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Abstract: The functional brain network using blood-oxygen-level-dependent (BOLD) functional magnetic resonance  
imaging (fMRI) has revealed the potentials for probing brain architecture, as well as for identifying clinical biomarkers for 
brain diseases. In the general context of Brainnetome, this review focuses on the development of approaches for modeling 
and analyzing functional brain networks with BOLD fMRI. The prospects for these approaches are also discussed.

Keywords: functional magnetic resonance imaging; brain network; functional connectivity; effective connectivity;  
Brainnetome

1    Introduction

The brain functions by the interactions between neu-
rons within different neural circuits and brain regions. 
Research in neuroscience is increasingly focused on func-
tional integration in the brain[1], since this may greatly 
improve our understanding of how the human brain works. 
Recently, increasing evidence suggests that such func-
tional integration could be helpful for the early diagnosis 
and prognosis of schizophrenia and other neurological 
and psychiatric diseases. Therefore, the National Institutes 
of Health launched the Human Connectome Project[2]. 
Meanwhile, a similar project entitled “CONNECT” was 
supported under Framework Program 7 of the European 
Union. We have also been leading a project called “Brain-
netome” in China and elsewhere. The “Brainnetome” con-

sists of networks of the topological structure, performance 
and dynamics, and manifestation of the functions and mal-
functions of the brain at different scales, the genetic basis 
of brain networks, and simulating and modeling brain net-
works on supercomputing facilities. 

A variety of technologies have been developed to 
study brain networks. The technologies at the macroscale 
level at least include resting-state/task functional magnetic 
resonance imaging (fMRI) and diffusion MRI. Those at the 
microscale level include brainbow[3], optogenetics[4], and 
auto-segmentation and three-dimensional (3D) reconstruc-
tion of microscopic images[5], all having shown impressive 
advances. However, each of these technologies aims to 
answer a different question in a specific domain. It is a ma-
jor challenge to integrate the multi-level network features 
obtained using various functional and anatomical imaging  
technologies on different scales. We therefore have pro-
posed the new concept of “Brainnetome” to represent 
such an integrative framework. The “Brainnetome” was 
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conceived to decipher more comprehensive networks from 
an “–ome” point of view (Brain-net-ome), that embraces 
not only physical structural connections but also functional 
connectivities disclosed by various levels of in vivo im-
aging methods and ex vivo imaging/staining techniques. 
More importantly, the Brainnetome emphasizes not only 
a static description of the network state at a certain time-
point, but also dynamic processes throughout the natural 
maturation, neuropsychiatric evolution, and genetic basis 
of the networks. More information about the Brainnetome 
and related projects and resources is available at http://
www.brainnetome.org/.

fMRI measures brain activity by detecting the associ-
ated changes in blood flow. The primary form of fMRI 
uses blood-oxygen-level-dependent (BOLD) contrast[6]. In 
particular, BOLD fMRI uses the change in magnetization 
between oxygen-rich and oxygen-poor blood as its basic 
measure. In the general context of Brainnetome, this re-
view focuses on the progress of methods for modeling and 
analyzing functional integration with BOLD fMRI data. To 
make it easier to understand each method’s strengths and 
weaknesses, this review first briefly introduces the princi-
ples of BOLD fMRI, focusing on its typical spatiotemporal  
resolution and its actual limitations. Then, centering on 
how to measure neural connectivity with BOLD fMRI 
data, we review various methods, including functional 
connectivity and effective connectivity. Finally, some 
applications using these methods are presented, and 
promising directions for future work are discussed.  

2    Principles of BOLD fMRI

As a noninvasive means of neuroimaging, BOLD 
fMRI does not require people to undergo injections or 
surgery, or to ingest substances, or to be exposed to radiation. 
Typically, its spatial resolution is 2–5 mm. Although such 
a volume typically contains a few million neurons and tens 
of billions of synapses, it is superior to some other neu-
roimaging techniques, including electroencephalography 
(EEG) and magnetoencephalography (MEG). Importantly, 
BOLD fMRI has the capacity to cover the entire brain 
within a few seconds, which is extremely important for 

identifying functional networks. On the other hand, 
the temporal resolution of BOLD fMRI is often 1–3 s. 
Although this is rather longer than sensory processing (tens 
of milliseconds), the temporal resolution needed depends 
on the processing time for various events. For example, 
neuromodulatory effects, such as those affected by arousal, 
attention and memory, are slow. Therefore, BOLD fMRI 
can not only reveal the location of activity (functional seg-
regation), but also probe the interactions between regions 
(functional integration). In summary, the advantages of 
BOLD fMRI lie in its noninvasive nature, ever-increasing 
availability, relatively high spatiotemporal resolution, and 
its capacity to demonstrate the entire network of areas, 
which have made BOLD fMRI the mainstay of neuroimaging 
for functional brain network research[7]. 

However, BOLD fMRI does have limitations. First, 
the magnitude of the BOLD fMRI signal cannot be quan-
tified to reflect the strength of neural activity, the behav-
ioral performance, or even dysfunction[8]. Specifically, the 
signal-to-noise ratio is very low. The noise in the data has 
an amplitude similar to that of the hemodynamic response, 
which makes it difficult to quantify the strength of neural 
activity with the magnitude of the signal. Thus, a higher-
amplitude BOLD signal may be seen for stronger neural 
activity, but it is possible that a peak BOLD signal at the 
same place represents weaker neural activity. Meanwhile, 
a complex cognitive task may initially trigger high-amplitude 
signals associated with good performance, but as the sub-
ject gradually adapts to the task, the amplitude may de-
cline with performance staying the same. Second, BOLD 
fMRI does not directly measure neural activity, but relies 
on a cascade of physiological events linking neural activity 
to the generation of the MRI signal[8]. The signal can be 
contaminated by a number of influences, including heart 
beat and respiratory rhythm[9]. In addition, effects induced 
by some diseases (i.e. tumor and stoke) and drugs (i.e.  
sedatives and vasodilators) strongly modulate the neu-
rovascular coupling[10,11]. These can spoil the analysis of 
activation and functional networks. Therefore, BOLD 
fMRI studies, especially those concerned with pathology 
and pharmacology, cannot fully attribute the discovered 
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changes to brain activation or functional networks.

3    Methods of brain network analysis using 
BOLD fMRI

Functional connection is one of the primary topics in 
studies of functional networks. How to define, quantify and 
present functional connections remains an active research 
area in BOLD fMRI studies. A variety of methods have 
been developed to identify functional connections with 
BOLD fMRI data. Notably, these methods are not mutually 
exclusive; in fact, sufficient and increasing interplay exists  
between them. Meanwhile, the developed analysis methods 
are in the process of mutual infiltration. The following sec-
tion will not review these methods in detail due to limited 
space, and recent excellent reviews are available[12,13]. 
3.1  Functional connectivity  A method widely used to es-
timate neural connectivity using BOLD fMRI is the tempo-
ral correlation of pairs of voxels (or brain regions), referred 
to as “functional connectivity”[14,15]. It assumes that the 
more similar the time series are between any given pair of 
voxels (or brain regions), the more likely it is that a func-
tional connection exists between them. Obviously, such 
a correlation does not demonstrate either causality, since 
in itself it tells nothing about the direction of information 
flow. In addition, the correlation does not tell whether the 
functional connection is direct or indirect, not to mention 
differentiating whether there may be a third node between 
the two voxels, or a third node may be feeding into both, 
or other connection patterns. Alternatively, another simple 
method, partial correlation, can estimate direct connections 
(still not their directionality). Specifically, the partial cor-
relation regresses out the other time series from each of 
the two series, before estimating the correlation between 
any two series. However, partial correlation can miss func-
tional connections, since the regression is not selective and 
may remove too much of the information about the func-
tional connection of the two time series concerned.
3.2  Effective connectivity  Correlation and partial cor-
relation cannot estimate the causality of functional connec-
tions between brain areas. Fortunately, methods have been 
developed to handle this. As we know, few connections are 

unidirectional, with feedback generally running in parallel 
with feedforward. Nevertheless, in many cases it is inter-
esting to estimate at least the dominant direction of infor-
mation flow for a given connection[16]. So, the question of 
directionality is important and has received much attention, 
despite the fact that in general, estimating the directionality 
is harder than testing for the existence of a connection[17]. 
The causality, in other words, the direction of information 
flow, can be defined from at least two perspectives: (1) the 
cause precedes the effect (i.e., temporal precedence); and 
(2) the cause increases the probability of the effect (i.e., 
conditional independence). So, the methods that attempt to 
estimate causality may be generally categorized into two 
classes. One class is temporal lag-based, with the most 
common example being Granger causality[18]. Here, it is as-
sumed that if one time series looks like a time-shifted ver-
sion of the other, the one with temporal precedence causes 
the other, giving an estimate of connection directionality. 
The second class is based on the idea of conditional inde-
pendence, typically including Bayes nets[19] and structural 
equation modeling[20]. For example, if the dominant flow of 
information is from A to B, then the probability of B given 
A (P(B|A)) is greater than the probability of A given B 
(P(A|B)), that is, P(B|A)−P(A|B) >0. 

The dynamic causal model (DCM) is a hypothesis-
driven method, which can be used to test a specific set of 
hypotheses, for example, a specific activity pattern of the 
brain network[21]. In particular, DCM uses an explicit for-
ward or generative model of how the observed fMRI data 
were caused. Hidden neuronal and biophysical states are 
invoked in the model, with the assumption that interactions 
between regions are limited to the neuronal level and each 
region generates a BOLD fMRI signal depending only on 
its own activity. Since both the lag-based and the condi-
tional independence-based methods can estimate direct 
connections at the neuronal level, DCM can, in principle, 
use each of these methods to infer causality. In addition, 
DCM is usually combined with model selection methods, 
such as Bayesian model selection, to test which model provides 
the most likely explanation of the observed fMRI data. 
3.3  Other representative methods  Independent com-
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ponent analysis (ICA) can decompose the BOLD fMRI 
data into a set of linearly separable spatial components 
and their associated time courses[22-24]. In some sense, the 
spatial component can be viewed as a functional network 
containing distributed brain regions, with the associated 
time courses presenting uniform dynamics for the regions 
within this network. ICA can distinguish between non-
task-related signal components, movements and other arti-
facts, as well as task-related activation. Meanwhile, since 
ICA is data-driven, many resting-state fMRI studies have 
widely used it to search for networks[25]. 

Recently, researchers have started to apply pattern 
classification algorithms to analyze spatially distributed 
patterns (voxels or brain regions) of BOLD fMRI, named 
multivariate analysis or decoding[26,27]. In some sense, 
decoding distributed patterns from multiple voxels or brain 
regions may be pertinent to network analysis. Notably, 
the functional connections between distributed voxels or 
regions are dynamic and changeable with different trials. 
The decoding methods constitute a useful new tool that ad-
vances our understanding of neural information processing 
in functional networks, particularly from the perspectives 
of non-stationarity and non-linearity. In addition, some 
methods, including psychophysiological interaction[28] and 
partial least squares[29], have been proposed to detect func-
tional/effective connectivity in relation to the performance 
of a particular psychological task.
3.4  Model complexity and applicability  In summary, 
with the accumulating studies centered on how to measure 
neural connectivity with BOLD fMRI data, some methods 
have been developed and validated, each having its own 
strengths and weaknesses, and aiming to answer a distinct 
question. Among these some, such as (temporal) correla-
tion and partial correlation, are simpler than others, such as 
DCM, in modeling and computation. The simpler methods 
are just descriptions of the data, and do not relate them 
to underlying, interpretable physiological parameters for 
functional brain networks. For example, correlation tells 
one nothing quantitative about causality or directionality, 
but just reflects connection strength. As a result, it is more 
vulnerable to factors such as thermal noise and even head 

motion during scanning[30]. However, in the more complex 
methods such as DCM, the model parameters all relate to 
interpretable and meaningful quantities such as thermal 
noise, neuronal delay between nodes and the interaction 
strength between the regions of concern. Estimating quan-
titative and physiologically meaningful parameters is clearly 
of great value if one wants to find and interpret changes in 
functional networks, such as those in a cognitive task or 
disease state. On the other hand, the simpler methods in 
general are more robust in fitting the model to the data, and 
faster to compute, than the complex methods. So, the sim-
pler methods allow the network analysis of large numbers 
of nodes, including the voxel-wise whole-brain network, 
while the sophisticated, highly parameterized methods 
handle fewer nodes, generally less than 20. In addition, 
the simpler methods do not require the scope of possible 
network models to be pre-specified or constrained, which 
makes them computationally practical for network search 
or discovery. In contrast, the complex methods have much 
difficulty in fulfilling this purpose, since they have tradi-
tionally not been able to search over all possible networks 
due to the limitations of computational efficiency. These 
could be the primary reasons for the still wide use of the 
simpler methods, particularly for resting-state fMRI data. 
Therefore, for a BOLD fMRI study, one should choose the 
most suitable method according to the question of concern. 
Fig. 1 shows a schematic of networks using functional 
connectivity and effective connectivity.

4    Applications of brain networks based on 
BOLD fMRI

As mentioned above, distinct methods have been de-
veloped for BOLD fMRI analysis, aiming to answer spe-
cific questions concerning functional connections. These 
questions cover many application areas, including resting-
state functional connectivity networks, task-induced effec-
tive connectivity networks, and parcellation of brain re-
gions. This section mainly presents progress in these areas.
4.1  Resting-state functional connectivity networks  
Resting-state BOLD fMRI studies have widely used 
functional connectivity to investigate the organization of 
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functional brain networks[31] and its changes, such as those 
resulting from disease[11]. The fundamental underpinning 
of this approach is that correlations in the low-frequency 
band (0.01–0.1 Hz) of the BOLD signal can provide clues 
that the two voxels (brain regions) are functionally coupled 
through direct or indirect anatomical connections[32]. So, 
it is believed that the resting-state fMRI can make strong, 
albeit indirect, inferences about the anatomical connec-
tions[33]. The spatial patterns of the resting-state networks 
and their potential relationship with behavior have been 
intensively investigated.

A brain network consists of two basic components: 
nodes and edges between a pair of nodes. In fMRI studies, 
the network node is often referred to as the region of inter-
est (ROI). The ROI can be defined and obtained in varieties 
of ways, for example, task fMRI activation, ICA compo-
nents and brain atlases such as the automated anatomical 
labeling (AAL) atlas. Alternatively, parcellation using the 
BOLD fMRI data itself or other neuroimaging data can 

be used to define ROIs. Once defined, each ROI has its 
own associated time-course (e.g., the average time series 
from all voxels within the ROI). The correlation between 
the time-course of a single ROI and that of each voxel in 
the brain can help to explore the functional connectivity 
pattern between the ROI and other regions[34]. This can be 
extended to multiple ROIs covering specific functional 
networks[35,36], even the entire brain[37,38]. Of course, there 
are open questions, such as how to determine the location 
and size of an ROI, and how to present its most representa-
tive and meaningful time-course.

Recent developments in the quantitative analysis of 
complex networks, based largely on graph theory, have 
been applied to studies of human brain networks[39,40]. 
Many studies suggest that the human brain’s structural and 
functional systems have features of complex networks, 
for example, small-world topology, highly-connected 
hubs, and modularity[41-43]. Some studies have used these 
methods to explore and interpret changes in resting-state 

Fig. 1. Schematic of brain functional networks using functional connectivity (upper) and effective connectivity (lower). 
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functional networks, such as those in schizophrenia[44] and 
dementias[45]. 

There is also a significant amount of BOLD fMRI 
connectivity research not working within the nodes+edges 
framework. For example, as a data-driven analysis method, 
ICA does not need to explicitly define the node and the 
edge, which is good for attempting network search and 
discovery. So, ICA has been extensively used in resting-
state network studies[46-48]. For example, some studies have 
reported consistent components with potential functional 
relevance, consisting of regions known to be involved in 
motor, visual, and auditory processing, memory, executive 
functioning, and the so-called default-mode network[49]. In 
addition, some studies have explored the spatially-distributed 
patterns of connectivity, such as regional homogeneity[50] 
and the degree/density of local and distant connectivity[51,52]. 
These investigations have predicted the existence of func-
tional hubs in the human brain, and improved the under-
standing of brain architecture.

The behavioral significance of the resting-state brain 
network has been intensively investigated. Many explor-
atory studies have investigated the relationship between 
the strength of functional connectivity, or the features of 
the network from the point of view of graph theory, and 
varieties of behavioral phenotypes in health and disease, 
including scale scores[53,54], illness duration[44,55] and geno-
typic variations[35,56]. Despite this, it remains to be deter-
mined which measurements are most appropriate for rep-
resenting the relationship between functional networks and 
heterogeneous behavioral phenotype data.
4.2  Task-induced effective connectivity networks  As 
an approach for characterizing neuronal networks based on 
the effective connectivity between network components, 
DCM has received much attention[57]. The assessment of 
effective connectivity measures provides a unique oppor-
tunity to determine whether and how activity in different 
regions within a specific network influences the activity 
in other regions during a certain task (actually, DCM has 
been improved for resting-state fMRI data[58]). DCM has 
already been applied successfully to test competing hy-
potheses in the sensory fields of neuroscience, such as to 

investigate the interhemispheric integration of visual pro-
cessing[59], the suppressive influence of the supplementary 
motor area on primary motor cortex in motor imagery[60], 
and somatosensory information processing in primary and 
secondary somatosensory cortices[61]. In addition, DCM 
has been successfully applied to more complex cognitive 
tasks, such as face perception[62] and the cortical interac-
tions related to reading and speech processing[63].
4.3  Parcellation of brain regions  It is a major chal-
lenge to determine the nodes of brain networks. Although 
a few studies have investigated networks voxel-wise[64], 
most analyses have capitalized on atlases that provide a 
parcellation of the human brain[38,44,65]. It is obviously 
important to have a complete and functionally meaningful 
parcellation scheme, so that connectivity patterns can be 
related to functionally meaningful brain areas. However, 
none of the current atlases is widely accepted for functionally  
partitioning the cortex and subcortical structures. For ex-
ample, the two most popular atlases are Brodmann’s cyto-
architectural atlas and the AAL morphological atlas, nei-
ther of which provides complete and functionally meaningful 
parcellations of the human brain. Yet, it is essential to 
acquire reliable and accurate parcellation not only for network 
studies, but also for basic neuroscience and clinical research.  

Studies have revealed the potential of fMRI (including 
both resting-state and task fMRI) for brain parcellation. 
Based on the hypothesis that heterogeneous functional 
areas have different functional connectivity patterns, some 
resting-state fMRI studies first computed the functional 
connectivity matrix, then clustered the voxels with similar 
connectivity patterns or detected the boundaries between 
different connectivity patterns, and finally parceled the 
region[66,67]. With such a parcellation scheme, some corti-
cal regions not previously well-defined have been parceled 
into functional subdivisions, such as the left lateral parietal 
cortex[66] and the cingulate cortex[67]. However, validation 
of the parcellation of human brain regions seems to be a 
much bigger challenge. So far, there is no uniform frame-
work to manage parcellation. Meta-analysis, task fMRI 
and other neuroimaging, and comparative biology (for 
example, comparison of homologous brain areas in human 
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and macaque) may offer some methods. 

5    Future research directions

Functional networks derived from BOLD fMRI have 
revealed a potential for probing brain architecture, as well 
as for identifying clinical biomarkers for brain diseases. 
We think that, over the coming years, the study of func-
tional networks will make increasing progress and achieve 
more exciting gains. Specific research directions should be 
given further attention.
5.1  Improving spatiotemporal resolution and signal-to-
noise ratio of BOLD fMRI  The cerebral cortex is highly 
convoluted with an average thickness of ~2.4 mm, and the 
cerebellar cortex is only ~1 mm thick. Subcortical struc-
tures include many nuclei, some covering tens of cubic  
millimeters. However, the spatial resolution of BOLD 
fMRI to date is typically 2–5 mm, which results in very 
serious partial volume effects, and the signal-to-noise ratio 
is very low. Therefore, all of these make fMRI appear like 
a blurry mosaic, which reduces the accuracy and reliability 
of functional network studies.

fMRI itself is by no means at the limit of its technical 
abilities. With higher field strengths, such as 7T, whole-
brain high-resolution (1, 1.5 and 2 mm isotropic voxels) 
resting-state BOLD fMRI can be acquired without sacrificing 
temporal resolution or coverage. Studies reported that the 
smaller voxel volumes (1 and 1.5 mm isotropic) result in 
reduced partial volume effects, permitting the separation of 
detailed spatial features within functional network patterns 
as well as a better correspondence between function and 
anatomy[67]. In addition, several groups are producing new 
scanning sequences to accelerate BOLD fMRI, with the 
ability to achieve sub-second whole-brain imaging[68]. Such 
brief scans can, when combined with new analytical methods, 
achieve much greater gains in inferring the causality and 
dynamics of the interactions between brain areas.
5.2  Reducing the confounds of BOLD fMRI with multiple 
complementary technologies  BOLD fMRI does not 
measure neural activity directly, but relies on a cascade 
of physiological events linking neural activity to the gen-
eration of an MRI signal. Many potential confounds can 

contaminate BOLD fMRI, including disease, sedation, 
anxiety, medications that dilate blood vessels, and atten-
tion neuromodulation[69]. Therefore, combination of BOLD 
fMRI with complementary functional neuroimaging, such 
as perfusion, positron emission tomography and EEG, can 
be helpful. In addition, diffusion MRI can estimate the 
orientations and trajectories of fiber bundles that connect 
different voxels, and thus explore the anatomical connec-
tivity. Studies find that although resting-state functional 
connectivity is variable and is frequently present between 
regions without direct structural links, its strength, persis-
tence, and spatial statistics are nevertheless constrained by 
the large-scale anatomical structure of the human cerebral 
cortex. Therefore, the anatomical connectivity from diffu-
sion MRI will provide good complements or constraints 
for modeling functional networks, with not only functional 
connectivity[10] but also effective connectivity[33]. Finally, 
there is also a wide range of interventional techniques, 
some that can be applied to the human brain (e.g., tran-
scranial magnetic stimulation[70]), and others that can be 
used only in animals (e.g., optogenetic fMRI[71]). These 
technologies can help ameliorate the limitations of pure 
BOLD fMRI data, and as a result improve functional brain 
network research. 
5.3  Developing new methods for modeling and measuring 
brain networks  No one disputes that each brain is dif-
ferent. These differences include size and shape, cortical 
convolutions, areal position and size, and connection pat-
terns. Although spatial normalization to a standard atlas is 
usually used to compensate for individual variability, it is 
notable that both volume-based and surface-based registra-
tion algorithms are constrained by anatomical rather than 
functional features. Approaches that capitalize on measures 
more closely related to connection patterns than folding 
patterns, for example, resting-state functional connectivity 
and anatomical connectivity, should in principle be able to 
achieve much better intersubject alignment. In addition, 
advanced analytical methods, including novel approaches 
to parcellation, will enable mapping of functionally distinct 
parcels in individual subjects, which provide the promise 
of investigating networks in individuals. 
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Most BOLD fMRI network research to date has ex-
plicitly or implicitly assumed that the functional connec-
tion is stationary and/or linear. For example, correlations 
often take the time-courses of two regions to obtain a single 
value as the measurement of a functional connection. 
Obviously, as the scanning time changes, the connection 
is changing, possibly hugely and even heteropolarly. Actu-
ally, studies showed that there are distinct periods when 
two regions are positively correlated, and others when they 
are anticorrelated, a simple example of non-stationarity[72]. In  
addition, evidence has shown that the brain functions in a 

non-linear fashion. As a result, some researchers are starting  
to develop non-stationary and non-linear methods to mea-
sure the functional connections between brain regions, 
which will require more attention in the future.
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Appendix. Software packages freely available for brain network analysis with BOLD fMRI

Package Features for functional network analysis Website

SPM Preprocessing, psychophysiological interaction,   www.fil.ion.ucl.ac.uk/spm

 dynamic causal model, statistical comparison

FSL Preprocessing, independent component analysis,  www.fmrib.ox.ac.uk/fsl

 statistical comparison

GIFT Independent component analysis mialab.mrn.org/software/gift/index.html

PLS Partial least squares www.rotman-baycrest.on.ca/index.php?section=84

Princeton Multi-Voxel  Multivariate analysis code.google.com/p/princeton-mvpa-toolbox/

Pattern Analysis Toolbox

Brain Connectivity Toolbox Network construction with connections matrix,  sites.google.com/a/brain-connectivity-toolbox.net/bct

 network measures  computation, reference 

 network generation

REST Functional connectivity analysis, regional  www.restfmri.net

 homogeneity, Granger causality analysis

Brainnetome Toolkit* Functional connectivity analysis, regional hom-  www.brainnetome.org/software.html

 ogeneity, network construction with connections 

 matrix, network measures computation

*For more suggestions about data processing, network construction and visualization, visit the website: http://www.brainnetome.org/wiki.
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