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Abstract: The brainstem is a major site in the central nervous system involved in the processing of the cardiovascular 
reflexes such as the baroreflex and the peripheral chemoreflex. The nucleus tractus solitarius and the rostral ventrolateral 
medulla are 2 important brainstem nuclei, and they play pivotal roles in autonomic cardiovascular regulation. Angiotensin 
II is one of the neurotransmitters involved in the processing of the cardiovascular reflexes within the brainstem. It is well-
known that one of the mechanisms by which angiotensin II exerts its effect is via the activation of pathways that generate 
reactive oxygen species (ROS). In the central nervous system, ROS are reported to be involved in several pathological dis-
eases such as hypertension, heart failure and sleep apnea. However, little is known about the role of ROS in the processing 
of the cardiovascular reflexes within the brainstem. The present review mainly discussed some recent findings document-
ing a role for ROS in the processing of the baroreflex and the peripheral chemoreflex in the brainstem.

Keywords: angiotensin II; superoxide; rostral ventrolateral medulla; nucleus tractus solitarius; baroreflex; peripheral 
chemoreflex

1    Introduction

The brainstem is a major integrative site in the central 
nervous system involved in the processing of the cardio-
vascular reflexes such as the baroreflex and the peripheral 
chemoreflex. Among its important nuclei are the nucleus 
tractus solitarius (NTS) and the rostral ventrolateral me-
dulla (RVLM), which play pivotal roles in autonomic car-
diovascular regulation[1]. Reactive oxygen species (ROS) 
have emerged as important modulators of neuronal activ-
ity in both health and disease. Although much is known 
about the role of ROS in the central nervous system under 

pathological states such as hypertension and heart failure, 
little is known about the role of ROS in the processing 
of the cardiovascular reflexes within the brainstem. In 
this review, some recent findings documenting a role for 
ROS in the processing of the baroreflex and the peripheral 
chemoreflex in the brainstem were discussed.

2    Integration of the cardiovascular reflexes 
in the brainstem 

The brainstem is the main integrative center for neu-
ral control of circulation[2-4]. It receives direct input from 
cardiovascular afferents such as arterial baroreceptors and 
peripheral chemoreceptors. Arterial baroreceptors are part 
of the afferent arm of the baroreflex, which has a crucial 
role in short-term blood pressure control. Once activated, 
baroreceptors generate action potentials that are conducted 
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to the brainstem via afferent fibers. Within the brainstem, 
the signals generated by the baroreceptors reach the NTS, 
where they make their first synapse. After reaching the 
NTS, 2 autonomic pathways are activated: the parasym-
pathoexcitatory and the sympathoinhibitory pathways. In 
the first pathway, NTS neurons excite neurons in the dorsal 
motor nucleus of the vagus and in the nucleus ambiguous, 
areas responsible for holding the parasympathetic premo-
tor neurons. In the second pathway, NTS neurons activate 
neurons in the caudal ventrolateral medulla (CVLM). Once 
activated, CVLM neurons inhibit the sympathetic premo-
tor neurons in the RVLM, inhibiting their firing rate and 
reducing the sympathetic tone[1].

Another important cardiovascular reflex is the periph-
eral chemoreflex, which is a survival reflex activated main-
ly under severe hypoxia. Peripheral chemoreflex activa-
tion elicits intense parasympathetic-mediated bradycardia 
and sympatho-excitation, resulting in increases in blood 
pressure[5,6]. Both distinct autonomic components of the 
peripheral chemoreflex can be pharmacologically dissoci-
ated by blocking α-adrenergic receptors in the vessels us-
ing prazosin and blocking muscarinic receptors in the heart 
using atropine[7]. Therefore, upon activation, peripheral 
chemoreceptors generate action potentials which are con-
ducted to the brainstem, more precisely to the NTS. It is 
believed that the processing of the peripheral chemoreflex 
within the brainstem is also composed by 2 distinct path-
ways: the parasympathoexcitatory and the sympathoexcit-
atory pathways. In the parasympathoexcitatory pathway, 
NTS neurons activate neurons in the nucleus ambiguous, 
resulting in an increase in parasympathetic discharge, in-
creasing the vagal tone to the heart and producing a striking 
bradycardia, which is important for saving oxygen from the 
cardiac muscle metabolism and sparing this precious oxy-
gen to the brain and kidney. The sympathoexcitatory path-
way is composed of NTS neurons that project directly to 
the RVLM, bypassing the CVLM and exciting the presym-
pathetic motor neurons in the RVLM, resulting in increased 
sympathetic drive. Upon activation, peripheral chemoreflex 
also elicits behavioral and respiratory responses, which are 
crucial for survival during severe hypoxia[8,9].

3    Neurotransmission of the cardiovascular 
reflexes in the brainstem 

Elucidating the putative neurotransmitters involved 
in the processing of the cardiovascular reflexes within the 
brainstem has been the subject of several research groups 
worldwide. Several neurotransmitters have been described 
to be involved in the processing of the baroreflex in the 
NTS, such as glutamate[10,11], GABA[12], Substance P[13], 
angiotensin II[14], nitric oxide[15], and ATP[16]. In addition, 
several studies have also implicated glutamate[17], angio-
tensin II[18], and nitric oxide[19] in the neurotransmission of 
the baroreflex in the RVLM. 

Regarding the peripheral chemoreflex, various neu-
rotransmitters have been implicated in the neurotransmis-
sion of the sympathetic and parasympathetic components 
of the reflex in the NTS. Among them are glutamate[9], 
ATP[3], and angiotensin II[20]. In the RVLM, glutamate, 
ATP[21], angiotensin II[22], and substance P[23] are among 
the documented neurotransmitters. As described above, 
although glutamate seems to be the most important neu-
rotransmitter for the integration of the cardiovascular 
reflexes within the brainstem, angiotensin II still plays an 
important role in both the NTS and the RVLM in order to 
mediate/modulate the neurotransmission of the baroreflex 
and the peripheral chemoreflex. 

4    Angiotensin II-derived ROS underpinning 
the neurotransmission of the cardiovascular 
reflexes in the brainstem 

Accumulating evidence has suggested that the key 
mechanism through which angiotensin II influences blood 
pressure is via its ability to activate ROS signaling path-
ways. The pathways of ROS production in mammalian 
cells have been reviewed[24]. The first evidence that angio-
tensin II activates an NADPH oxidase in vascular smooth 
muscle cells to produce ROS was presented by Griendling 
and colleagues[25]. More recently, our studies and other 
findings also suggest that, like vascular cells, neurons also 
require ROS to carry out crucial functions related to the 
central control of blood pressure[22,26-28]. 
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There is compelling evidence that superoxide anion, 
the most important ROS, is essential for eliciting the vaso-
pressor, bradycardiac, and dipsogenic responses produced 
by intracerebroventricular administration of angiotensin 
II in conscious mice[26]. It has also been described that 
angiotensin II causes robust increases in superoxide pro-
duction in cultured subfornical organ neurons. In addition, 
adenoviral-mediated delivery of cytoplasmically targeted 
superoxide dismutase selectively to the subfornical or-
gan abolishes the cardiovascular and dipsogenic actions 
of angiotensin II in normotensive mice and prevents the 
hypertension in mice with chronic peripheral angiotensin 
II infusion[26,29]. In addition, by using adenoviral vectors 
encoding small interfering RNA that selectively silences 
Nox2 or Nox4 (2 isoforms of the NADPH oxidase) expres-
sion in the subfornical organ, researchers show that both 
Nox2 and Nox4 are required for the full vasopressor ef-
fects of brain angiotensin II[30].

Of note, angiotensin receptors, mainly AT1 receptor 
subtype, are also present in the RVLM[31-33] and play impor-
tant roles in altering the activity of RVLM neurons[34]. For 
example, injection of angiotensin II into the RVLM of cat 
produces pressor response[35]. In addition, pharmacological 
blockade of AT1 receptors attenuates the pressor response 
to angiotensin II microinjection into the RVLM of rats[36]. 
Furthermore, microinjection of losartan (an angiotensin II 
receptor antagonist) into the RVLM attenuates the pressor 
response produced by peripheral chemoreflex activation[22].

Despite the numerous studies involving hypertension 
and ROS in the central nervous system, little is known 
about the role of ROS in the processing of the cardiovas-
cular reflexes within the brainstem. To date, our labora-
tory and others have shown that accumulation of angio-
tensin II-derived superoxide anions in the brainstem are 
critical for the impairment of both baro- and peripheral 
chemoreflexes[22,37-40]. In rabbits suffering chronic heart 
failure, intracerebroventricular administration of angio-
tensin II induces superoxide accumulation in the RVLM. 
Administration of losartan reduces ROS accumulation in 
the RVLM and improves baroreflex sensitivity. In addition, 
chronic intravascular administration of vitamin C, a well-

known antioxidant capable of crossing the blood-brain 
barrier to scavenge ROS in the central nervous system, 
improves the baroreflex sensitivity in renovascular hy-
pertensive rats[41]. Furthermore, we have shown that acute 
administration of vitamin C or acute inhibition of the NA-
DPH oxidase using apocynin also improved the depressed 
baroreflex sensitivity in renovascular hypertensive rats[39]. 
Similarly, acute inhibition of the NADPH oxidase with 
apocynin or scavenging of superoxide with tiron, a super-
oxide dismutase mimetic, improves the baroreflex sensitiv-
ity in spontaneously hypertensive rats[42]. Within the central 
nervous system, administration of N-acetylcysteine or vi-
tamin C modulates the parasympathetic component of the 
baroreflex in normotensive rats[41]. Therefore, angiotensin 
II-derived ROS play an important role in modulating the 
processing of the baroreflex in the brainstem.

In addition, we have also described a role for ROS in 
modulating the processing of the peripheral chemoreflex 
in the RVLM. Nunes et al.[22] have reported that bilateral 
microinjection of losartan, an AT1 receptor antagonist, 
into the RVLM attenuates the pressor and bradycardiac 
response elicited by peripheral chemoreflex activation in 
conscious rats. In addition, the bilateral microinjection of 
tempol, a superoxide dismutase mimetic, into the RVLM 
blunts the pressor and bradycardiac response to either 
angiotensin II or peripheral chemoreflex activation, sug-
gesting that angiotensin II-derived ROS also play a role 
in the processing of the peripheral chemoreflex activation 
within the RVLM.

5    Conclusion

Although the role of ROS in the central nervous sys-
tem under pathological states such as hypertension has 
been revealed, little is known about the role of ROS in 
the processing of the cardiovascular reflexes within the 
medulla oblongata. Inflammatory T cells are emerging as 
new participants in this complex puzzle, especially in the 
peripheral organs[43]. However, elucidation of the relation 
between ROS and inflammation in the brainstem requires 
further investigation. In addition, although the antioxidant 
therapy has shown effectiveness in ameliorating hyper-
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tension in several experimental models, its use in clinical 
studies is still controversial[43,44]. Here we highlighted the 
most recent findings of our laboratory and others in order 
to shed some lights into this field. Considering that those 
cardiovascular reflexes are altered in several pathological 
states such as hypertension, heart failure and obstructive 
sleep apnea, revealing the mechanisms underpinning the 
processing of those reflexes within the brainstem in health 
and disease will help to find new therapeutic targets in the 
future. 
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血管紧张素 II 诱导产生的活性氧簇参与延髓的心血管反射
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摘要：脑干是中枢神经系统中的一个重要部位，参与心血管反射，例如压力感受性反射和外周化学感受性反射。

孤束核和延髓头端腹外侧是脑干中重要的两个部位，在心血管自主调节中扮演重要角色。神经递质血管紧张素II
能通过活化一些通路，诱导产生活性氧簇，进而参与脑干心血管反射。研究表明，在中枢神经系统中，活性氧簇

与一些病理疾病相关，例如高血压、心衰竭和睡眠性呼吸暂停。然而，活性氧簇在脑干心血管反射中的作用目前

尚不明确。本文主要就最近关于活性氧簇在脑干中压力感受性反射和外周化学感受性反射中作用的一些发现进行

综述及讨论。
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