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ABSTRACT
Tuberculosis (TB), an important issue in the present age, affects millions of people each year. 
The infectious agent of TB, Mycobacterium tuberculosis (Mtb), interacts with the immune system 
which prevents the development of this bacterium as much as possible. In fact, the receptors 
on the surface of immune cells identify the bacteria, one of which is Toll-like receptors (TLRs). 
Different TLRs including 2, 4, 9 and 8 play critical roles in tuberculosis infection. In this paper, we 
focused on the role of TLRs which interact with different components of Mtb and, consequently, 
prevent the entrance and influence of bacteria on the body.

1.  Introduction

Mycobacterium tuberculosis (Mtb), the infectious agent of 
Tuberculosis (TB), causes illness among millions of peo-
ple each year [1]. Both the emergence of the acquired 
immune deficiency syndrome and the development 
of multidrug-resistant (MDR)-TB [2] have increased 
such estimation to 10.4 million with 1.8 million deaths 
in 2015 among which 2,50,000 were MDR/rifampicin 
resistant (RR)-TB [1]. Moreover, about one-third of the 
world’s population has latent TB, but are not yet capa-
ble to transmit the disease [3]. Different environmental, 
genetic, and pathogenic factors influence the progres-
sion of active TB [4,5] and also interplay some crucial 
roles with the immune system during both the early and 
late phases of infection [6]. Both adaptive [7] and innate 
[8] immune mechanisms modulate host susceptibility to 
TB [9]. Innate immune system as early warning part of the 
system recognizes bacteria through its own receptors 
such as Toll-like receptors (TLRs). This review summarizes 
some new aspects of TLR roles in Mtb infection.

2.  The role of TLRs against TB

TLRs, a family of single membrane-spanning receptors 
of which 1 to 10 have been nominated in human beings, 
are expressed in both immune and non-immune cells 
[10,11]. TLRs generally play a critical role in both innate 
immune responses and the initiation of adaptive immu-
nity to Mtb. Actually, polymorphisms of TLRs have been 
associated with mutated susceptibility to tuberculosis 

among different populations [12–20]. Innate immune 
cells initiate subsequent adaptive immune responses 
after recognizing Mtb by Lucine Rich Repeats of the 
extracellular domains of the their TLRs [21]. Such inter-
action among Mtb’s ligand and TLRs activates Myeloid 
Differentiation Primary Response 88 (MyD88) which, 
as a central role player [22], is used by all TLRs except 
TLR3 [23]. MyD88, links initial complex to subsequent 
molecules including Interleukin-1 receptor-associated 
kinase (IRAK), TNF receptor associated factor (TRAF) 
6, transforming growth factor beta-activated kinase 1 
(TAK1) and mitogen-activated protein kinases (MAPK). 
Such signaling pathway mediates the translocation of 
NF-κ B into the nucleus [24] to induce transcription of 
inflammatory mediators, expression of adhesion mole-
cules, and further recruitment and activation/apoptosis 
of macrophages, dendritic cells (DCs) and polymorpho-
nuclear cells (PMNs) in the Mtb infected area [2]. From 
one side, MyD88-deficient mice are highly susceptible 
to Mtb infection [25,26] and from the other side, Mtb 
is able to meddle such signaling as its cell wall proline- 
proline-glutamic acid (PPE) family protein Rv1808 
manipulates the host cytokine profile via MAPK and 
nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-κB) signaling pathways [27]. To clarify mecha-
nisms underlying such effects, one recent study revealed 
the critical role of MyD88 and TIR-domain-containing 
adapter-inducing interferon-β (TRIF) in the activation 
and maturation of DCs in response to a potent adjuvant 
activating antigen presenting cells (APCs), named heat 
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Mtb H37Ra called MTBRa which upregulates TNF-α 
expression through activation of TLR2/ERK signaling, 
and increases MMP-1 and MMP-9 production in human 
pleural mesothelial cells [45]. The Rv2660c protein, pref-
erentially expressed during latent infection of Mtb for 
adaptation to lack of nutrition and hypoxia, stimulates 
human macrophages by interacting with TLR2 to secrete 
pro inflammatory cytokines which might maintain 
latency of Mtb [46]. Early secreted antigen 6 (ESAT-6) of 
Mtb promotes apoptosis of macrophages via TLR2/NF-κB 
activation [47], mycolic acid [48] as well as lipoprotein 
components [31,49,50] of Mtb activate macrophages via 
TLR2 (Figure 1) to bypass two strategies allowing Mtb to 
evade host immunity: down regulation of major histo-
compatibility complex (MHC) class II molecules (which 
restricts its antigen presentation) [51] and restriction 
of pro inflammatory responses (which delay the onset 
of adaptive immune responses) [52]. There is evidence 
emphasizing the effects of TLR2 on other innate immune 
cells, some of which are as follows: TLR2/dectin-1 cooper-
ation induces Reactive Oxygen Species (ROS) production 
to induce the activation and apoptosis of neutrophils 
[53]; peptidoglycan components of mycobacterial cell 
wall are able to interact with TLR-2 which promote the 
activation of resting natural killer cells and Interferon 
gamma (IFN-γ) production [54]; TLR2-induced epithe-
lial-derived C-X-C motif chemokine ligand 5 (CXCL5) 

shock protein (Hsp) 70 derived from Mtb [28]. Another 
study showed the apoptotic effect of 38-kDa antigen of 
Mtb on macrophages through TLRs 2 and 4 [29]. Among 
the TLRs been identified, TLR2, TLR4, TLR9 and possibly 
TLR8 are the key receptors that are involved in the rec-
ognition of Mtb [30–36].

3.  TLR2

3.1.  TLR2 and innate immune cells

TLR2 expression on macrophages is important in deter-
mining the fate of innate immune responses to Mtb 
[37,38]. From one side, initial high TLR2 expression on 
macrophages may worsen the outcomes of infection via 
different mechanisms such as secretion of anti-inflam-
matory cytokines [39] as well as conferring to signaling 
pathways [40,41]. From the other side, it may maintain 
the dormant state of the Mtb and survive the bacilli in 
a latent form to avoid its activation [42]. In this regard, 
different components of Mtb have been shown to elicit 
the production of a broad range of components by mac-
rophages in a TLR2-dependent manner [43]. For example, 
a cell-associated lipoglycoprotein of Mtb, called MPT83, 
acts as a TLR2 agonist which mediates the induction of 
matrix metalloproteinase 9 (MMP-9) by human THP-1 
cells [44] (Figure 1). The other example is a heat-killed 

Figure 1. Different Mtb components stimulate the immune system through Toll-like receptors (TLRs). The role of each TLR is depicted 
in this figure separately. TLRs interact with Mtb components and cause the activation of macrophages, NK cells, dendritic and T cells 
and also induce cytokine secretion. Such roles of TLRs is crucial in primary identification of Mtb and development of appropriate 
immune responses to overcome the Mtb infection. LM: Lipomannan, Hsp: Heat Shock Protein, HBHA: Heparin-binding hemagglutinin, 
Rpf: Resuscitation-promoting factor, CAF: Cationic adjuvant formulation, MPL: Monophosphoryl lipid-A, TDM: Trehalose dimycolate, 
ESAT: Early secreted antigen, Nk cell: Natural killer cell, IFN-γ: Interferon-Gamma, DC: Dendritic cell, Th: T helper, MMP: Matrix 
metalloproteinase, MAPK: Mitogen-activated protein kinase, NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells, 
TNF: Tumor necrosis factor, IL: Interleukin.
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is critical for PMN-driven destructive inflammation in 
pulmonary tuberculosis [55]; TLR2-induced pro-in-
flammatory cytokines produced by DCs or monocytes 
may contribute to the pathogenesis of Mtb -associated 
immune restoration disease [56]. From the point of vita-
min D, the effect of TLR2 in macrophages should also be 
noted. TLR2 enhances the expression of genes of vitamin 
D receptor and vitamin-D-1-hydroxylase and in this way 
promotes the production of the antimicrobial peptide 
cathelicidin by human macrophages [57,58]. Such links 
between TLR2 and vitamin D-mediated innate immunity 
suggests the contribution of TLR2 in resistance to Mtb 
infection.

3.2.  TLR2 and T cells

According to some studies [59], TLR2 signaling may not 
influence the memory as well as the induction of T cell 
immunity to Mtb. Its engagement on T cells may affect 
T-cell trafficking [60] in some ways such as inducing 
the production of C-C motif chemokine ligand 8 (CCL8) 
chemokines to recruit CD4+ cells to pleural effusion of 
Mtb infected patients [61] or mediating the recruitment 
of forkhead box P3 (Foxp3⁺) T regulatory cells (Tregs) to 
the lungs to control inflammation [62]. Some other stud-
ies reveal that TLR2 engagement on CD4+ T  cells may 
increase Mtb Ag-specific responses and contribute to 
protection against Mtb infection [63]. The role of such 
an engagement in the contribution of CD4+ cells against 
Mtb is supported by the study in which pretreatment 
with TLR2-antagonistic antibody significantly inhibits 
the cytokine production caused by a major membrane 
protein II of Mtb [64]. Furthermore, Mtb lipoproteins LprG 
and LpqH induce the activation of memory CD4+ T lym-
phocytes via the existence of TLR2 on their surface [65]. 
(Figure 1) From one side, TLR2 serves as a co-stimulatory 
receptor for mycobacterium-specific T cell development 
and participates in the maintenance of T cell memory 
[66]. From the other side, it plays some protective regu-
latory roles [22,67–69] especially when it is engaged on 
CD4+ T cells [63] by related ligands such as acylated lipo-
proteins of Mtb [65]. An evidence emphasizing the stim-
ulatory function of TLR2 is about Rv0577 [70] and Rv3628 
[71] proteins, 2 TLR2 agonists, which have critical roles 
in the activation of DCs in a TLR2-dependent manner 
and the initiation of the adaptive immune response by 
polarizing the development of T cells to a type 1 T helper 
(Th1) response and the expansion of Ag-specific memory 
CD4+ T cells. (Figure 1) Also, an evidence emphasizing 
the regulatory activity of TLR2 is related to a recent study 
which has shown that TLR2 activates extracellular-sig-
nal-regulated Kinase (ERK) signaling in macrophages to 
promote anti-inflammatory macrophage responses and 
blunts Th1 responses against the Mtb [72]. Furthermore, 
Wnt-β-catenin, a critical regulator of pathogen-specific 
TLR2 responses, accompanied by Notch1, controls the 

expression of genes that could foster the generation of 
Treg cells [73].

In the case of CD4+ subtypes, type 17 T helper (Th17) 
cells play a critical role in conferring optimal protection 
against Mtb. In this regard, TLR2 may be an important 
upstream molecule in mediating Th17 responses to 
Mtb via mediating the induction of p19 (a subunit of 
IL-23), Interleukin 1 (IL-1) β [74], Interleukin 6 (IL-6), and 
transforming the beta growth factor (TGF-β) in DCs [75]. 
In this way the Th17 cells show their protective effect 
by speeding up the Th1 cells to populate in the site of 
infection [76]. This condition results in the sustainabil-
ity of Th1 responses mediated by TLR2 and now could 
be an attractive target for effective vaccination [74]. 
Actually, deficiencies in TLRs may fail some responses 
to Mtb. For example, such deficiency inhibits Th17 differ-
entiation (following complete Freund’s adjuvant immu-
nization) [77]. Protection induced by novel vaccines 
may be achieved by TLR2 engagement. For example, 
S-[2,3-bis(palmitoyloxy)propyl]cysteine (Pam2Cys) [78], 
PPE57 [79], Rv3628 [71] and Rv3203 Mtb proteins [80], 
as TLR agonists, are potential candidate antigens to be 
used in future prophylactic vaccines against Mtb strains. 
Although a TLR2 agonist such as recombinant MPT83 
(rMPT83) may induce the macrophage function [81], the 
inclusion of such agonists into new vaccines may not be 
fully effective in some situations such as when they are 
used in the elderly population [82].

Findings about TLR2-Mtb interaction may yield some 
clinical applications regarding treatment considerations. 
For example, TLR2 rescues Th1 cells from exhaustion and 
therefore can be considered as an important target in 
the treatment of patients with chronic infections [83]. 
Also, Mtb promotes arthritis development through 
TLR2, and TLR2 could represent a therapeutic target 
for this form of arthritis [84]. However, some limitation 
should be considered in the case of such clinical appli-
cations. For example, CD36-TLR2 cooperation may lead 
to a decreased macrophage response [85], and some 
mycobacterium antigens expressed inside infected mac-
rophage may suppress protective immune responses 
such as TLR2-induced IL-12 production [86]. TLR2 gene 
polymorphisms may increase the risk of susceptibility 
to Mtb [87–89].

4.  TLR4

Binding TLR4 to different components of Mtb such as 3- 
and 4-acylated lipomannan (LM), 60- and 65-HSPs, and 
50S ribosomal protein [24] activates immune cells in dif-
ferent ways. In this regard, macrophages from TLR4−/− 
mice do not respond to Mtb HSP65 [33] and show less, yet 
not completely abolished, tumor necrosis factor alpha 
(TNF-α) production [90,91]. TLR4 agonists substantially 
increase the pool of effector memory CD4 and CD8 T cells 
and reduce the dose and Mtb burden in the lungs [92]. 



PATHOGENS AND GLOBAL HEALTH﻿    259

TLR9 make those findings reasonable stating that TLR9-
deficient mice are susceptible to Mtb infection rather 
than wild-type animals [38,110]. The other confirming 
idea is that Single Nucleotide Polymorphisms (SNPs) in 
the TLR9 gene region are associated with susceptibility 
to pulmonary and meningeal Mtb [111]. A tuberculosis 
(TB) vaccine consisting of a recombinant fusion protein 
(H4) and a novel TLR9 adjuvant (IC31) is in clinical devel-
opment [112].

TLR8 expression can be up-regulated in macrophages 
after exposure to Bacillus Calmette–Guérin (BCG). Such 
a finding reveals a role for TLR8 in susceptibility to pul-
monary tuberculosis in different populations [36]. The 
association of TLR8 to such susceptibility depends on 
its polymorphism [113].

6.  Cooperation of TLRs

By cooperating with other TLRs, TLR2 forms heterodimers 
with TLR1 [114], TLR6 [115] and TLR4 [116] to activate 
the macrophages in response to tri-acylated lipopro-
teins, soluble tuberculosis factor, and mycobacterial 
38-kDa glycolipoprotein antigen of Mtb, respectively. 
The primary CD4+ T cells use TLR2/TLR1 heterodimers 
to interact with Mtb lipoproteins, and this interaction 
results in direct T cell costimulation [65]. (Figure 1) The 
gene expression of TLR1 and 2 increases in intestinal Mtb 
infection through the induction of innate immune acti-
vation and Th1 polarization [117] from the first months 
of life and afterwards even after vaccination [118].

In line with this idea, a decrease in TLR1 and TLR6 
genes modulate adaptive immunity from the point of 
the production of BCG-induced cytokines by T cells [119].

The different aspects of the cooperation of both TLR2 
and TLR4 have been introduced. A study reported that 
the mycobacterial 38-kDa glycolipid antigen uses both 
TLR2 and TLR4 to induce pro inflammatory cytokines 
such as TNF-α and IL-6 in monocytes during Mtb infec-
tion [116]. Another study revealed that the invasion of 
Mtb to DCs might enhance their maturation [120] and 
antigen-presenting function [121] through activation 
of TLR2/4 signaling pathway. In regards to emphasizing 
the paradoxical effects of TLRs, two studies showed that 
TLR2 and TLR4 expression causes the Mtb infected cells 
more susceptible to death and drug resistance [122,123], 
whereas, two others associated the anti-Mtb activity of 
macrophages to the expression of such TLRs [124,125].

It seems that TLR2 also has some cooperation to TLR9. 
Double knockout TLR2/TLR9 mice display greater defects 
of IL-12 and IFN-γ production in comparison with both 
single TLR knockout mice [34]. Moreover, mice lacking 
TLR2/TLR4/TLR9 show a milder phenotype MyD88 defi-
cient mice [126]. However, one recent study stated that 
signaling through TLR2 and through TLR2 and TLR9 is 
not required to generate immunity against Mtb growth 
[127].

For example, both Mtb protein of Rv0652, a potent TLR4 
agonist [93], and Mtb heparin-binding hemagglutinin 
(HBHA), a Novel TLR4 agonist [94], enhance the polariza-
tion of T effector cells toward a Th1 phenotype through 
dendritic cell maturation. However, TLR4 antagonist 
E5531 blocks Mtb induced TNF-α production in primary 
human alveolar macrophages [35] (Figure 1).

The immune-stimulatory impact of TLR4 may be 
controversial concerning some studies stating that 
TLR4-deficient mice do not show high susceptibility to 
Mtb infection; otherwise, non-functional TLR4 and TLR4-
deficient mice develop a chronic lung infection when 
exposed to aerosolized Mtb [90,91,95,96]. Actually, sim-
ilar to TLR2, TLR4 plays some dual beneficial and patho-
logic effects on the host immune responses against Mtb. 
For instance, lipopolysaccharide (LPS), a major mediator 
of TLR4-mediated inflammatory responses, might nega-
tively be down-regulated by Phosphatidylinositol man-
nosides of Mtb in such a way that it may inhibit TLR4 and 
MyD88-dependent production of nitric oxide as well as 
inflammatory cytokines [97]. Such a strategy, developed 
by Mtb, may repress host immune responses. Mutually, 
Mtb proteins such as Rv0652 [98] and chaperonin 60 [99] 
stimulate macrophages and Resuscitation-promoting 
factor (Rpf )B [100] and (Rpf )E [101] proteins incite DCs 
toward Th1/Th17 cell expansion in a TLR4-dependent 
pathway to secrete pro inflammatory cytokines and 
hereon have the potential to be effective Mtb vac-
cines. (Figure 1) If vaccines can succeed in inducing Th1 
memory cells for a long time, they can ensure the high 
efficacy of tuberculosis vaccines [100]. Unexpectedly, 
the deficiency of Toll-interacting protein (TOLLIP), as 
a negative regulator of TLR signaling, which has some 
anti-inflammatory responses in humans by suppressing 
pro inflammatory cytokines via TLR2 and TLR4 and also 
by inducing IL-10 through a TLR4-specific mechanism, is 
associated with a risk of Mtb pathogenesis [102]. In the 
case of CD4+ subtypes, Th17 cells may secrete IL-17A by 
the engagement of TLR4 as the main receptor mediat-
ing responses to Mtb via the induction of IL-1 [103]. Like 
TLR2, TLR4 genetic polymorphisms may influence the 
risk of developing Mtb infection [104].

5.  TLR9 and TLR8

TLR9 interacts with mycobacterial DNA and activates 
macrophages to induce pro inflammatory cytokines 
[105]. Such activation is ascribed to unmethylated CpG 
motif [34,106] as well as small oligonucleotides that 
mimic bacterial CpG motifs [107] which interact with 
both TLR9 and TLR8. DCs are activated in such a way that 
their Mtb-induced IL-12 release is TLR9-dependent [108]. 
(Figure 1) One subtype of DCs, called plasmacytoid DCs, 
play an important role in the initiation of innate responses 
and inflammation after the induction of TLR9 stimulation 
with mycobacterial infection [109]. Such pivotal roles of 
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Recently, the cooperation of other TLRs has been 
introduced. For example, Rv2034, a protein that is 
expressed during pulmonary infection which is strongly 
recognized by human T-cells, can be used as a new vac-
cine if introduced in the presence of TLR3, 4 and 9-adju-
vants including cationic adjuvant formulation (CAF) 09, 
monophosphoryl lipid-A (MPL)/trehalose dimycolate 
(TDM), and CpG, respectively (Figure 1). Such combina-
tions would be able to induce IFN-γ+CD4+T-cells [128]. 
Combining glucopyranosyl lipid adjuvant (GLA) and 
CpG, as TLR4 and TLR9 agonists, in order to enhance the 
Th1 response against ID93 antigen which is a fusion of 
four Mtb proteins and leads to an increased protection 
against aerosolized Mtb challenge is another example in 
this field [129] (Figure 1).

7.  Conclusion

TLRs play a significant role against the invasion of TB in 
the body. Actually, each one alone can activate differ-
ent components of the immune system and reinforce 
anti-TB responses. Therefore, defects and polymor-
phisms in TLRs may increase the risk of infection and vul-
nerability to TB. Moreover, TLR agonists may be used in 
the development of vaccines against Mtb. In the attempt 
to properly understand the interactions between the 
host and pathogen receptors, including the TLRs, we 
greatly hope to achieve an optimal combination for 
targeting various pathogen components to vaccinate 
the infection.

Likewise; TLRs can be used as important targets in the 
treatment of chronic mycobacterial infections. Although 
various studies have been conducted in the past dec-
ade to develop new findings in mechanism of TLRs func-
tion, more serious efforts would be needed to prevent 
the increasing risk of the tuberculosis infection. Such 
efforts should better clarify signal transduction path-
ways employed by the immune system to overwhelm 
Mtb and escape mechanisms employed by Mtb to resist 
the immune system.
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