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Abstract: The cellular messenger nitric oxide (NO) has been linked to neurodegenerative disorders due to the increased 
expression of the enzymes that catalyze its synthesis in postmortem tissues derived from sufferers of these diseases. Ni-
trated proteins have also been detected in these samples, revealing that NO is biologically active in regions damaged during 
neurodegeneration. Modulation of NO levels has been reported not only in the neurons of the central nervous system, but 
also in the glial cells (microglia and astroglia) activated during the neuroinflammatory response. Neuroinflammation has 
been found in some neurodegenerative conditions, and inhibition of these neuroinflammatory signals has been shown to 
delay the progress of such disorders. Thus NO and the pathways triggering its release are emerging as an important re-
search focus in the search for strategies to prevent, halt or cure neurodegenerative diseases.
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1    Introduction and physiological actions of 
nitric oxide (NO) 

The cellular messenger NO is a small, highly-dif-
fusible molecule that, although it has a short half-life of 
a few seconds, mediates a large number of physiological 
processes. This highly reactive regulatory molecule acts as 
a messenger, a neurotransmitter or a signalling molecule 
and thus triggers responses in a wide range of cell types 
from neurons and glia of the nervous system to fibroblasts, 
myocytes and blood cells in the periphery. NO is a rapidly 
diffusing hydrophobic molecule, which allows it to move 
swiftly through tissues to reach its site of action[1]. Within 
seconds of diffusing through tissue, NO can enter red 
blood cells where it is rapidly destroyed by oxyhaemoglo-

bin[2], which serves as one of the mechanisms of NO level 
control. 

Generation of NO from L-arginine is regulated by 
cytoplasmic nitric oxide synthases (NOSs). There are 
three NOS isoforms, which differ in their localization and 
signalling properties. Inducible NOS (iNOS) rapidly pro-
duces large quantities of NO[3], while the other two NOS 
isoforms, neuronal NOS (nNOS) and endothelial NOS 
(eNOS), release sustained low levels of this molecule[4,5]. 
The names of the three NOS isoforms reflect the circum-
stances of their discovery. nNOS was first identified in the 
nervous system, although it is now known to be expressed 
also in other tissues such as fast-twitch muscle fibres[6], the 
mammary gland[7] and the kidney[8]. eNOS was initially 
identified in the endothelium but is also known to be ex-
pressed in the bladder[9], the olfactory epithelium[10], and 
the brain[11]. iNOS, as suggested by its name, is activated 
in response to a given stimulus. Thus it is constitutively 
expressed at low levels in both the central nervous sys-
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tem and the peripheral tissues[11]. It has been established 
that astroglia upregulate iNOS in response to proteins 
and ribonucleic acids of pathogenic origin, and that iNOS 
expression is triggered in these cells in response to pro-
inflammatory cytokines[12]. The activity of iNOS is known 
to be calcium-independent whilst that of eNOS and nNOS 
is generally thought to be triggered by a rise in intracellu-
lar calcium[13]. However, it should be noted that eNOS can 
also be activated in a calcium-independent pathway fol-
lowing arterial sheer-stress and that this pathway requires 
tyrosine phosphorylation[13].  

Within the nervous system, NOS-derived NO plays 
a plethora of physiological roles. The low levels of NO 
expressed following activation of eNOS or nNOS can 
activate soluble guanylate cyclase (sGC) to produce cy-
clic guanosine monophosphate (cGMP) from guanosine-
5'-triphosphate (GTP). It is well-established that NO/
sGC signalling is required for long-term depression in 
cerebellar Purkinje cells[14], that it can enhance synaptic 
transmission[15], and that it may be involved in some forms 
of long-term potentiation[16]. To specifically consider the 
ion channels that underpin many of its neurophysiological 
functions, a previous study determined that NO uses both 
sGC signalling and direct S-nitrosylation of target proteins 

to modulate voltage-gated calcium channels in rat hip-
pocampal neurons[17]. Furthermore, NO can bind to protein 
residues and S-nitrosylate them, thus directly modifying 
protein functions in a sGC-independent manner[18,19]. It has 
also been shown that NO regulates several types of potas-
sium channels, including adenosine triphosphate (ATP)-
dependent and calcium-activated potassium channels in the 
central nervous system[20]. Furthermore, it has been shown 
that NO triggers the activity of hyperpolarization-activated 
cyclic nucleotide-modulated cation channels which bind 
cGMP, and that activation of these channels is important 
for the mediation of NO signalling in deep cerebellar nu-
clei neurons[21]. Within neurons, a number of important sig-
nalling pathways can be triggered by NO/sGC, including 
activation of an Akt/glycogen synthase kinase 3 pathway to 
prevent neuronal death[22], direct targeting of the mitochon-
drial permeability transition pore to mediate apoptosis[23] 
and activation of the cGMP-stimulated phosphodiesterase 
which is involved in the regulation of cellular cyclic ad-
enosine monophosphate levels by NO[24]. Thus NO can 
activate a number of signalling intermediaries that regulate 
neurophysiology, leading to a wide range of neuronal func-
tions that can be modulated by NO (Fig. 1).

The main reservoir of iNOS in the central nervous 

Fig. 1 Physiological roles of nitric oxide (NO) in the nervous system. Cellular NO has been linked to modulation of both neuronal survival and neuronal 
function. sGC: soluble guanylate cyclase.
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system is in the microglia and astrocytes. These non-
neuronal cells perform various functions including nutri-
ent and biochemical support, repair processes, protection 
against oxidative stress, and immune defence within the 
nervous system. Thus exposure of microglia to the bacte-
rial endotoxin lipopolysaccharide (LPS) induces iNOS ac-
tivation and subsequent NO release via a protein kinase C 
(PKC)-dependent mechanism[25]. NO release, downstream 
of iNOS activation, is an integral part of the immune de-
fence mechanism as exhibited by the inhibitory effects of 
iNOS on the spread of murine cytomegalovirus within the 
retina[26]. Details of some of the pro-inflammatory stimuli 
that induce iNOS activity will be further discussed later 
in this review. Importantly however, stimulation of glial 
cells can lead, via iNOS activation, to the generation of 
large quantities of NO, which can be released from the 
astrocytes and microglia and target the adjacent neurons. 
It is well-established that high concentrations of NO have 
deleterious effects on neurophysiology and neuroviability. 
Thus, evidence is accruing that the delayed neuronal dam-
age after trauma is mediated via NO synthesized by iNOS 
in activated microglia[132]. As such, this delayed damage 
is not observed in iNOS-deficient animals[27]. In contrast, 
after transient focal cerebral ischemia, iNOS-mediated re-
lease of NO does not influence infarct size, revealing that 
the involvement of glial iNOS in neurodegeneration may 
be highly dependent upon the initial trigger of neurological 
damage[28]. 

It is becoming evident that the release of NO from 
activated astrocytes and microglia is likely to be an im-
portant source of NO in neurodegenerative disorders. NO 
has a number of maladaptive properties associated with 
such disorders. First, NO can mediate neuronal viability. 
Studies have demonstrated both neuroprotective[29-31] and 
neurotoxic[32-34] effects of NO. Furthermore, in addition to 
the direct effects of NO on cell survival, it has been estab-
lished that within cells, NO interacts with superoxide to 
form peroxynitrite. As for high concentrations of NO per 
se, peroxynitrite has also been shown to be important in 
triggering neuronal death[35-37]. It is known that NO induces 
neuronal death by either necrotic or apoptotic pathways, 

both of which have been implicated in neurodegeneration[38]. 
To induce necrosis, NO depletes cell energy by damage to 
the mitochondria[39-42]. Necrosis can also be triggered via 
S-nitrosylation of GAPDH, leading to inhibition of glyco-
lysis as well as acetylation and ubiquitination of nuclear 
targets[43-45]. NO-induced apoptosis can be triggered by 
endoplasmic reticulum (ER) stress[46] or activation of the 
mitochondrial pore transition, leading to cytochrome c 
release, caspase activity and thus apoptosis[47]. Generally, 
NO induces neuronal death when present at relatively high 
concentrations following iNOS activation, while lower 
concentrations of NO following nNOS or eNOS activity 
can be neuroprotective[48]. Thus, activation of a pro-sur-
vival phosphatidylinositol3-kinase/Akt pathway has been 
shown to be the downstream of nNOS activation[49] and 
similarly, increased expression of the anti-apoptotic protein 
Bcl-2 has been detected[50]. 

Nitrosative stress is the term that refers to the abil-
ity of reactive nitrogen species to damage components of 
the cellular environment. NO per se is a highly reactive 
molecule that can directly modify cellular targets and, as 
mentioned above, readily react with superoxide to form 
peroxynitrite. It is estimated that 15% of all superoxide 
produced by the mitochondria interacts with NO to form 
peroxynitrite[51]. Given that the glial cells within the ner-
vous system can, upon stimulation, act as a source of NO, 
peroxynitrite formation downstream of NO release may 
be an important mediator of its maladaptive effects. It has 
been determined that within mitochondria, peroxynitrite 
competes with molecular oxygen to block the activity 
of the respiratory chain and also leads to the release of 
cytochrome c, both of which can cause cell death[52,53]. 
Moreover, peroxynitrite can be converted to other highly 
toxic molecules including nitrogen dioxide, a known pro-
apoptotic molecule[54], with the concomitant release of car-
bonate and hydroxyl radicals[51]. 

An important mechanism whereby reactive nitrogen 
species may contribute to neuronal damage is through their 
ability to mediate excitotoxicity. This is the state wherein 
overstimulation of a given receptor leads to neuronal 
loss. Activation of the N-methyl-D-aspartic acid receptor 
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(NMDA-R) causes a rise in intracellular calcium, which, 
in turn, leads to excessive nNOS activity[55]. The release 
of NO as noted above can have deleterious effects on neu-
rons, and it has been demonstrated that blockade of NOS 
activity or scavenging of NO prevents the excitotoxicity 
associated by overstimulation of NMDA-R by glutamate. 
Thus NMDA-R-associated excitotoxicity is triggered by 
over-activity of the receptor, leading to an excessive in-
flux of calcium, which in turn leads to aberrant activity of 
nNOS and the resulting excessive production of NO. NO 
then acts as, or converts to, other damaging reactive nitro-
gen species leading to nitrosative stress. 

The ability of NO to modulate both neuronal survival 
and physiology raises the question of whether it is an im-
portant molecule in neurodegenerative diseases. These con-
ditions are characterised by the large-scale death of neu-
rons in specific regions of the nervous system coupled with 
loss of neuronal function. They remain currently incurable 
despite the on-going research strategies aiming to replace 
lost neurons, support the survival of the remaining cells 
and boost their functions. The causes of neurodegeneration 
are multiple and complex, with a myriad of identified ge-
netic and lifestyle factors. A vast array of pharmacological 
research tools is available to target NO, either enhancing 
or repressing its functions. Due to the role of NO in both 
neurodegeneration and neuroinflammation, the following 
discusses the potential of anti-inflammatory substances as 
an approach to prevent or halt progressive neural damage 
in two common neurodegenerative diseases, Alzheimer’s 
disease (AD) and Parkinson’s disease (PD). 

2    The relationship between NO, neuroinfla-
mmation and neurodegeneration—the pathol-
ogical consequences of NO activity  

2.1  Evidence for the involvement of NO and neuroinfla-
mmation in AD  A plethora of studies links NO to neu-
rodegenerative diseases, and one of the most prevalent 
neurodegenerative conditions is AD. This disorder was 
first described by German doctor Alois Alzheimer in 1907, 
with a fuller histopathological picture published in 1911[56-58].  
AD is a progressive dementia characterised by neuronal 

loss in brain regions associated with cognition such as the 
hippocampus and cerebral cortex. At the cellular level, AD 
is diagnosed histopathologically by the presence of intra-
cellular neurofibrillary tangles, extracellular senile plaques, 
dystrophic neurites, degenerating neurons and neuroin-
flammation[59]. The involvement of NO in the pathogenesis 
of AD has been indicated by many studies. It is known that 
NO binds to protein residues and S-nitrosylates them. A 
major intraprotein target for this reaction is tyrosine. Nitro-
tyrosine residues within the neurofibrillary tangles are de-
tected immunohistochemically in the postmortem brains of 
AD patients, while no similar staining is observed in age-
matched control brains[60]. This implies that the proteins 
within these tangles have been modified by NO. It has 
been revealed that high levels of nitrosative stress facili-
tates protein misfolding and aggregation, both of which are 
linked to AD and other neurodegenerative conditions[61]. 
Moreover, protein disulphide isomerase, which under 
conditions of non-critical endoplasmic reticulum stress 
protects against neurotoxicity within cells, can however, 
be S-nitrosylated by NO, leading to a decrease in its neu-
roprotective function and therefore to neuronal death[62]. 
Protein disulphide isomerase immunoreactivity has re-
cently been detected within the neurofibrillary tangles in 
postmortem AD brains[63]. Its inclusion within the tangles, 
where we know that proteins are S-nitrosylated due to the 
detection of nitrotyrosine[60], suggests that this protein may 
be dysregulated in AD, potentially via NO, enhancing neu-
ronal death triggered by ER stress. 

There are some potential sources of NO in AD (Fig. 2). 
It has long been known that amyloid beta (Aβ) peptide is 
overexpressed in the brains of AD sufferers. In addition, in 
vitro, elevated Aβ expression has been shown to increase 
NO release[64], revealing one potential source for the NO 
that targets the proteins in the neurofibrillary tangles of AD 
patients. Furthermore, in postmortem brain tissues from 
AD patients, Aβ plaques are strongly associated with reac-
tive microglia. As stated above, glial cells are an important 
source of NO that can rapidly pass into neurons[65]. Given 
that microglia and monocytes are stimulated by Aβ to up-
regulate the expression of iNOS[66], they serve as another 
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source of NO. From these data, it can be suggested that 
glial cells contribute to the pathogenesis of AD via NO 
release, leading to neurotoxicity. Besides, a previous study 
indicated that Aβ activates microglia by binding to the re-
ceptor for advanced glycation end products[67]. In addition 
to NO release, Aβ triggers the release of cytokines from 
microglia, which in turn recruit astrocytes that further en-
hance the localised immune response[68]. Amongst the cy-
tokines released by activated glia is tumor necrosis factor-α 
(TNF-α), which is potentially neurotoxic[69]. Some drugs 
targeting TNF signalling have been used successfully in 
the periphery, such as the anti-TNF monoclonal antibody 
adalimumab, which has been successfully used to treat 
chronic inflammatory disorders such as psoriasis[70]. This 
raises a question of whether inhibition of TNF signalling 
could benefit AD sufferers. Accordingly, in a small-scale 
study, patients with mild-to-severe AD were administered 
with etanercept, an antagonist of human TNF receptor II, 
into the spinal fluid. After 6 months of drug administration, 
cognitive improvement was observed in a subset of these 
patients, suggesting that inhibiting TNF-α signalling can 
give symptomatic improvement in some AD patients[71]. 
However, the method of drug delivery was invasive and 

the beneficial results were restricted to a subset of patients, 
implying that the current TNF-targeting therapeutic tools 
may be of limited benefit to AD sufferers.

In addition to TNF-α, a number of other cytokines 
such as interleukin-1 (IL-1) have been shown to be up-
regulated in AD[72]. One mechanism underlying IL-1 action 
is through increasing the synthesis of amyloid precursor 
protein (APP), which is cleaved to form Aβ[73]. Further-
more, postmortem analysis of AD tissue has demonstrated 
an elevated number of activated microglia overexpressing 
IL-1 compared with age-matched controls. Associated 
with these cells is an increase in hyperphosphorylated tau-
positive neurons[74]. Furthermore, it has been shown that 
IL-1β increases the level of phosphorylated tau in rat cor-
tical neurons in vitro[75]. Thus, it can be postulated that if 
pro-inflammatory cytokines such as TNF-α and IL-1 have 
detrimental effects on the neurons that degenerate in AD, 
elevated expression of anti-inflammatory cytokines, such 
as interleukin-10 (IL-10) may be of benefit. It has been 
elucidated that AD patients have a higher incidence of the 
-1082A polymorphism in the IL-10 gene, which is associ-
ated with a reduced production of IL-10 as compared to 
other genotypes, suggesting an association between a low 

Fig. 2 Potential sources of nitric oxide downstream of Aβ up-regulation, one of the events linked to pathogenesis of Alzheimer’s disease.  
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level of IL-10 and AD in this subset of patients[76]. Taken 
together, it can be concluded that activated glia contribute 
to AD in several ways, producing potentially neurotoxic 
cytokines and also releasing NO.

It is therefore not surprising that research has been 
carried out into the potentially beneficial effects of anti-
inflammatory drugs in the prevention or treatment of 
neurodegeneration. Findings from in vitro studies have 
demonstrated that non-steroidal anti-inflammatory drugs 
(NSAIDs) decrease both NO release from, and expression 
of iNOS mRNA within, a macrophage cell line[77]. In addi-
tion, it has been demonstrated that NSAIDs can exert their 
neuroprotective actions by direct scavenging of NO[78]. 
Thus, as will be discussed later, the prospect of targeting 
NO signalling with these drugs to interfere with AD pro-
gression may be promising.
2.2  NO and neuroinflammation in PD  PD is a pro-
gressive neurological disorder that involves the loss of 
dopaminergic neurons from the substantia nigra with 
consequent dopamine depletion from the striatum leading 
to motor control problems. The cellular hallmarks of PD 
include dopaminergic neuronal death, intracytoplasmic in-

clusions (Lewy bodies), dystrophic neurites, mitochondrial 
dysfunction and neuroinflammation[79]. In many ways, the 
roles of both NO and neuroinflammation in PD have been 
far more rigorously investigated than in AD, at least in part 
due to the larger number of in vitro and in vivo models of 
PD. This has led to a number of lines of evidence linking 
NO to PD being uncovered (Fig. 3).

There are several methods of recreating the dopamin-
ergic neuronal loss observed in PD in laboratory animals, 
including administration of neurotoxins, all of which show 
some relevance to aspects of the disorder but fail to fully 
recreate PD and therefore have certain disadvantages. 
Administration of 6-hydroxydopamine (6-OHDA) in-
duces loss of dopaminergic neurons of the substantia nigra 
coupled with reduced dopamine release in the striatum. 
However, like most laboratory methods of inducing PD-
like degeneration, this neuronal loss is acute, occurring 
over days and weeks as compared to the period of years of 
neuronal degeneration in PD. Furthermore, the neuronal 
loss is limited to the substantia nigra, the site of 6-OHDA 
administration, and other brain regions, such as the locus  
coeruleus, which is affected in PD, are spared in this 

Fig. 3 Cellular targets of nitric oxide (NO) in Parkinson’s disease (PD). Research data have determined a number of ways in which NO could lead to the 
pathological changes associated with PD. XIAP: X-linked inhibitor of apoptosis protein. PKC-δ: protein kinase C-delta.
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model. Histologically, there is no evidence of the develop-
ment of Lewy bodies following 6-OHDA insult, further 
highlighting the differences between this animal model 
and human PD[80]. Another frequently-used method of 
inducing a parkinsonian phenotype in laboratory animals 
is through administration of the dopaminergic neurotoxin 
1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP). 
This compound is metabolised by astrocytes to its ac-
tive form, 1-methyl-4-phenyl-2,3-dihydropyridinium ion 
(MPP+), which mediates its neurotoxicity to dopaminergic 
neurons. Following administration, there is specific loss of 
dopaminergic neurons of the substantia nigra coupled with 
dopamine depletion from the striatum. Again, however, the 
neuronal death is acute and therefore does not reflect the 
progressive nature of this process in human PD. Also, be-
cause MPP+ acts by inhibiting complex I of the mitochon-
drial respiratory chain solely in dopaminergic neurons, the 
effects of mitochondrial dysfunction in other cells cannot 
be ascertained from this model[80]. In addition to these and 
other in vivo methods, midbrain dopaminergic neurons de-
rived from embryonic rodents can be readily maintained in 
culture[81]. The disadvantages of such cultures include their 
derivation from embryos rather than from mature animals 
and the mixed nature of the cultures such that they contain 
a number of cell types and are not purely dopaminergic 
neurons. Whilst these cultures, in many ways, more ac-
curately depict the situation in vivo, where a population 
of neurons does not exist as a purified cohort of a single 
cell type, they do not lend themselves well to biochemical 
analysis. To this end, some dopaminergic cell lines have 
been established, which, although less ‘true to life’ than 
primary neuronal cultures, are more readily manipulated in 
the laboratory. Thus, a large number of research models are 
available to study PD, and this has helped to drive research 
forward.

Studies on the in vivo models for inducing a PD-like 
phenotype have shown that following MPTP administra-
tion, poly(ADP-ribose) polymerase is activated, DNA is 
damaged and, crucially for this review, NO is released[82]. 
In addition, the neurodegeneration induced in laboratory 
rodents by MPTP is critically dependent upon iNOS activ-

ity[83], underpinning the role of NO in this model system. It 
has also been determined that co-treatment with 6-OHDA 
and an NO donor worsens the phenotype of experimental 
rats leading to greater neuronal loss, which highlights the 
vulnerability of these neurons that degenerate in PD to 
NO. Conversely, co-administration of 6-OHDA and an NO 
inhibitor lessens the damage as compared to application 
of 6-OHDA alone, revealing that NO release contributes, 
at least partially, to the neuronal death observed in the 
6-OHDA model[84]. Taken together, these data imply that 
NO plays a role in the neurodegeneration in the nigro-
striatal pathway of experimental rodents treated with either 
MPTP or 6-OHDA. The presence of NO downstream of 
both neurotoxins suggests that it is a common denominator 
for neurodegeneration of dopaminergic neurons and there-
fore a potential molecule of interest in PD.

Research has revealed direct effects of NO on key 
cellular components linked to PD. For instance, parkin, a 
component of the E3 ubiquitin ligase complex that targets 
proteins for degradation by polyubiquitination, protects 
dopaminergic neurons from damage and loss. Failure of 
this system leads to the build-up of faulty or superfluous 
proteins, which in turn have deleterious consequences for 
cell signalling and survival. It has been demonstrated that 
parkin is S-nitrosylated in vitro and in a murine model 
of PD in vivo as well as in the postmortem brains of PD 
patients, but not in age-matched control tissues. S-nitrosy-
lation of parkin inhibits its E3 ligase activity and therefore 
its protective function. This enhances the vulnerability of 
dopaminergic neurons to cell death[85]. In addition, NO 
alters the solubility of parkin, leading to its intracellular 
aggregation, and loss of neuroprotective function[86]. In ad-
dition to parkin, S-nitrosylation of the antioxidant enzyme 
peroxiredoxin-2 has been linked to PD. NO-linked modi-
fication of peroxiredoxin-2 leads to loss of its antioxidant 
and thus neuroprotective functions, thus exacerbating oxi-
dative stress and dopaminergic neuronal death[87]. Similarly, 
the pro-survival X-linked inhibitor of apoptosis protein 
(XIAP) is S-nitrosylated in vitro, in a PD model in vivo 
and in postmortem tissue derived from PD patients. This 
protein acts to protect cells in two ways. First, like parkin, 
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it has E3 ubiquitin ligase activity and thus can target pro-
teins for degradation. Second, it prevents neuronal death 
via apoptosis by binding to and inhibiting caspases. NO-
induced modification of XIAP does not compromise its 
E3 ligase activity as S-nitrosylation does to parkin, but it 
does compromise its anti-caspase 3 activity, which in turn 
promotes cell death[88]. Since modification of proteins by 
NO need not lead to the loss of their function but can in-
stead enhance their activity, this again can have negative 
consequences for cell viability and function. It has been 
demonstrated that NO nitrates and activates protein kinase 
C-delta (PKC-d). This in turn phosphorylates p53, leading 
to dopaminergic neuronal cell death[89]. Thus S-nitrosylation 
of key intracellular components can enhance the vulner-
ability of dopaminergic neurons to cell death either by ac-
tivating them, as is the case with PKC-d, or by inactivating 
their protective functions, as seen with parkin, XIAP and 
peroxiredoxin-2.

As in AD, the focus in the search for a source for 
NO in the PD brain has turned to the glial cells. Activated 
microglia have been reported in postmortem brain tissues 
from PD patients[90]. In addition, microglial activation has 
been found in some PD models in vivo, suggesting neu-
roinflammation as a common feature of both PD patients 
and laboratory models[91,133-135]. Moreover, enhanced iNOS 
expression has been detected in the microglia of MPTP 
model animals, and mutant mice that lack iNOS exhibit 
a reduced susceptibility to this agent[92]. This implies that 
the microglia, by upregulating iNOS, can produce a toxic 
mediator NO that contributes to MPTP-induced neuropa-
thology. In addition, the activated microglia also release 
neurotoxic cytokines, including TNF-α. The potential tox-
icity of this to midbrain dopaminergic neurons has been 
established[69], and accordingly, mice that possess a null 
mutation in the TNF-α gene or in which TNF-α biosynthe-
sis has been pharmacologically blocked exhibit less nigro-
striatal degeneration following MPTP administration[93]. 
In addition to their neurotoxicity per se, pro-inflammatory 
cytokines can also induce iNOS activity in microglia, cre-
ating further toxic stimuli for the neurons in the region of 
neuroinflammation[94]. Thus activated glia can simultane-

ously produce NO, other ROS and cytokines, which to-
gether form the basis for the neuroinflammatory response 
observed in neurodegenerative conditions including PD[95]. 

3    Pharmacological approaches to deal with 
neuroinflammation—NSAIDs 

The presence of an inflammatory response at the site 
of neurological damage in both AD and PD reveals that 
neuroinflammation is an integral part of the cellular pro-
cesses in these disorders. Research has revealed that the 
activated glia release a variety of factors including neu-
rotoxic cytokines and NO. There are numerous ways to 
target an inflammatory response, from targeting specific 
pro-inflammatory cytokines such as TNF-α[70,71,93] to ini-
tiating strategies to prevent microglial activation such as 
targeting with cannabinoid-derived therapeutics[96]. Given 
the multitude of mechanisms outlined above by which NO 
causes damage to neurons, compounds that target activated 
microglia as a potential source of NO and that also inhibit 
NO per se would have great potential in treating neuroin-
flammation. In this context, the dual abilities of NSAIDs 
as both anti-inflammatory agents and as compounds that 
directly scavenge NO could prove very interesting (Fig. 4).

One main target of NSAIDs is the intracellular en-
zymes known as cyclooxygenase (COX). COX-1 is consti-
tutively expressed in most cell-types including microglia[97], 
while COX-2 is expressed mainly during inflammatory re-
sponses but is also found in discrete neuronal populations 
in the hippocampus and cortex[98]. Traditional NSAIDs 
such as aspirin, ibuprofen, and naproxen target both 
COX-1 and COX-2, and compounds such as celecoxib, 
rofecoxib and nimesulide have been developed to solely 
target COX-2. Particular interest in COX-2 has stemmed 
from the discoveries that COX-2 is upregulated in the early 
stages of AD[97] and that mice overexpressing COX-2 ex-
hibit cognitive deficits coupled with neuronal apoptosis[99]. 
In addition to targeting the COX enzymes, some NSAIDs 
such as ibuprofen, indomethacin and naproxen, act as ago-
nists of the transcription factor peroxisome proliferator-ac-
tivated receptor-γ (PPARγ)[100]. PPARγ transcription factors 
inhibit the expression of a wide range of pro-inflammatory 
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genes[101]. Interestingly, compounds that activate PPARγ are 
also known to inhibit iNOS expression and thus NO pro-
duction by glial cells[102]. Although the full mechanisms by 
which NSAIDs defend against neurodegeneration have yet 
to be elucidated, individual compounds have demonstrated 
properties that would be of benefit in the fight against neu-
rodegeneration.

Aspirin decreases the phosphorylation of tau, one of 
the cellular pathways that lead to the formation of neu-
rofibrillary tangles in AD[103]. Multiple pathways have 
also been implicated in the NSAID-induced decrease of 
expression of AD-related Aβ. These include the ability 
of NSAIDs to inhibit Rho, the small GTPase known to 
modulate Aβ secretion[104], inhibition of nuclear factor-
kappa B leading to decreased expression of beta secretase 1, 
a secretase responsible for the cleavage of APP[105], and 
direct targeting of presenilin-1, a protein regulating APP 

processing[106]. 
Population-based studies have demonstrated posi-

tive effects of NSAIDs in the prevention or delay of AD 
onset. In the Rotterdam study, analysis of NSAID use 
with respect to the development of AD in 6 989 partici-
pants revealed that cumulative use of NSAIDs for two 
or more years markedly reduced the risk of AD develop-
ment as compared to individuals with no uptake of anti-
inflammatories[107]. The Baltimore longitudinal study 
reported a similar decrease in AD incidence in NSAID 
users[108]. In addition, early treatment with the NSAID 
indomethacin appeared to slow disease progression in a 
small number of AD patients[109]. Importantly, epidemiolog-
ical studies have also revealed that not all NSAIDs modify 
the AD disease process, with naproxen and celecoxib 
having no effects on AD modification[110]. Indeed, a weak 
detrimental effect of naproxen has been observed in AD 

Fig. 4 Non-steroidal anti-inflammatory drugs (NSAIDs) can block the nitric oxide (NO)-mediated neurodegenerative pathway by reducing neuroinflammation 
and by direct scavenging of NO. Other abilities of NSAIDs that may be relevant to their apparent beneficial pharmacological effects in neurode-
generation include agonism of peroxisome proliferator-activated receptor-γ, a transcription factor that inhibits inducible NO sythase expression 
and downregulation of Aβ expression, for which a number of different pathways have been suggested.
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patients[111]. Similarly, epidemiological data suggest that 
NSAIDs may have a protective effect on PD[112], but not all 
NSAIDs have equal efficacy in this protection, because the 
protective effects were observed for non-aspirin NSAIDs 
but not for aspirin. Indeed, a negative effect of aspirin was 
found although researchers could not rule out confounding 
factors[112]. 

4    Conclusion and discussion 

It is clear that NO plays a role in the pathogenesis of 
neurodegenerative conditions AD and PD, and that acti-
vated microglia, triggered as part of the neuroinflamma-
tory response, are a key source of NO in these conditions. 
Furthermore, NO has been linked to a number of other 
neurodegenerative diseases that are beyond the scope of 
this review. Thus, inhibition of all three NOS isoforms 
potentiates the activity of pharmacological compounds 
known to counteract the effects of the neurotoxin 3-nitrop-
ropionic acid (3-NP) that is used to induce neuronal dam-
age to model Huntington’s disease[113,114]. As such, reducing 
NO helps prevent neuronal death in these circumstances, 
again linking elevated NO to neurodegeneration. In models 
of amyotrophic lateral sclerosis, nitrosative stress increases 
the likelihood of protein aggregation for key proteins[115], 
implying that NO could again mediate neurotoxicity in 
another degenerative disorder. The generality of the finding 
that high levels of NO may, at least in part, mediate neu-
ronal damage and loss in a number of neurodegenerative  
conditions implies that NO modulation would be an im-
portant target for pharmacological strategies to prevent, 
cure or halt the progress of neurodegeneration. There are 
distinctions between these three therapeutic targets. Treat-
ment to cure would involve replacement of lost neurons, 
correct reestablishment of axonal and dendritic pathways 
and regaining function within the system that has degener-
ated. However, if an individual is identified to be at risk, 
prevention is a much less complex prospect, as is halting 
the disease progression. It is within the context of preventing 
and halting disease progression that neuroprotective strate-
gies have the most relevance. Strategies that aim to reduce 
the levels of NO may be effective in preventing neuronal 

death. In fact, empirical evidence has shown that NO inhi-
bition can be neuroprotective, for instance, in ameliorating 
neuronal loss in the 6-OHDA-lesioned rat model of PD[84]. 
However, in the field of neurodegenerative research, pro-
tective effects are usually seen when a proposed treatment 
(e.g. NO inhibition) is applied at or close to the time of 
neurotoxic insult (e.g. 6-OHDA administration). This is 
clearly not easily implemented in the clinical setting. In 
contrast to the rapid occurrence of large-scale degeneration 
in laboratory models in response to a selected and often 
selective neurotoxin, cell loss and degenerative changes in 
the human patient occur over years and decades[116]. Fur-
thermore, a large number of neurons may already be dead 
by the time the patient reports his or her symptoms to a 
doctor. Thus it is estimated that up to 80% of the neurons 
of the substantia nigra have already been lost at the time of 
diagnosis of PD[117]. Therefore, whilst strategies that reduce 
NO levels could prevent further neuronal loss and thus fur-
ther degenerative changes, they may not prove as effective 
as they do in laboratory models due to the differences in 
time of application relative to the point of disease progres-
sion. 

It is well-established in the scientific literature that NO 
protects against neuronal loss in certain circumstances[29-31]. 
The general consensus that is emerging is that low levels 
of NO can be neuroprotective while high levels are neuro-
toxic. This implies that any modulation of NO levels in a 
therapeutic setting would have to be tightly regulated, such 
that NO levels do not drop too low. It is important that 
sufficient NO remains to carry out its pro-survival func-
tions in the neurons in which this is a critical pathway for 
their viability. Furthermore, it should be noted that NO is 
a widely used messenger both within and outside the ner-
vous system, so care would be needed to have highly-spe-
cific targeting of those cells lost in a degenerative disorder 
while avoiding widespread NO depletion with associated 
side-effects.

This makes NO per se, in many ways, a poor choice 
as a therapeutic target. However, targeting the pathways 
that lead to excessive release of NO may be an easier and 
more realistic strategy for preventing neurodegeneration 
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from arising or progressing. It is within this context that 
the finding that the non-neuronal cells of the central ner-
vous system may act as a source of damaging levels of 
NO is of great interest. The severity of the neuroinflam-
matory response has been shown to correlate with the 
severity of pathological changes in the AD brain[118]. It is 
also well-established that anti-inflammatory agents, such 
as NSAIDs, reduce neuroinflammation. In so doing we 
presume that both through the reduction in inflammatory 
cells, and by direct scavenging of NO, these drugs could 
demonstrate useful effects in modulating NO levels. Thus 
some promising observations have arisen with long-term 
NSAIDs protecting against PD and AD. However, it is 
clear that not all NSAIDs act to counteract neurodegenera-
tion. Neither naproxen nor celecoxib has beneficial effects 
in AD patients[110], and aspirin has no beneficial effects 
on PD when investigated using meta-analysis of the pub-
lished data[112]. The inability of celecoxib to protect against 
AD may at least in part be explained by the fact that it is 
a COX-2 inhibitor. The precise role of COX-2 in AD is 
somewhat controversial. Both up-regulation and down-reg-
ulation of COX-2 have been reported in postmortem brain 
samples from AD patients[119,120], with a high degree of 
variability in COX-2 levels between samples[119]. Similarly, 
findings for prostaglandin E2 (PGE2), a major product of 
COX-2 activity, in AD patients are inconsistent: whilst the 
CSF levels of PGE2 are found to decrease in AD patients 
with the increase of the severity of the disease[121], elevated 
levels of PGE2 are reported in other studies[122]. Thus it re-
mains unclear what the role, if any, of COX-2 is in AD. The 
finding that aspirin does not have beneficial effects against 
PD[112] raises another point that must be mentioned when 
considering the role of NSAIDs in counteracting these 
conditions. The complexity of modelling neurodegenera-
tion in the laboratory was briefly discussed in the section 
on PD earlier in this review. Thus aspirin has been found to 
protect midbrain dopaminergic neurons from degeneration 
in response to LPS in mixed neuron-glia cultures through 
its ability to reduce microglial activation and a reduction in 
NO release[123]. Furthermore, in rats with electrical ablation 
of the substantia nigra, aspirin administration can reduce 

the rigidity that is associated with this lesion[124], and it can 
also protect against neurotoxicity in an MPP+-induced rat 
model of PD in vivo[125]. The conflicting data between the 
research models and the epidemiological evidence may 
be attributed to several factors, such as species difference, 
differences in the concentration and the relative timing of 
drug administration versus the time of neuronal loss, and 
the different nature of neuronal loss from the acute lesions 
and neuronal death seen in laboratory models versus the 
long period of progressive degeneration that occurs in hu-
man sufferers.  

Although the epidemiological data revealing that long-
term NSAID use can prevent or delay the onset of AD and 
PD seem convincing, there are also studies questioning the 
validity of these findings. For instance, a postmortem study 
has revealed that corticosteroids (which, interestingly, also 
have anti-inflammatory properties) but not NSAIDs de-
crease the incidence of the histopathological characteristics 
of AD, neuritic plaques and neurofibrillary tangles[126]. In-
deed, an increased neuritic plaque load has been recorded 
in NSAID users, especially in those with high levels of 
use[127]. In addition to the reasons mentioned above, one of 
the possible explanations for the discord between the his-
topathological data and observations of clinical symptoms 
may relate to the beneficial effects of NSAIDs on neuro-
physiology. Thus in spite of the presence of histopathologi-
cal change, the neural network continues to function due 
to the NSAID-induced reductions in inflammatory markers 
including cytokines and, of course, high concentrations of 
NO.  

It may also be possible to modify the current genera-
tion of NSAIDs to obtain pharmacological compounds that 
have multiple beneficial effects in the nervous system, thus 
enhancing their efficacy. It has been demonstrated that hy-
drogen sulphide has several positive functions within the 
central nervous system, including protection of hippocam-
pal neurons from ischemic damage[128], amelioration of 
parkinsonian symptoms in 6-OHDA-lesioned rats[129], and 
prevention of LPS-induced cognitive deficits[130]. These 
findings suggest that hydrogen sulphide-releasing drugs 
per se could be beneficial in the fight against neurodegen-
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eration. Thus hybrid molecules that have both NSAID- 
and hydrogen sulphide-releasing properties have been 
generated and have demonstrated more significant anti-
inflammatory properties than NSAIDs alone[131]. 

Obviously, the mechanism by which NSAID use 
appears to at least delay the onset of AD or PD in the 
population-based studies remains to be elucidated, and 
there is no definitive evidence that the beneficial effects 
of NSAIDs with respect to AD and PD are linked to their 
ability to modulate NO levels. Nonetheless, it is intriguing 
that a category of drugs that modulate NO can at least de-
lay, if not prevent, the onset of AD, at least in the subset of 
individuals studied. It is also an important discovery that 
this category of drugs can be modified, for instance, to also 
release hydrogen sulphide. This implies that the possibility 
exists to modify these molecules further, perhaps even to 
enhance their NO-scavenging capacity.

In conclusion, given the wide range of evidence dem-
onstrating the occurrence of S-nitrosylated proteins in 
animal models and tissues from patients with degenerative 
diseases, it is clear that NO is involved in the pathogenesis 
of these disorders at some level. The beneficial effects of 
blocking NO production and action in laboratory models 
of neurodegenerative disorders imply that NO is a valid 
target in the search for strategies to prevent, halt or treat 
these disorders. However, the localisation of NO mes-
senger systems to multiple types of cells and tissues and 
the requirement of low levels of NO to promote neuronal 
viability imply that care needs to be taken in therapeutic 
manipulation of this molecule. To this end, it is evident 
that NSAIDs should be further investigated for their poten-
tial to modify NO release and thus neurodegeneration. The 
beneficial effects of the drugs identified to date give hope 
that their potential to manipulate NO signalling pathways 
may be a therapeutic hope to arrest these diseases.
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一氧化氮在神经退行性疾病中的作用：非类固醇性抗炎药的治疗前景

Gayle Helane Doherty

圣安德鲁斯大学生物学院，圣安德鲁斯 KY16 9TS，英国

摘要：一氧化氮(nitric oxide, NO)是一类胞内信使。研究表明，神经退行性病人脑组织中催化合成NO的酶的表达

水平显著提高，提示NO与神经退行性疾病密切相关。此外，在这些组织中还检测到硝化的蛋白，提示NO在这些

组织中具有生物活性。在神经免疫应答中，神经元和胶质细胞(包括小胶质细胞和星形胶质细胞)内都发生了NO
水平的改变。很多神经退行性疾病都伴随有神经炎症，抑制神经炎症的信号通路能延迟这些疾病的发展。因此，

NO及其释放通路已逐渐成为神经退行性疾病研究领域的热点，对它们的理解能帮助我们找到合适的方案来预

防、减缓或者治愈这些疾病。

关键词：阿尔茨海默病；神经退行性疾病；一氧化氮；神经炎症；帕金森氏病




