Abstract
Objective
To investigate the spike activities of cerebellar cortical cells in a computational network model constructed based on the anatomical structure of cerebellar cortex.
Methods and Results
The multicompartment model of neuron and NEURON software were used to study the external influences on cerebellar cortical cells. Various potential spike patterns in these cells were obtained. By analyzing the impacts of different incoming stimuli on the potential spike of Purkinje cell, temporal focusing caused by the granule cell-golgi cell feedback inhibitory loop to Purkinje cell and spatial focusing caused by the parallel fiber-basket/stellate cell local inhibitory loop to Purkinje cell were discussed. Finally, the motor learning process of rabbit eye blink conditioned reflex was demonstrated in this model. The simulation results showed that when the afferent from climbing fiber existed, rabbit adaptation to eye blinking gradually became stable under the Spike Timing-Dependent Plasticity (STDP) learning rule.
Conclusion
The constructed cerebellar cortex network is a reliable and feasible model. The model simulation results confirmed the output signal stability of cerebellar cortex after STDP learning and the network can execute the function of spatial and temporal focusing.
Keywords: computational network model, cerebellar cortex, temporal focusing, spatial focusing, Spike Timing-Dependent Plasticity, eye blink conditioned reflex
摘要
目的
利用小脑的生理结构构造模拟小脑网络回路, 研究小脑皮层不同神经细胞的电位发放、 外界刺激对小脑皮层细胞的影响以及各类细胞电位发放模式等。
方法与结果
利用神经元的多房室模型和NEURON软件, 研究不同输入刺激对蒲肯野细胞电位发放的影响。 对颗粒细胞-高尔基细胞的反馈抑制回路对蒲肯野细胞的时间聚焦以及平行纤维-篮状/星状细胞局部抑制回路对蒲肯野细胞的空间聚焦现象进行了验证。 运用施加运动学习的小脑网络模型研究兔子眨眼的条件反射现象, 用模型的电位发放指标反映学习后兔子眨眼的实验现象。 当刺激信号从攀状纤维输入时, 通过精确放电时间依赖的突触可塑性学习, 兔子眨眼的适应作用逐渐达到稳定状态。
结论
本文构造的小脑皮层网络真实可靠。 模型的数值结果证实, 小脑皮层经过精确放电时间依赖的突触可塑性学习后, 输出信号稳定, 可以执行时间聚焦和空间聚焦的功能。
关键词: 网络模型计算, 小脑皮层, 时间聚焦, 空间聚焦, 精确放电时间依赖的突触可塑性, 眨眼条件反射
References
- [1].Yeo C.H. Memory and the cerebellum. Curr Neurol Neurosci Rep. 2004;4:87–89. doi: 10.1007/s11910-004-0018-4. [DOI] [PubMed] [Google Scholar]
- [2].Longstaff A. Instant notes in neuroscience. The United Kindom: Bios Scientific Publishers Limited; 2000. [Google Scholar]
- [3].Carta M., Murru L., Barabino E., Talani G., Sanna E., Biggio G. Isoniazid-induced reduction in Gabaergic neurotransmission alters the function of the cerebellar cortical circuit. Neuroscience. 2008;154:710–719. doi: 10.1016/j.neuroscience.2008.02.024. [DOI] [PubMed] [Google Scholar]
- [4].Bear M.F., Connors B.W., Paradios M.A. Neuroscience: Exploring the Brain. 2nd ed. Maryland: Lippincott Williams & Wikins; 2001. [Google Scholar]
- [5].Fabbro F. Introduction to language and cerebellum. J Neurolinguistics. 2000;13:83–94. doi: 10.1016/S0911-6044(00)00005-1. [DOI] [Google Scholar]
- [6].Ito M. Historical review of the significance of the cerebellum and the role of Purkinje cells in motor learning. Ann N Y Acad Sci. 2002;978:273–288. doi: 10.1111/j.1749-6632.2002.tb07574.x. [DOI] [PubMed] [Google Scholar]
- [7].Voogd J., Glickstein M. The anatomy of the cerebellum. Trends Neurosci. 1998;21:370–375. doi: 10.1016/S0166-2236(98)01318-6. [DOI] [PubMed] [Google Scholar]
- [8].Stevens J.M., Kendall B.E. Aspects of the anatomy of the cerebellum on computed topography. Neuroradiology. 1985;27:390–398. doi: 10.1007/BF00327601. [DOI] [PubMed] [Google Scholar]
- [9].Glickstein M., Sultan F., Voogd J. Functional localization in the cerebellum. Cortex. 2011;47(1):59–80. doi: 10.1016/j.cortex.2009.09.001. [DOI] [PubMed] [Google Scholar]
- [10].Wolpert D.M., Miall R.C., Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2(9):338–347. doi: 10.1016/S1364-6613(98)01221-2. [DOI] [PubMed] [Google Scholar]
- [11].de Gruijl J.R., van der Smagt P., De Zeeuw C.I. Anticipatory grip force control using a cerebellar model. Neuroscience. 2009;162:777–786. doi: 10.1016/j.neuroscience.2009.02.041. [DOI] [PubMed] [Google Scholar]
- [12].Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol. 2006;78:272–303. doi: 10.1016/j.pneurobio.2006.02.006. [DOI] [PubMed] [Google Scholar]
- [13].Van Der Giessen R.S., Koekkoek S.K., van Dorp S., De Gruijl J.R., Cupido A., Khosrovani S., et al. Role of olivary electrical coupling in cerebellar motor learning. Neuron. 2008;58:599–612. doi: 10.1016/j.neuron.2008.03.016. [DOI] [PubMed] [Google Scholar]
- [14].Tokuda I.T., Han C.E., Aihara K., Kawato M., Schweighofer N. The role of chaotic resonance in cerebellar learning. Neural Netw. 2010;23:836–842. doi: 10.1016/j.neunet.2010.04.006. [DOI] [PubMed] [Google Scholar]
- [15].Cheron G., Servais L., Dan B. Cerebellar network plasticity: from genes to fast oscillation. Neuroscience. 2008;153:1–19. doi: 10.1016/j.neuroscience.2008.01.074. [DOI] [PubMed] [Google Scholar]
- [16].Zeeuw C.I.D., Hoebeek F.E., Schonewille M. Causes and consequences of oscillations in the cerebellar cortex. Neuron. 2008;58:655–658. doi: 10.1016/j.neuron.2008.05.019. [DOI] [PubMed] [Google Scholar]
- [17].Middleton S.J., Racca C., Cunningham M.O., Traub R.D., Monyer H., Knöpfel T., et al. High-frequency network oscillations in cerebellar cortex. Neuron. 2008;58:763–774. doi: 10.1016/j.neuron.2008.03.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [18].Wikgren J., Nokia M.S., Penttonen M. Hippocampo-cerebellar theta band phase synchrony in rabbits. Neuroscience. 2010;165:1538–1545. doi: 10.1016/j.neuroscience.2009.11.044. [DOI] [PubMed] [Google Scholar]
- [19].Maex R., Schutter E.D. Oscillations in the cerebellar cortex: a prediction of their frequency bands. Prog Brain Res. 2005;148:181–188. doi: 10.1016/S0079-6123(04)48015-7. [DOI] [PubMed] [Google Scholar]
- [20].Akemann W., Knopfel T. Interaction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons. J Neurosci. 2006;26(17):4602–4612. doi: 10.1523/JNEUROSCI.5204-05.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [21].Solinal S., Forti L., Cesana E., Mapelli J., Schutter E.D., Angelo E.D. Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar golgi cells. Front Cell Neurosci. 2007;1(2):1–12. doi: 10.3389/neuro.03.002.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [22].Solinas S., Forti L., Cesana E., Mapelli J., Schutter E.D., Angelo E.D. Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar Golgi cells: Simulations of their impact in vivo. Front Cell Neurosci. 2007;1(4):1–9. doi: 10.3389/neuro.03.004.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [23].Yamada W.M., Koch C., Adams P.R. Multiple channels and calcium dynamics. In: Koch C., Segev I., editors. Methods of neuronal modeling. Cambridge: MIT Press; 1987. pp. 97–134. [Google Scholar]
- [24].Migliore M., Shepherd G.M. Dendritic action potentials connect distributed dendrodendritic microcircuits. J Comput Neurosci. 2008;24:207–221. doi: 10.1007/s10827-007-0051-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [25].Carnevale T., Hines M. The NEURON Book. Cambridge: Cambridge University Press; 2006. [Google Scholar]
- [26].Miyasho T., Takagi H., Suzuki H., Watanabe S., Inoue M., Kudo Y., et al. Low-threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a modeling study. Brain Res. 2001;891:106–115. doi: 10.1016/S0006-8993(00)03206-6. [DOI] [PubMed] [Google Scholar]
- [27].Rabinovich M.I. Dynamical principles in neuroscience. Rev Modern Physics. 2006;78(4):1213–1265. doi: 10.1103/RevModPhys.78.1213. [DOI] [Google Scholar]
- [28].Bi G.Q., Poo M.M. Synaptic modification of correlated activity: Hebb’s postulate revisited. Ann Rev Neurosci. 2001;24:139–166. doi: 10.1146/annurev.neuro.24.1.139. [DOI] [PubMed] [Google Scholar]
- [29].Nowotny T., Zhigulin V.P., Selverston A.I., Abarbanel H.D., Rabinovich M.I. Enhancement of synchronization in a hybrid neural circuit by spike-timing dependent plasticity. J Neurosci. 2003;23(30):9776–9785. doi: 10.1523/JNEUROSCI.23-30-09776.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [30].Katz D.B., Tracy J.A., Steinmetz J.E. Rabbit classical eyeblink conditioning is altered by brief cerebellar cortical stimulation. Physiol Behav. 2001;72:499–510. doi: 10.1016/S0031-9384(00)00444-3. [DOI] [PubMed] [Google Scholar]
- [31].Yeo C.H., Hesslow G. Cerebellum and conditioned reflexes. Trends Cogn Sci. 1998;2(9):322–333. doi: 10.1016/S1364-6613(98)01219-4. [DOI] [PubMed] [Google Scholar]
- [32].Nicholson D.A., Sweet J.A., Freeman J.H. Long-term retention of the classically conditioned eyeblink response in rats. Behav Neurosci. 2003;117(4):871–875. doi: 10.1037/0735-7044.117.4.871. [DOI] [PubMed] [Google Scholar]
- [33].Rogers R.F., Steinmetz J.E. Contextually based conditional discrimination of the rabbit eyeblink response. Neurobiol Learn Mem. 1998;69:307–319. doi: 10.1006/nlme.1998.3826. [DOI] [PubMed] [Google Scholar]
- [34].Kelly T.M., Zuo C.C., Bloedel J.R. Classical conditioning of the eyeblink reflex in the decerebrate-decerebellate rabbit. Behav Brain Res. 1990;38(1):7–18. doi: 10.1016/0166-4328(90)90019-B. [DOI] [PubMed] [Google Scholar]
- [35].Thompson R.F. The neurobiology of learning and memory. Science. 1987;233:941–947. doi: 10.1126/science.3738519. [DOI] [PubMed] [Google Scholar]
- [36].Wolpert D.M., Miall R.C., Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2(9):338–347. doi: 10.1016/S1364-6613(98)01221-2. [DOI] [PubMed] [Google Scholar]
- [37].Jörntell H., Bengtsson F., Schonewille M., De Zeeuw C.I. Cerebellar molecular layer interneurons-computational properties and roles in learning. Trends Neurosci. 2010;33(11):524–532. doi: 10.1016/j.tins.2010.08.004. [DOI] [PubMed] [Google Scholar]