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Abstract: Increasing evidence shows that the human brain is a highly self-organized system that shows attributes of small-
worldness, hierarchy and modularity. The “connectome” was conceived several years ago to identify the underpinning physical 
connectivities of brain networks. The need for an integration of multi-spatial and -temporal approaches is becoming ap-
parent. Therefore, the “Brainnetome” (brain-net-ome) project was proposed. Diffusion magnetic resonance imaging (dMRI) 
is a non-invasive way to study the anatomy of brain networks. Here, we review the principles of dMRI, its methodologies, 
and some of its clinical applications for the Brainnetome. Future research in this field is discussed. 
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1    Introduction

Over the past two decades we have learned that, rather 
than individual regions, a group of intensively interacting 
brain areas are involved in even simple cognitive processes[1,2]. 
Thus, the entire brain can be characterized as a highly 
self-organized network[3]. This conceptualizing strategy 
has been analogously exploited in such other facets of 
our society as social networks and computer networks[3]. 
One or several sub-networks of the brain are disrupted in 
neurological or psychiatric disease, as evidenced in major  
depressive disorder (MDD)[4], bipolar disorder[5], Alzheimer’s 
disease (AD)[6], and schizophrenia[2,5], as well as in normal 
development[7,8] and aging[9].

The term “human connectome” was proposed to em-
phasize “a comprehensive structural description of the 
network of elements and connections forming the human 
brain”[3,10,11]. Subsequently, many studies emerged to ex-
plore the networks of the human brain, comprising data col-
lection and the development of toolkits[11,12] to investigate 
healthy development and neuropsychiatric diseases[2,5-9].  
Extending the connectome, the Brainnetome was con-
ceived to reveal not only physical structural connectivi-
ties but also functional connectivities by various levels 
of in-vivo imaging methods and ex-vivo imaging/staining 
techniques. The Brainnetome seeks not only a static de-
scription of the network state at a certain time point, but 
also to describe the dynamic processes throughout natural 
development and neuropsychiatric evolution[13,14]. 

This review focuses on one of the most promising  
techniques, diffusion magnetic resonance imaging (dMRI), 
and its use for modeling and analysis in the Brainnetome. 
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dMRI is a widely used in-vivo imaging technique that 
explores neuronal microstructure by probing the diffusion 
of water molecules. To date, it is the only non-invasive 
method for revealing the micro-geometry of nervous tis-
sues and exploring white matter fiber connectivities in 
living human subjects. Increasing numbers of reports 
reveal altered networks of white matter microstructure 
(WMM) in neuropsychiatric disorders, such as MDD[4], 
bipolar disorder[15], AD[16], schizophrenia[17] and epi-
lepsy[18], as well as in development[7,8] and healthy aging[9].  
Currently, two critical questions concerning WMM net-
works remain: how to define the nodes of networks, 
a crucial point in network construction[19], and how 
to identify WMM connections given two pre-defined 
nodes. The latter includes two sequential questions: how 
to model the distribution of water molecules within an  
individual voxel[20] and how to define the tractography 
based on the modeled distribution function[21]. 

First we introduce how to model the local diffusion 
function within individual voxels, from diffusion tensor 
imaging (DTI) to high angular resolution diffusion imaging 
(HARDI). Then, tractography methods are reviewed, and 
the limitations of local deterministic streamlining and its 
possible improved variants are discussed. Next, extant 
WMM network analysis and its clinical applications are 
charted. Finally, some unsolved problems in dMRI are 
discussed, and useful free software is recommended in the 
appendix. We provide a brief overview of the principles of 
dMRI and how its use in anatomical brain network analysis 
has evolved during the past decades, and then consider the 
realm of clinical applications of the dMRI-based Brain-
netome, for both the developing brain and the brain with 
neuropsychiatric disease.

2    Principles of dMRI and diffusion distribu-
tion modeling

2.1  Diffusion-weighted imaging (DWI) and DTI  The 
diffusion of water molecules is constrained by the sur-
rounding structures including cells, axonal membranes, 
myelin sheaths, and surrounding tissue. Statistically, water 
molecules diffuse rapidly along and slowly across, neu-

ronal fibers. Thus, quantitatively modeling the diffusion 
of water molecules among white matter fibers is crucial to 
understanding neuronal microstructure and fiber direction.

The classical diffusion gradient sequence used in 
dMRI is the pulsed gradient spin-echo sequence proposed 
by Stejskal and Tanner[22]. This sequence has 90° and 180° 
gradient pulses with duration time δ and separation time 
Δ. To eliminate the dependence of spin density, at least 
two measurements of DWI signals are needed, S(b) with 
the diffusion weighting factor b in the following equation 
introduced by Le Bihan et al.[23], and S(0) with b = 0 which 
is the baseline signal without any gradient. 

 (1)

In equation 1 for the value of b, γ is the proton gyro-
magnetic ratio,              is the diffusion sensitizing gradient 

pulse with norm        and direction u.                 is normally 

used to describe the effective diffusion time[23,24]. With S(b) 

and the pulsed gradient spin echo sequence the diffusion 
weighted signal attenuation E(b) is given by the Stejskal-
Tanner equation[22],

 (2)

where D is the apparent diffusion coefficient (ADC) 
reflecting the properties of the surrounding tissues. Note 
that in the general case D is also dependent on G in a com-
plex way; however, free diffusion in DTI assumes D is 
only dependent on the direction of G, i.e.               . Early 
work in dMRI reported that, in the ADC, D is dependent 
on the gradient direction u and was used in two or three 
DWI images in different directions to detect the proper-
ties of tissues[25,26]. Basser et al. introduced the diffusion 
tensor[24] to represent the ADC as D(u) = uTDu, where D 
is called the diffusion tensor, which is a 3 × 3 symmetric 
positive definite matrix independent of u. This method is 
called DTI and is the most common in dMRI. In DTI, the 
signal E(b) is represented as

                        E(b) = exp(–buTDu).                         (3)
The diffusion tensor D can be estimated from mea-

sured diffusion signal samples {E(bi)} through a simple 
least-squares method or a weighted least-squares method[24], 
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the ensemble average propagator (EAP) denoted as P(R), 
which describes the ensemble mean probability in the 
voxel that the water molecules move with the displacement 
vector R under the effective diffusion time τ. By introducing 
the q vector defined as q=qu=(2π)−1γδG, b is given as b = 
4π2τq2. Under the narrow pulse assumption in the pulsed 
gradient spin echo sequence, the EAP is the 3-D Fourier 
transform of the diffusion signal E(q)[35], i.e., 

  P(R) = F{E(q)}(R) = ∫R3 E(q)exp(–2πiqTR)dq.      (6)
The EAP of free diffusion in DTI has a Gaussian dis-

tribution[24]. However, the EAP in the general case is more 
complex. EAPs in different regions of the brain reflect dif-
ferent microstructures and reveal fiber directions. The term 
HARDI was first proposed by Tuch et al.[36,37], who re-
ported a finer angular resolution sampling scheme than the 
conventional DTI scheme. The original HARDI term[36,37]  
means single-shell sampling (only one b-value) (Fig. 3C). 
Some researchers have proposed estimating orientation 
distribution functions or EAPs in multiple-shell sam-
pling[38-41]. Thus the term HARDI now refers to all modeling 
methods beyond DTI. 

Since the EAP is the Fourier transform of the DWI 
signal, diffusion spectrum imaging (DSI) was proposed to 
estimate the EAP using a fast Fourier transform from ex-
haustive signal samples[42]. This is impractical because DSI 
needs about 500 DWIs with a large range of b-values up 
to 17 000 s/mm2. The sampling scheme in DSI is shown in 
Fig. 3B. Q-ball imaging (QBI)[43,44], as well as its derived 

or more complex methods which consider positive definite 
constraints or Rician noise[27-29]. If a single b-value is used, 
the optimal b-value for tensor estimation is reported to 
range between 0.7 and 1.5 × 10−3 s/mm2 [30,31], and normally, 
~20 DWI images are used in DTI for clinical studies. A 
schema of the sampling scheme normally used in DTI is 
shown in Fig. 3A. Useful indices can be obtained from the 
tensor D, and the most important are fractional anisotropy 
(FA) and mean diffusivity (MD)[32] defined as follows (Fig. 1):

 (4)

(5)

where       represents the three eigenvalues of D and  
   is the mean eigenvalue. MD and FA have been used in 
many clinical applications[21,33], such as a study of MD in 
stroke[34]. 
2.2  HARDI  DTI modeling for dMRI is an intuitive way 
to chart the distribution of water molecules where aligned 
fibers occur. Unfortunately, when fibers cross within the 
voxel (as well as fanning and kissing), the simple Gaussian 
model in DTI is unable to correctly characterize the struc-
ture of the distribution (Fig. 2). One-third to two-thirds 
of the imaging voxels in the brain contain crossing fibers, 
making it urgently necessary to develop accurate modeling 
techniques in dMRI.

The diffusion process in each voxel is fully character-
ized by the diffusion probability density function called 

Fig. 1. Tensor field and scalar maps estimated from monkey data with b = 1 500 s/mm2 (images created based on the data provided by Dr. Chunshui Yu 
from Xuanwu Hospital, Capital Medical University, Beijing, with permission). FA, fractional anisotropy; MD, mean diffusivity; RGB, red-green-blue.
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forms, to estimate varied orientation distribution functions 

(ODFs) from single shell data (Fig. 3C), has the merits of 

small sampling and fast solution and thus has been widely 

exploited in HARDI[45-49]. Considering that it cannot handle 

multiple-shell data, Cheng et al. proposed a HARDI method 

called analytical spherical polar Fourier imaging (SPFI) to 

estimate both the EAP profile and two kinds of ODFs from 

arbitrarily sampled data[50,51]. This works well, especially 

for data with high noise, low anisotropy, and non-exponential  

decay. The estimated EAP and two kinds of ODFs estimated 

using SPFI from monkey data, where the crossing angles of 

fibers are almost 90° are shown in Fig. 4. This agrees with 

the recent findings of Wedeen et al. who also identified 

well-aligned WMM as a grid-like structure[52]. 

3    Tractography for WMM and network con-
struction

Tractography integrates voxel-wise orientations to 
describe a fiber tract that connects related voxels. Trac-
tographic methods can be classified as local or global, 
deterministic or probabilistic, model-based or model-free. 
The most widely used is the tensor streamline[53,54], which 
uses the local deterministic method and considers local 
orientation as the principal direction of tensors in DTI. The 
tensor streamline essentially solves an ordinary differential 
equation with a given principal vector field. Several issues 
need to be considered in this algorithm. The tensors in sub-
voxel positions need to be interpolated. An FA threshold 
and orientation angle threshold also need to be set as the 
stop condition so that the tracts cannot reach grey matter 

Fig. 2. Diffusion MRI modeling in the case of crossing fibers. A: Inside a voxel, the fibers are crossing instead of one bundle of directed fibers. B: Diagram 
to delineate the distribution of fibers inside the voxel. C: Traditional diffusion tensor imaging modeling fails to reveal the crossing structures. D: A 
possible model depicting the diffusion directions (adapted from Dr. Descoteaux’s thesis[20]).

Fig. 3. Several kinds of sampling in q-space. The black dot in q = (0, 0, 0)T is the baseline image without a diffusion gradient. Note that although we 
showed sampling in R3, normally only samples in a half-space are used, e.g. qz ≥0. A: Sampling used in DTI, normally <20 DWI images are used; B: 
Dense Cartesian sampling used in DSI; C: Single shell sampling; D: Sparse sampling.
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with a low FA, and so that the local direction near the tract 
cannot change too much.

In addition to the intrinsic modeling errors of tensor 
streamline tracking, this method cannot yield a proba-
bilistic trust region for the acquired tracts. Therefore, it 
has been generalized into a multi-tensor/ODF streamline 
by considering the local orientation as the principal, or 
through the use of multi-tensors[55], or by considering the 
maxima of ODFs[20,56,57]. Globally optimized tractogra-
phy[58-65] was also proposed and has performed better than 
local tractographic methods. The uncertainty and prior 
probability can be incorporated into a Bayesian formaliza-
tion to obtain the posterior probability of the particular 
values in a given local diffusion model[66,67]. Based on the 
posterior probability, deterministic tracking can be per-

formed many times to finally obtain a probability between 
two regions[67].

If we know the white matter fiber tracts of the entire 
brain, given two pre-defined regions of interest (ROIs) as 
the start and end, we can readily specify the connecting fiber 
tracts between the ROIs. This is the basis for constructing  
an anatomical network based on the dMRI technique. 
There are many types of pre-defined ROIs, anatomical[68-70], 
functional[71-73], or mixed[74]. In addition, when examination 
is confined to a specific sub-network (as detailed in the 
following section), localized fiber tracts can be selected by 
the ROIs, such as anterior cingulate cortex[75,76], prefrontal 
cortex[77], and motor areas[78]. We can also leverage fiber 
clustering methods[79,80], or mutually combine with fMRI[81,82] 
to group fiber tracts that predict different connectivity 

Fig. 4. Ensemble average propagator and two kinds of ODFs estimated using analytical spherical polar Fourier imaging from monkey data (images cre-
ated based on the data provided by Dr. Chunshui Yu from Xuanwu Hospital, Capital Medical University, Beijing, with permission).
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paths. There are many network studies from the perspec-
tive of dMRI for Brainnetome to investigate, in both 
healthy and neuropsychiatric subjects. Gong et al. used a 
probabilistic tracking method to examine the relationship 
between the properties of the global network and age and 
sex in normal subjects[83]. Yan et al. also investigated the 
relationship between the small-worldness of the network 
and sex and brain size[84]. The global efficiency of the 
dMRI network was also found to be positively correlated 
with the intelligence quotient[85]. 

4    dMRI network-based applications in 
neuropsychiatric disease

As the connecting path between sub-/cortical areas, 
WMMs act as transportation routes for information 
exchange between gray matter. The dysfunctions in neu-
ropsychiatric disease usually reflect various alterations of 
white matter[4,86]. The anatomical network derived from 
dMRI is not merely confined to local WMM lesions, but 
provides a whole-brain connectivity metric on how neu-
ropsychiatric disease affects WMM[87]. Such an approach 
to investigate neuropsychiatric diseases comports well 
with the associative nature of brain functions[2].

Recently, there have been increasing numbers of dMRI 
network-based studies of neuropsychiatric diseases[88], 
such as MDD[4], bipolar disorder[15], normal aging[9], 
AD[16], schizophrenia[17], epilepsy[18], language disorders[89],  
motor disorders[90], and recovery of function after a stroke 
and other traumatic brain injuries[91,92]. From the network 
perspective, research on neuropsychiatric disease using 
dMRI can be classified into three types: specific node-
based, regional network-based and global network-based. 
We present a brief review of current research progress and 
trends concerning neuropsychiatric disease from the per-
spective of the dMRI technique-based Brainnetome.

Some studies have concentrated on specific hub nodes 
in the white matter path, which are usually thought 
to reflect WMM degeneration. For example, ROIs were 
placed onto the anterior/posterior cingulum to assess the 
asymmetry of left/right FA values in schizophrenia[93]. 
Periventricular white matter was evaluated to investigate 

the progress of dementia in mild cognitive impairment and 
AD[94]. To characterize the status and the trend of deterio-
ration in patients with brain tumors, ROIs were intuitively 
placed around the tumor[95] or tumor-affected WMM, such 
as at the internal capsule in motor dysfunctions caused by 
malignant glioma[96]. To quantify the process of normal aging, 
FA values were also assessed in the cerebral cortex[97] and 
subcortical nuclei[98]. 

To specifically identify a certain dysfunction in neu-
ropsychiatric diseases, often only one or several localized 
networks are studied. The default mode network (DMN) 
is one of the most important sub-networks of the brain, 
which is intrinsically a new paradigm to describe the func-
tional activity during the resting state[99]. Using DTI and 
fMRI, Teipel et al.[100] and Greicius et al.[101] showed that 
functional connectivity across the entire DMN is based 
on a distinct pattern of anatomical connectivity within 
the cerebral white matter. In addition, some psychiatric  
diseases, such as schizophrenia[102], AD[103-105], and epilepsy[106], 
also demonstrate a decreased WMM connectivity within 
the DMN. In a recent review[4], Hulvershorn et al. used a 
dMRI-derived network to systematically review the dys-
functional connectivity in pediatric MDD. A similar study 
on adolescent MDD was also reported[75]. Gutman et al. studied 
the action of deep brain stimulation on different targets 
by examining the connectivity patterns of the DMN  
regions[107]. In epilepsy, McDonald et al. found that mul-
tiple tracts associated with memory and language functions 
are impaired, and the extent of the deterioration correlates 
with verbal memory performance[108]. Other manifesta-
tions of sub-networks are also attractive, such as the lan-
guage[109,110] and prefrontal-cingulate-insula[111] networks 
during maturation, the cortico-striatal network in aging[112] 
and epilepsy, the prefrontal-limbic network in MDD[113-115], 
the motor[78] and frontal-temporal[116] networks in epilepsy, 
the language[117,118] network in dyslexia, and the cortico-
subcortical network in autism[119], AD[120], stroke[121,122], and 
schizophrenia[123]. Those individual sub-networks allow 
specification of the underlying dysmodulation of functional 
units occurring in a neuropsychiatric state.

Globally exploring changes across the entire brain 
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network would help to locate possible lesions or altera-
tions. As an aging disorder of diffuse lesions across the 
brain, AD has received attention worldwide. In view of the 
promising ability of dMRI to detect possible lesions, the  
Alzheimer's Disease Neuroimaging Initiative (ADNI) 
study (http://adni.loni.ucla.edu/about-data-samples/) has 
included DTI data collection in its second phase. Mean-
while, research on network-based automatic recognition 
of mild cognitive impairment, regarded as an early stage 
of AD, has also emerged[87]. Wang et al. found disrupted 
small-world networks and a negative correlation between 
small-worldness and clinical measures in schizophre-
nia[124], consistent with a report by Commoun et al.[125]. 
Disrupted topological organization was also found in the 
WMM network of AD patients[126]. Li et al. discovered that 
the early blind, in contrast to either the late blind or normal 
controls, have low fiber density and poor global efficiency 
of the network[127]. Weinstein et al. used tractography and 
tract-based spatial statistics to examine the lesions along 
associative WMM fibers, which seem helpful in explaining 
some behavioral impairments in autism[128]   . Müller argued 
that autism is a “distributed disorder” that requires various 
levels of study (genetic, neuroanatomical, neurofunctional, 
behavioral). In tracing the cause, should one seek a local-
ized neurological abnormality, a single functional network, 
or a single cognitive-behavioral domain[129]? Müller’s 
arguments are also applicable to other neuropsychiatric 
diseases, including Huntington disease[130], traumatic brain 
injury[91,92], and others[8,88].

5    Future directions of dMRI for Brainnetome

In summary, dMRI is a promising imaging technique 
that can non-invasively trace WMMs, currently on an 
imaging scale of millimeters. Thus, it can extract direct 
connectivities among the cortical/subcortical regions. This 
crucially paves the way for anatomical network analysis.  
Training, as well as neuronal degeneration, can alter 
WMM. Intensive training of normal controls for ~6 weeks 
changes WMM through induction of long-term potentiation 
(LTP)[131]. Excitingly, a more recent study showed that 
short-term training for only two hours results in micro-

structural changes in the brain that can be detected by a 
general DTI framework[132]. This demonstrates that the 
dMRI technique is able to recapitulate the evolution of a 
network within a relatively short time-scale. This is why 
we emphasize the properties of dynamic evolution in the 
Brainnetome concept, in contrast to the previous connec-
tome[13]. By using the HARDI technique, Wedeen et al. 
identified well-aligned WMM as a grid-like structure[52], 
and Raj et al. showed the classic WMM patterns of common 
dementias[133]. All have demonstrated great potential for dMRI 
to explore the underlying structural mysteries of the brain.

However, there are still critical questions that urgently 
need to be answered before dMRI can be reliably used in 
clinical diagnosis.

There are major challenges for diffusion modeling and 
tractography[134,135]. First, DWI signals are very noisy, espe-
cially for signals with high b-values. Thus, scanners need 
to be improved to generate high-quality DWI images, and 
enhanced de-noising is also required. Second, for the sake 
of balance among the signal-to-noise ratio and diffusive  
intensity, and scanning time as well, we usually fail to 
identify fibers crossing white matter[20,36,43]. Third, group 
study in dMRI is normally performed on registered scalar 
maps with FA or MD values in DTI, not the whole tensor 
field in DTI nor the probability function field in HARDI. 
Thus, registration methods for the tensor field and prob-
ability function field are needed to accommodate indi-
vidual differences[136]. Better statistical analyses are needed 
to compare tensor-valued or probability function-valued  
images, not just scalar maps. In addition, after achieving 
tractography for each subject, how to perform reliable 
group studies on the detected tracts remains obscure[135].

After accomplishing tractography, dMRI network con-
struction and analysis still encounter many problems[135]. 
The network nodes are usually pre-defined by atlases, 
although different atlases may yield significantly different 
results in the subsequent network analysis[19]. Furthermore, 
different numbers of seed points used within ROIs yield 
varied network properties[137]. Even along the same WMM 
path, different positions of initiating ROIs may affect the 
network construction[138]. Bassett et al. disclosed conserved 
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and variable architectures of anatomical networks between 
the DTI and DSI techniques[139]. Also, different thresholds 
for determining the existence of connectivities may result 
in different network topologies. Most work on network 
analysis relies on statistical tests on the derived scalar in-
dices, such as small-worldness. This inevitably loses much 
information when whole networks are replaced with scalar 
indices. Optimized measurements and more powerful sta-
tistical comparisons for brain networks are anticipated.

In recent years, the multi-modality imaging strategy 
has received much attention owing to its ability to dissect 
imaged objects from different aspects, and this can provide 
new perspectives to understand networks from comple-
mentary sources of information. For anatomical network 
analysis, dMRI has also been combined with other imaging 
techniques. Direct fusion with other modalities of MRI 
imaging, such as structural and functional MRI[4,140], is 
useful for image alignment thanks to homogeneous regis-
tration. By introducing genomic imaging, we hope to un-
derstand the genetic mechanisms of network evolution and 
thus individuals’ cognitive functions[141-143]. dMRI network 
analysis has also been combined with electroencephalog-

raphy[144], magnetoencephalography[145], positron emission 
tomography[146] and magnetic resonance spectroscopy[147].

Reproducibility and reliability are crucially important 
for network construction based on the dMRI technique, 
and they overwhelmingly determine whether dMRI can 
be used to objectively differentiate neuropsychiatric status 
among different subjects or at different time points[148]. 
Many researchers have tried to investigate the reproduc-
ibility and reliability of the acquired networks through 
different imaging protocols[139,149,150], different imaging 
sites[151,152], and different parameters for constructing net-
works[19,153]. However, this is still an open question for the 
Brainnetome era[12].   

Although currently it is hard to achieve a complete 
anatomical network of the brain due to the obstacles 
described above and other unforeseen difficulties, the  
already obtained and apparently promising clues can help 
us approach the physical infrastructural neural network 
for Brainnetome[3,154]. Brainnetome has sparked promising 
research and clinical applications for both developmental 
and neuropsychiatric conditions[2,5-9]. The emerging Brain-
netome era needs multidisciplinary collaboration[12].

Appendix. Some useful tools for diffusion MRI (dMRI) data processing, network construction and image/network visualization, and the related 
source links

Name Brief description of functions related to dMRI for Brainnetome and source link

FSL Eddy current correction, tensor estimation, deterministic tracking, probabilistic tracking, TBSS, QBI, SD

 http://www.fmrib.ox.ac.uk/fsl/index.html

3D Slicer DTI, tracking, Rician noise removal, deterministic tracking, stochastic tracking

 http://www.slicer.org 

MRI Studio Tensor and multi-tensor estimation, deterministic tracking

 https://www.mristudio.org 

CAMINO Tensor and multi-tensor estimation, QBI, SD, PASMRI, Monte-Carlo simulation, tensor registration

 http://www.cs.ucl.ac.uk/research/medic/camino 

Trackvis Tensor estimation, fiber tracking, DSI, QBI

 http://www.trackvis.org 

MRtrix DTI, QBI, SD, fiber tracking

 http://www.nitrc.org/projects/mrtrix

DTI-TK Tensor estimation, tensor registration, image format conversion

 http://dti-tk.sourceforge.net/pmwiki/pmwiki.php
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