leukocytes (9, 10). However, human clinical trials 

blocking IFNα have proved only limited inhibition of the IFN signature and no or limited 

clinical efficacy (11, 12). Trials blocking the type I IFN receptor have been more successful 

in blocking the IFN signature and preliminary studies suggest clinical efficacy (13). The 

type I IFN system consists of multiple isotypes (13 IFNα, 1 IFNβ, 1 IFNé, 1 IFNκ, and 1 

IFNω) which all bind to the same IFN-I receptor (14). IFNα and IFNβ are the best studied 

of the type I IFN. They both induce anti-viral responses, but IFNβ binds with a much higher 

affinity to the IFN-I receptor and induces unique anti-proliferative and immunomodulatory 

effects in a cell-type specific and ‘tunable’ fashion (15). For example, IFNβ has been shown 

to induce reactive oxygen species, DNA damage, and p53-dependent cellular senescence, 

properties not shared by IFNα (16). Constitutive production of IFNβ also plays an 

important role in priming the immune system (17), e.g. regulating response to TLR4 ligands 

by macrophages, TLR7 ligands by B cells, and IFNα production by fibroblasts (18, 19). 

IFNβ, originally known as fibroblast IFN, is the major IFN produced by mesenchymal cells. 

Thus, it seemed possible that some of the defects in SLE MSC could be related to IFNβ. Of 

note, modular transcriptome repertoire analysis provided evidence of IFNβ production in 

some patients with SLE (20, 21). For example, module 3.4 is increased in peripheral blood 

cells from a subset of SLE patients (20, 21). Module 3.4 is not upregulated by IFNα in 
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patients with hepatitis C but is upregulated in multiple sclerosis patients receiving IFNβ 
(21).

Although Fc receptors and endosomal TLRs (especially TLR7 andTLR9) are important in 

triggering IFN production by leukocytes, different mechanisms are involving in triggering 

IFN production by non-leukocytes such as MSCs. MAVS, also known as Interferon Beta 

Promoter Stimulator Protein 1, is a strong stimulator of IFNβ in a variety of cell types. 

MAVS is an adaptor protein linking cytoplasmic sensors of nucleic acid such as RIG-1 and 

MDA5 with production of IFN and activation of NFκB. Overexpression of MAVS 

constitutively stimulates type I IFN and type I IFN stimulated genes (ISGs) (22). MAVS is 

critical for host defenses and IFN production in responses to RNA viruses. In addition, IFNβ 
can be triggered in response to cytosolic DNA by signaling involving RNA polymerase III, 

RIG-1 and MAVS (23). A gain of function mutation of MDA5 has been associated with risk 

of SLE (24), and MAVS polymorphisms have been linked to manifestations of SLE in a 

Chinese population (25).

The present study focuses on the intrinsic BMSC defects in SLE and the underlying 

mechanisms of these defects. We describe striking abnormalities in mesenchymal stem cells 

isolated from SLE bone marrow, with several features of cellular senescence including 

decreased replication, evidence of DNA damage, increased reactive oxygen species (ROS), 

high levels of cell cycle arrest proteins p53 and p16, and increased senescence-associated 

pro-inflammatory cytokines. Further, IFNβ and MAVS both mediate these defects via a 

positive feedback loop as silencing MAVS completely reverses the senescent phenotype.

Patients and Methods

Human BMSC isolation and culture

Detailed written informed consent was obtained from all patients and healthy donors, in 

accordance with protocols approved by the Human Subjects Institutional Review Board 

(IRB) of the University of Rochester Medical Center. SLE patients fulfilled American 

College of Rheumatology classification criteria (26). Clinical data included a comprehensive 

medical history, medications profile, clinical laboratory tests, and assessment of SLE disease 

activity by SLEDAI (SLE Disease Activity Index) (27) (Table 1). Research bone marrow 

(BM) aspirates were drawn from 6 SLE patients and over 6 healthy controls (HC) as we 

have previously described (28). Genomic samples from SLE patients were genotyped at 

rs11905552 site in the MAVS gene for C79F MAVS SNP (29). BMSCs were isolated from 

the BM of healthy donors and SLE patients using Ficoll PREMIUM (1.073g/ml): 10 ml of 

bone marrow samples were diluted with 2 parts of PBS and then 12 ml of Ficoll PREMIUM 

(1.073g/ml) was placed underneath. The mixture was centrifuged at room temperature 400 

RCF/g for 30 min. The BMSC layer was removed, washed and plated in 6-well plate and 

cultured at 37°C, in 5% oxygen. Medium was changed every other day until the cells reach 

80% confluence.
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Western blotting

Western blotting was performed as previously described (30). The antibodies used included 

IFNβ, MAVS, p53, p16, 53BP1, Actin (Thermo Fisher Scientific).

Quantitative real-time RT-PCR

Total RNA from cultured cells was isolated using the RNeasy kit (Qiagen, Valencia, CA, 

USA). Total RNA (1 µg) from cells or articular tissues was reverse transcribed into cDNA 

using the iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA). Real-time PCR was 

performed on a Rotor-Gene 6000 real-time DNA amplification system (Qiagen, Valencia, 

CA, USA) using the PerfeCTa SYBR Green SuperMix (Quanta BioSciences, Inc., 

Gaithersburg, MD, USA) according to the manufacturer's instructions. Table S1 includes a 

list of primers used.

Immunofluorescent labeling

Human BMSCs were cultured in chamber slides for 24 hours. After washing with PBS, the 

cells were fixed with 4% paraformaldehyde at 4°C for 1 hour. The cells were incubated with 

antibodies against different antibodies γH2AX and pATM (Fisher Scientific, Pittsburgh, PA, 

USA) diluted in PBS containing 5% BSA, 0.5% Tween-20, and incubated at 4°C for 12 

hours. This was followed by incubation with a fluorophore-conjugated secondary antibody 

(Jackson ImmunoResearch Laboratories, Inc., West Grove, PA) at room temperature for 1 

hour. The chamber slides were rinsed with water, air-dried, and mounted with Vectashield 

(Vector Laboratories, Burlingame, CA).

Comet assay

Comet assay was performed as previously described (31). Briefly, MSCs from healthy 

controls and SLE patient were isolated from bone marrow and subjected to neutral lysis and 

electrophoresis for DNA double-strand breaks detection. Slides were stained with DAPI 

before analysis.

Beta-galactosidase assay

Beta-galactosidase assay was performed using Beta-galactosidase assay kit (Thermo Fisher 

Scientific) following manufacture’s protocol.

Flow cytometry

Single cell suspensions of BMSCs (106/sample) were labeled at 4°C with predetermined 

optimal concentrations of fluorophore-conjugated mAbs against CD34, CD45, CD73, CD90, 

CD105, CD31, CD19, CD11b, HLA-ABC, CD44, CD29, and HLA-DR surface markers 

(ebioscience, San Diego, CA, USA). Pair-matched isotype controls were also used. ROS was 

detected using CellRox (Thermo Fisher Scientific). Ki67 was used for proliferation analysis 

following manufacturer’s protocol (ebioscience, San Diego, CA, USA).
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Cytokine ELISA assay

IL-6, IL-8 and GM-CSF in the supernatant of BMSCs were evaluated with human IL-6, 

IL-8, and GM-CSF immunoassay kit following manufacture’s protocol (R&D systems, 

Minneapolis, MN, USA).

Statistics

Data are presented as the means ± s.e.m. Statistical significance was determined by 

Student’s t-tests or as indicated in the figure legends; P-values of less than 0.05 were 

considered significant.

Results

SLE BMSCs display mesenchymal stem cell markers and behavior

BMSCs were isolated with Ficoll from the bone marrow of healthy donors and SLE patients. 

It has been reported that C79F MAVS SNP leads to MAVS loss of function mutation by 

impairing MAVS-TRAF3 interaction, and this mutation is more frequent in individuals of 

African origin (32). Therefore, the genomic samples from SLE patients were genotyped at rs 

11905552 site in the MAVS gene for C79F MAVS SNP (29). No C79F MAVS SNP was 

found in the SLE patients in this study (data not shown), ruling out the possibility that the 

MAVS loss of function mutation could have contributed to the phenotypes observed in the 

present work. To identify the cell types isolated, the cells were phenotyped with cell surface 

markers using flow cytometry. More than 95% of the isolated cells of second passage were 

positive for CD73, CD90 and CD105 and negative for CD34 and CD45 (Fig.1A). In 

addition, further analysis revealed that the isolated cells were also positive for CD29, CD44, 

HLA-ABC and negative for CD31, CD11b, CD19 and HLA-DR (Fig. S1). No difference in 

the MSC surface markers was observed between healthy donors and SLE patients. When the 

isolated cells were plated on cell culture discs, they adhered to the plastic surface in spindle 

shapes (Fig. 1B). To assess the differentiation potential of these cells, conditional medium 

for osteogenesis, chondrogenesis or adipogenesis were applied. At the end of the induction, 

the isolated cells were positively stained with alkaline phosphatase staining, alcian blue 

staining or oil red to identify differentiation to these respective cell lineages (Fig. 1C). Taken 

together, these findings indicate that the isolated cells are MSCs with MSC cell surface 

markers and three-lineage differentiation potentials.

DNA double strand breaks activate DNA damage and repair pathways in SLE BMSCs

Given that DNA damage and aberrant DNA products have been found in the serum of SLE 

patients (33), we next evaluated DNA double breaks in BMSCs using comet assay (Fig. 2A). 

SLE BMSCs have 5 fold more comet tail moments than healthy controls (Fig. 2A), 

suggesting that SLE BMSCs have elevated DNA double strand breaks. We then investigated 

the cell response to the DNA double strand breaks - the DNA damage and repair (DDR) 

pathways. The immunofluorescence images demonstrate that the phosphorylation of the 

histone variant H2AX, an early and specific DNA damage marker, was strongly activated in 

SLE BMSCs (Fig. 2B). ATM is a key mediator in DDR becoming phosphorylated upon 

activation. The p-ATM immunofluorescence staining demonstrated that ATM was activated 
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in SLE BMSCs (Fig. 2C). 53BP1, a DDR protein found in persistent DNA damage foci (34), 

was increased in SLE BMSCs (Fig. 2D). These findings demonstrate that persistent DNA 

double strand breaks activate DDR pathway in SLE BMSCs.

SLE BMSCs undergo SASP and have reduced immunomodulatory function

Given that DNA damage accumulation can result in senescence and senescence-related 

secretory phenotypes, we next evaluated SLE BMSC senescence and SASP. As growth 

arrest is a hallmark of senescence, proliferation was assessed with Ki67 expression with 

flow cytometry (Fig. 3A). SLE BMSCs have a significant reduced percentage of 

proliferating cells when compared to healthy controls, suggesting a growth arrest in SLE 

BMSCs (Fig. 3A). A number of proteins compatible with senescence induction including 

p53 and p16 were markedly increased in SLE BMSCs (Fig. 3B). Senescence is also 

associated with SA-β-gal expression (35). In the healthy controls, SA-β-gal positive cells 

were barely detected, as compared to the markedly elevated SA-β-gal activity in SLE 

BMSCs (Fig. 3C). SASP is a phenomenon whereby senescent cells increase the expression 

and secretion of certain cytokines, chemokines and other proteins (36). Notably, the SASP 

related gene expression (Il6, Il8, Gro1, Mcp2, Rantes, Gm-csf) was significantly higher in 

SLE BMSCs than in healthy controls (Fig. 3D). When IL6, IL8 and GM-CSF in the 

supernatant were evaluated with ELISA, increased concentrations of these cytokines were 

observed in the supernatant of SLE BMSCs than in healthy controls (Fig. S3). In contrast, 

the immunoregulatory genes (Tgf-β, Ido1, Lif) were down-regulated in SLE BMSCs (Fig. 

3E). Together, these findings demonstrate that SLE BMSCs undergo SASP and have 

impaired immunomodulatory function.

Nucleic acid sensing protein MAVS and its target IFNβ are activated in SLE BMSCs

It has been reported that MAVS plays an important role in SASP in contexts other than SLE. 

When MAVS was silenced in senescent HUVECs, the IL-6 and IL-8 expression was 

suppressed (37). Therefore, we evaluated MAVS in SLE BMSCs. MAVS expression was 

significantly elevated in SLE BMSCs (Fig. 4A). As an IFNβ stimulator, MAVS protein 

activates IFNβ production (38). The RT-PCR and western blot results revealed that IFNβ 
expression was dramatically upregulated in SLE BMSCs (Fig. 4A). Notably, the expression 

level of MAVS and IFNβ were highly correlated, r > 0.9, p < 0.01 (Fig. 4B). IFNβ and IFNα 
are both type I interferons that comprise the IFN-I signature in SLE. We next evaluated 

IFNβ specific transcripts in BMSCs by stimulating BMSCs with either IFNα or IFNβ. 

Similar to human fibrosarcoma cells (16), the genes Arid3a, Ptpn11, Hif1a and Ap3m2 only 

respond to IFNβ stimulation not IFNα in human BMSCs (Fig. S2). Moreover, IFNβ 
activates Mavs (Fig. S2). Next, we compared the IFNβ specific genes in healthy vs SLE 

BMSCs. The results demonstrate that these IFNβ specific targets are markedly upregulated 

in SLE BMSCs (Fig. 4C). Because the activation of both MAVS and IFNβ are linked to 

ROS production and DNA damage (16, 39), we also evaluated ROS level in SLE BMSCs. 

SLE BMSCs have 2 fold more ROS than healthy controls (Fig. 4D). These findings suggest 

that the nucleic acid sensor MAVS is activated in SLE BMSCs and MAVS together with 

IFNβ and ROS may be key regulators of DNA damage and senescence in SLE BMSCs.
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Silencing MAVS blocks IFNβ expression, reduces SASP related cytokine production and 
improves immunomodulatory factor expression in SLE BMSCs

To further explore the role of MAVS in SLE BMSC SASP, MAVS siRNA was introduced in 

both healthy and SLE BMSCs. MAVS expression was significantly silenced following 

siRNA application (Fig. 5A&C). In addition, silencing MAVS led to inhibited IFNβ 
expression (Fig. 5B&C). More surprisingly, senescence compatible proteins p53 and p16 

were blocked following MAVS siRNA (Fig. 5C). SASP related cytokine production was also 

inhibited (Fig. 5D). When immunomodulatory factors were evaluated, silencing MAVS 

alleviated the inhibition of Tgf-β, Ido1 and Lif in SLE BMSCs (Fig. S4). These findings 

further establish the key role of MAVS together with IFNβ in regulating SLE BMSC SASP 

and immunomodulatory function (Fig. S5).

Discussion

The present work demonstrates for the first time that SLE BMSCs have a pro-inflammatory 

and senescence-associated phenotype which is mediated by a MAVS and IFNβ feedback 

loop. Compared to healthy controls, SLE BMSCs produced increased amounts of IFNβ and 

had increased mRNA for genes induced specifically by IFNβ rather than IFNα. They also 

had decreased proliferation, increased ROS, increased DNA damage and repair (DDR), a 

senescence-associated secretory phenotype, and increased senescence-associated β-

galactosidase. MAVS mRNA was induced by IFNβ, and there was a very strong correlation 

between levels of MAVS and IFNβ mRNA. MAVS was originally characterized based on its 

ability to induce IFNβ, setting up the potential for an IFNβ-MAVS mediated positive 

feedback loop promoting cellular senescence. Silencing MAVS disrupts the IFNβ positive 

loop by downregulating IFNβ, p53, and p16 proteins levels, and inhibits the expression of 

pro-inflammatory cytokines in SLE BMSCs. These results establish the critical role of an 

IFNβ-MAVS positive feedback loop in SLE and provide strong rationale for targeting this 

feedback loop in SLE and potentially other autoimmune diseases.

A distinguishing function of IFNβ is induction of ROS, double strand breaks, DNA repair 

mechanism, and cellular senescence (16, 40). Exogenously added IFNβ has been found to 

induce double stranded breaks and senescence in cell lines (16). Similarly, endogenously 

produced IFNβ can play an important role in senescence as well, e.g. anti-human IFNβ 
antibodies rescued normal fibroblasts as well as fibroblasts from patients with Werner 

Syndrome (a type of adult onset progeria) from replicative senescence, decreased protein 

markers of DNA damage and senescence (p53 and p16), reduced expression of the 

senescence-associated markers β galactosidase (40). Conversely, double-strand DNA breaks 

from radiation, genotoxic agents, or genetic manipulation stimulate IFNβ secretion (40). 

Thus, a DNA damage-IFNβ feedback loop with the potential to promote and perpetuate 

inflammation and cellular dysfunction has been previously described in several other 

systems but as far as we know not in SLE. Here we provide evidence for similar senescence-

associated processes and IFNβ production in bone marrow resident MSC from SLE patients 

strongly suggesting that targeting IFNβ may reverse some of these abnormalities. Indeed, 

silencing MAVS, the primary inducer of IFNβ in many cell types, blocked IFNβ production 

and reversed several of the molecular markers of senescence.
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The molecular epidemiology of SLE suggests a role for cytoplasmic sensory of nucleic acids 

in pathogenesis. A gain of function mutation of MDA5 has been associated with increased 

risk of SLE (24), and MAVS polymorphisms have been linked to different manifestations of 

SLE in Chinese (25). Moreover, prion-like MAVS aggregation was found in peripheral blood 

of a subset of lupus patients with increased interferon-I levels (41). A MAVS loss of 

function mutation has been reported in 27.6% of a sub-Saharan African population, 1.7% of 

Europeans, and 9.4% of African Americans (32). This mutation was present in 12.6% of 

African American patients with SLE. These African American SLE patients had lower levels 

of IFN-I (p = 0.0032) and were enriched in patients who lacked autoantibodies against RNA 

binding proteins (OR = 2.6, p = 0.00084). In animal studies MAVS and IFNβ were found to 

be essential for expression and function of TLR-7 in B cells and TLR-7 has been shown to 

be essential for generation of antibodies against RNA binding proteins (18, 42). Thus, lack 

of autoantibodies against RNA binding proteins in African-American lupus patients with the 

loss of function of MAVS may be secondary to a defect in expression of TLR-7 in B cells. A 

role for intracellular nucleic acid sensing in idiopathic lupus is also suggested by the 

association of SLE with a mutations in the 3’ repair DNA exonuclease Trex1 (43). Mutations 

in Trex1 lead to increased cytosolic DNA and activation of the STING pathway. Moreover, 

activating mutations of STING, another molecule involved in cytoplasmic sensing of nucleic 

acids, has been associated with an inflammatory syndrome having some lupus-like features 

(44). Thus, there are hints from the literature that cytoplasmic sensors for nucleic acids may 

be important in the pathogenesis of SLE. Here we have directly demonstrated a critical role 

for MAVS in activation of and IFNβ production by SLE BMSC.

BMSCs play an important role in bone and cartilage metabolism by differentiating into 

osteoblasts and chondrocytes and are critical for the development of hematopoietic stem 

cells into blood and lymphoid cells. Thus, BMSC abnormalities in SLE patients may be 

directly related to an increased risk of osteoporosis and avascular necrosis of bone (45). In 

addition, SLE BMSCs may have cell-non-autonomous effects on the microenvironment due 

to their reduced immunomodulatory capacity as suggested by the down-regulation of 

immunomodulatory factors (Tgf-β, Ido1 and Lif). However, in the paper published by Opitz 

et al.(46), they proposed a novel finding that TLR enhances immunosuppressive function of 

MSCs by activating IDO1 via IFNβ. They also noted that this finding contradicted the 

previous publication from Liotta et al.(47), possibly due to a shorter exposure time of MSCs 

to TLR ligand. In our studies, BMSCs from lupus patient would have been chronically 

stimulated in vivo. Thus, it is not surprising that our results are similar to Liotta et al., that 

long term stimulation suppressed IDO1 expression in lupus BMSCs.

Thus, alterations in BMSC function in SLE may jeopardize the bone marrow 

microenvironment, potentially skewing hematopoiesis and altering immune responses. 

Indeed, there are published reports of increased ARID3a, a protein induced by IFNβ but not 

IFNα, in B cells from a subset of patients with SLE (48). ARID3a has been linked to 

development of B1 B cells in mice, and hematopoietic stem cells from SLE patients with 

high levels of ARID3a in B cells when transferred to mice produced increased levels of 

autoantibodies (48). Moreover, innate and type I IFN pathways are markedly upregulated in 

ARID3a high B cells (49). We have found ARID3a upregulated in BMSC and ARID3a 

mRNA was downregulated also with mRNA for IFNβ when MAVS was silenced. We 
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speculate that IFNβ production in the bone marrow microenvironment is also responsible for 

the induction of ARID3a in hematopoietic stem cells and B cells and that BMSC are an 

important source of IFNβ.

Collectively, our work has found increased IFNβ production in SLE BMSCs and established 

MAVS as a critical player by regulating IFNβ production, with an IFNβ-MAVS positive 

feedback loop (Fig. S5). We propose that IFNβ and its target gene products contribute to 

chronic inflammation and ROS damaging DNA which is then sensed by MAVS. In turn, 

MAVS stimulates the IFNβ promoter and increases IFNβ expression and secretion, which 

further contributes to the chronic inflammation and ROS generation. Under the influence of 

this IFNβ positive feedback loop, cells eventually exit cell cycle and undergo senescence but 

continue to release IFNβ and other inflammatory factors altering adjacent cells and the bone 

marrow microenvironment. This IFNβ-MAVS feedback loop in BMSCs has the potential to 

alter development of immune cells in the bone marrow and contribute to SLE pathogenesis. 

In ongoing work we will explore where other cell types in SLE are similarly activated and 

potentially contribute to accelerated development of inflammation, degenerative disease and 

organ dysfunction in SLE patients (50).
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Characterizing human BMSCs
(A) Flow cytometry analysis using CD45, CD34, CD73, CD90 and CD105 antibody. (B) 
BMSC morphology when attached to plastic surface. (C) Left to right: Alcian blue staining 

for chondrogenesis, alkaline phosphatase staining for osteogenesis, and oil red staining for 

adipogenesis.
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Fig. 2. Increased DNA double-strand breaks and activated DDR in human SLE BMSCs
(A) Comet assay for DNA double strand breaks. (B–C) Confocal images for rH2AX and p-

ATM. (D) Western blotting against 53BP1 antibody. Scale bars, 10 µm. *p<0.05, Student’s t-

test.
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Fig. 3. SLE BMSCs undergo SASP and have reduced immunomodulatory factor expression
(A) Flow cytometry using Ki67 antibody. (B) Western blotting against p53 and p16 

antibodies. (C) SA-β-gal staining. (D) RT-PCR analysis for SASP associated factors. (E) 
RT-PCR analysis of immunomodulatory factors. *p<0.05, Student’s t-test.
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Fig.4. Elevated MAVS, IFNβ and ROS level in SLE BMSCs
(A) Western blotting against MAVS and IFNβ antibody. (B) mRNA correlation analysis 

between MAVS and IFNβ. (C) RT-PCR analysis of IFNβ specific genes. (D) Flow 

cytometry analysis for ROS using CellROX. *p<0.05, Student’s t-test.
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Fig. 5. Silencing MAVS rescues SASP in SLE BMSCs
(A–B) RT-PCR analysis of MAVS and IFNβ genes. (C) Western blotting analysis against 

MAVS, IFNβ, p53 and p16 antibody. (D) RT-PCR analysis for SASP associated factors. 

*p<0.05, Student’s t-test.
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