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Abstract: NG2 cells are a novel distinct class of central nervous system (CNS) glial cells, characterized by the 
expression of the chondroitin sulfate proteoglycan NG2. They have been detected in a variety of human CNS diseases. As 
morphological, physiological and biomolecular studies of NG2 cells have been conducted, their roles have been gradually 
revealed. Research on cellular and molecular mechanisms in the pathophysiological state was built on the preliminary 
findings of their physiological functions; and in turn, this helps to clarify their physiological roles and leads to the 
identification of novel therapeutic targets. This review summarizes recent findings regarding the potential roles of NG2 
cells in traumatic brain injury, multiple sclerosis, glioma, epilepsy, Alzheimer’s disease and electroconvulsive therapy for 
depression. 
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1    Introduction

 NG2 cells are a distinct class of glial cells in the 
central nervous system (CNS). Their discovery revealed 
the existence of a fifth major cell population in the CNS, 
the other four being neurons, mature oligodendrocytes, 
astrocytes and microglia. This finding also indicated that 
the mature CNS contains an abundant supply of precursor 
cells, which are widely distributed. Nowadays, research 
on NG2 cells is going through a second phase, aided by 
advanced methods and technologies[1]. Recent experimental 
results demonstrate that NG2 cells play critical roles in a 
variety of human CNS diseases. 

2    Physiological characteristics of NG2 cells

Most NG2 cells arise from the medial ganglionic 

eminence and the anterior entopeduncular region, with 
a minor contribution from radial glia[2,3]. NG2 cells can 
differentiate into oligodendrocytes, thus they are also 
known as oligodendrocyte progenitor cells (OPCs)[4-10]. 
The in vivo fate of NG2 cells was examined in mice that 
were double transgenic for NG2creBAC (bacterial artificial 
chromosome) and the Cre reporter lacZ/EGFP. In the gray 
matter of these transgenic mice, they can differentiate 
into protoplasmic astrocytes, while in white matter they 
cannot[11]. Studies have shown that NG2 cells in vitro can 
give rise to neurons, but this is highly debated[12-19]. For an 
extensive description of the fate-choice mechanism, which 
is beyond the scope of this review, please refer to the 
original articles.

NG2 cells respond to glutamate in an alpha-amino-
3-hydroxy-5-methyl-4-isoxazole-propionate receptor 
(AMPAR)-dependent manner. They do not exhibit currents 
or possess glutamate transporter 1 (GLT-1) or glutamate/
aspartate transporter (GLAST) protein or mRNA[20]. 
Electrophysiological studies on mouse hippocampal slices 
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and acutely isolated rat hippocampal glial cells using 
whole-cell patch clamp revealed that NG2 cells have 
a relatively high input resistance and express outward 
rectifying potassium currents with little inward current[21]. 
The structure of the neuron-glia synapses found on NG2 
cells differs from that of neuron-neuron synapses by 
having a less well-defined postsynaptic density and smaller 
presynaptic boutons that contain fewer vesicles[22]. Fast 
neuron-glia synaptic transmission has been found between 
hippocampal neurons and NG2 cells. Glutamatergic 
signaling influences intracellular calcium levels in NG2 
cells by activating calcium-permeable AMPA receptors, 
and these inputs are potentiated by high-frequency 
stimulation[23].

3    NG2 cells in diseased CNS

3.1 NG2 cells as a double-edged sword in brain injury  
Traumas, such as needle puncture and knife damage, induce 
an increase in progenitor proliferation and a coincident 
increase in NG2 proteoglycan expression under acute 
post-injury (PI) conditions, which are known to persist 
for 14–21 days[24]. Progenitor proliferation decreases on 
the transition from the acute to the chronic PI phase[25]. In 
conjunction, viral studies suggest that NG2 proteoglycan 
transcription levels decline. Despite the reduced mRNA 
(to basal level), NG2 proteoglycan levels persist and 
become inherited by the offspring cells derived from 
progenitors. Tissue repair continues after injury and begins 
with the formation of a gliotic scar. Similar findings are 
also reported in focal cerebral ischemia models. The 
NG2 proteoglycan appears as two subtypes: one at 290 
kDa occurring in intact brain, and the other at 300 kDa 
in regions of necrotic injury. The larger cell bodies and 
thicker processes in the ischemic sites result from NG2 
cell proliferation. They prevent the spread of damage 
to normal tissues, and some gradually differentiate into 
oligodendrocytes and contribute to remyelination[26-29].

However, they do have a negative impact as well. 
During the chronic PI phase, excessive accumulation 
of NG2 proteoglycan interferes with neurite growth in 
vitro and even prevents the newly sprouting axons from 

regenerating past the gliotic barrier and into the injury site. 
In addition, the cellular deficit incurred by the injury can 
bias the fate selection and contribute to a predominantly 
injurious phenotype. Therefore, progenitors in the context 
of injury may have a homogenous phenotype, less diverse 
than that in the intact CNS[24].
3.2 Remyelination in multiple sclerosis (MS): NG2 cells 
function as OPCs  The relative number of NG2 cells varies 
in different types of MS lesion in different reports[30-36]. 
However, the conclusion can be drawn that NG2 cells are 
responsible for rapid and efficient myelin repair. Acute 
demyelination is repaired efficiently, while remyelination 
fails in chronic lesions[37]. This may result from an 
insufficiency or the depletion of NG2 cells over time, since 
quantitative analysis shows that NG2 cells only account 
for less than 5% of the total number of glial cells, while 
the number of oligodendrocytes is approximately 10-fold 
higher[38].

The discovery of autoantibodies to NG2 proteoglycan 
in the cerebrospinal fluid of MS patients is particularly 
important. They not only disrupt the remyelination process 
by destroying NG2-positive OPCs and blocking their 
migration, but also interact with the nodes of Ranvier to 
interfere with signal transduction[39]. These endogenous 
NG2 antibodies are considered to be the main cause of 
MS.

On the one hand, lovastatin (HMG-CoA reductase in-
hibitor)[40], glamorgan acetate[41], guanosine or guanine[42], 
ciliary neurotrophic factor[43], thymosin β4[44], and en-
dogenous leukemia inhibitory factor[45], through different 
cascades of signal transduction, increase the numbers of 
NG2 cells and oligodendrocytes, and put an end to the 
demyelination process. The expression of platelet-derived 
growth factor α receptors (PDGFαRs) increases during 
the proliferation of NG2 cells, and NG2 proteoglycan ex-
pression disappears as NG2 cells differentiate into mature 
oligodendrocytes[46]. However, it is not the intention of this 
article to present a detailed review of the signaling path-
ways in MS. 

On the other hand, chemokine stromal cell-derived 
factor-1, known as a developmental molecule to direct the 
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migration, proliferation, and differentiation of neuronal pre-
cursor cells within the developing CNS, is significantly up-
regulated within activated astrocytes and microglia during 
demyelination, as are chemokine stromal cell-derived factor 
receptor 4 (CXCR4)-positive NG2 cells, or OPCs. Loss of 
CXCR4 signaling via either pharmacological blockade or 
in vivo RNA silencing leads to decreased OPC maturation 
and failure of remyelination. Therefore, CXCR4 activation, 
by promoting the differentiation of OPCs into oligoden-
drocytes, is critical for remyelination in the injured adult 
CNS[47].
3.3 Critical roles of NG2 cells and NG2 proteoglycan in 
glioma  Many human gliomas carry markers of OPCs, such 
as NG2 proteoglycan, PDGFαR and Olig-2, suggesting 
that these progenitors are the original cells for glioma  
initiation[48-50]. The sensitivity of these progenitors to 
mitogenic stimulation may play a role in their susceptibility  
to transformation. Indeed, transformation via overexpression 
of PDGF provides the basis for a number of commonly-used 
rodent glioma models[51-54]. Molecular interactions allow 
NG2 proteoglycan to contribute to critical processes such 
as cell proliferation, glioma vasculature, cell motility and 
cell survival. Moreover, several reports have correlated the 
expression of NG2 proteoglycan with the degree of malig-
nancy of the glioma[55-60]. 
3.3.1 On glioma cell motility  NG2 proteoglycan, the 
extended central D2 domain of which binds to type VI 
collagen, acts as a linkage between the cell surface and 
the extracellular matrix[61,62]. Similar results have been 
achieved on laminin 2-coated surfaces[63,64]. The roles 
of collagen VI and laminin 2 in brain vasculature and 
their association with axonal processes provide a means 
for migration of NG2-positive glioma cells along blood 
vessels and nerve fiber tracts[65].

NG2 may be an important linker between endothelial 
cells and pericytes. Vascular endothelial cells do not 
express NG2 proteoglycan, but exposure to NG2 stimulates 
the motility of glioma cells. This trans effect is due to the 
interaction of the proteoglycan with the galectin-3/α3β1 
integrin complex on the endothelial cell surface, resulting 
in enhanced β1 integrin signaling, greater endothelial cell 

motility and enhanced endothelial tube formation in vitro, 
and dramatically increased blood vessel development in 
vivo[66].

NG2 has been implicated as a co-receptor for β1 
integrin ligands. In addition, NG2 and α3β1 integrin are 
co-expressed and form a physical complex on the cell 
surface. Upon stimulation by phorbol-12-myristate-13-
acetate (PMA) or PDGF, the motility of NG2-positive 
cells increases significantly compared to that of NG2-null 
cells[67,68]. Further investigation has shown that both PMA 
and PDGF trigger protein kinase C α (PKCα)-dependent 
phosphorylation of NG2 proteoglycan at Thr2256, and 
that this phosphorylation event is required for the increase 
of motility. Moreover, phosphorylated NG2 at Thr2256 is 
co-localized with α3β1 integrin in broad lamellipodia at 
the leading edges of motile cells. NG2 phosphorylation at 
Thr2256 is responsible for relocation of the NG2/integrin 
complex to lamellipodia, accompanied by increased cell 
motility[69,70].
3.3.2 On glioma cell proliferation  NG2 proteoglycan 
binds to fibroblast growth factor 2 (FGF2) and PDGF-AA 
with high affinity[71]. The core protein of NG2, rather than 
the chondroitin sulfate chain, serves as a co-receptor for 
FGF family members, with putative binding sites scattered 
throughout the D2 and D3 domains[72]. Both FGF2 and 
PDGF-AA are critical for expansion of the oligodendrocyte 
progenitor population.

In addition, phosphorylation of NG2 plays a role in cell 
proliferation. Extracellular signal-regulated kinase catalyzes 
the phosphorylation of NG2 at Thr2314, stimulating cell 
proliferation. Interestingly, α3β1 integrin activation is also 
required for this NG2-dependent increase in proliferation. 
NG2 phosphorylated at Thr2314 is co-localized with α3β1 
integrin on microprojections on the apical cell surface. 
The integrin interacts with a set of signaling molecules, 
different from those needed in the motility mechanism[73]. 
3.3.3 On glioma cell survival  Chemoresistance is an 
important problem occurring in the drug treatment of 
many gliomas. Intriguingly, apart from its effects on cell 
proliferation and migration, NG2-dependent activation of 
α3β1 integrin also has effects on cell survival due to increased 
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signaling through the phosphatidylinositol 3-kinase (PI3K) 
pathway[74]. In all cases, the NG2 expression level has 
direct correlations with both β1 integrin activation and the 
level of PI3K phosphorylation[75].
3.4 Fate-choice change of NG2 cells in some CNS 
diseases
3.4.1 Alzheimer’s disease (AD)  In vitro experiments 
suggest that neuronal induction is inhibited by elevated 
levels of amyloid β peptide (Aβ, a hallmark of AD 
pathology) in AD progenitor cells and in Aβ-treated 
healthy control progenitor cells, through a mechanism 
of β-catenin signaling interference which results in 
decreased expression of proneural genes. Moreover, Aβ 
has been shown to activate glycogen synthase kinase 3 
(GSK-3β, an enzyme that phosphorylates β-catenin)[76], 
leading to the degradation of β-catenin and inactivation 
of the Wnt signaling pathway[77]. The activation of Wnt 
signaling can reverse Aβ fibril-induced neurodegeneration 
and behavioral impairment[78,79], while inhibition of the 
Wnt/β-catenin pathway prevents the differentiation of 
NG2 cells and other precursor cells[80,81]. The formation 
of the β-catenin/T-cell factor (TCF)/lymphoid enhancer 
factor-1 (LEF-1) complex is critical to the transcriptional 
regulation of target genes by the Wnt/β-catenin signaling 
pathway. LEF-1 and β-catenin form a ternary complex 
with DNA and change the DNA bend[82]. In the presence 
of Wnt/β-catenin signaling, β-catenin turns TCF into a 
transcriptional activator[83,84]. Even a transient toxic dose 
of Aβ can cause permanent damage to NG2 cells and other 
precursor cells by increasing the levels of GSK-3β, which 
in turn cause decreases of β-catenin levels leading to the 
down-regulation of proneural gene transcription and an 
impairment of neuron induction[85]. 

In conclusion, Aβ toxicity may diminish the 
multipotential capability of NG2 cells and other neural 
precursor cells by disrupting β-catenin signaling so that 
GSK-3β levels increase, causing the phosphorylation and 
degradation of β-catenin, which leads to reduced proneural 
gene expression. Therefore, although glial progenitor 
cells (GPCs) still exist in the brains of AD patients, 
they are unable to generate adequate numbers of new 

neurons to compensate for the neuronal loss caused by 
Aβ aggregation. If this mechanism really exists, reagents 
like PKC agonists or lovastatin (a reagent that may affect 
cholesterol synthesis and reduce Aβ production) can be 
used to defend against Aβ-induced neuronal damage[86,87]. 
The development of therapeutic approaches to inhibit 
GSK-3β and/or elevate β-catenin in NG2 cells or GPCs 
and other neural progenitor cells may help inhibit the toxic 
effects of Aβ and promote neurogenesis in AD patients[88].
3.4.2 Epilepsy  Hippocampal neurogenesis declines sub-
stantially in chronic temporal lobe epilepsy (TLE). Studies 
have revealed that only 4%–5% of newborn cells differen-
tiate into neurons in the chronically epileptic hippocampus, 
in comparison to 73%–80% in the intact hippocampus. 
Moreover, approximately 79% of newborn cells differenti-
ate into astrocytes or NG2 cells in the chronically epileptic 
hippocampus, which is higher than the 25% in the intact 
hippocampus. Thus, severely diminished neurogenesis in 
chronic TLE does not correlate with decreased production 
of new cells or reduced survival of newborn cells in the 
subgranular zone-granule cell layer. Instead, it is associ-
ated with a dramatic decline in the neuronal fate-choice of 
newly generated cells. Overall, the newborn cells mainly 
differentiate into glial cells in chronic TLE, compared to 
the predominant neuronal fate in control conditions[89,90]. 

NG2 cells contain AMPA receptors rather than gluta-
mate transporters; in contrast, astrocytes express glutamate 
transporters without AMPA receptors. Electrophysiological 
studies have revealed that rat hippocampal NG2 cells have 
a resting membrane potential more depolarized than that of 
astrocytes[20,21]. Impressively, several studies support the 
hypothesis that reduced or dysfunctional glial glutamate 
transporters in the hippocampus may trigger spontaneous 
seizures in patients with mesial temporal sclerosis[91], yet 
the underlying mechanisms are unclear. However, func-
tional and single-cell transcript analyses support the idea 
that enhanced expression of glutamic acid receptor 1 is re-
sponsible for the prolonged receptor responses observed in 
the hippocampal astrocytes of epilepsy patients with mesial 
temporal sclerosis[92,93]. This alteration predicts enhanced 
depolarization upon activation by endogenous glutamate. 
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Prolonged receptor-opening promotes the influx of calcium 
and sodium ions, the latter of which block astroglial Kir 
channels[94], further strengthening depolarization. However, 
it remains unclear whether the changes in glial receptor 
function are the results of epilepsy. It is important that 
hippocampal NG2 cells lack gap junctional coupling but 
receive direct synaptic inputs from GABAergic and gluta-
matergic neurons[95,96], which may constitute an important 
mechanism in the generation of hyperexcitability. Thus it 
is critical to clarify the relative roles of astrocytes versus 
NG2 cells in epilepsy. 

As NG2 cells may regulate excitability, it seems probable 
that they have a functional role in the hyperexcitability 
characteristic of epilepsy, although available data are 
inconsistent. The exact changes occurring in NG2 cell 
functioning during epilepsy still need further investigation.
3.4.3 Electroconvulsive therapy (ECT) and depression  
Volumetric changes and glial pathology have been 
reported in the CNS of patients with depression, an illness 
often associated with elevated glucocorticoid levels. 
Glucocorticoids reduce gliogenesis in the adult rat CNS. 
Loss of glial cells has been reported in depression and de 
novo formation of glial cells may thus have an important 
therapeutic role. ECT is a very efficient treatment for severe 
depression. Studies in animal models have found enhanced 
glial proliferation in response to electroconvulsive seizure 
(ECS) treatment, the counterpart of ECT for rats with 
elevated glucocorticoid levels[97]. In conclusion, ECS 
treatment induces transient glial cell activation in several 
brain areas, as detected by immunohistochemical analysis 
of the morphology and expression of markers typical of 
reactive microglia, NG2 cells and astrocytes[98]. 

ECS counteracts the glucocorticoid-induced inhibition  
of proliferation of NG2 cells, microcytes and oligodendro-
cytes, and the gliogenesis rate is restored to the baseline 
level[99]. This result adds to an increasing number of studies 
suggesting that antidepressant treatment counteracts the de-
generative processes associated with major depression[100,101]. 
However, glial cell proliferation and activation also occur 
in response to neuronal damage, and cognitive side-effects 
have raised concerns as to whether ECT causes cellular 

damage in vulnerable brain regions and thereby leads to 
the activation of glia. Whether similar processes indeed 
play a role in the therapeutic effect of clinically adminis-
tered ECT or contribute to its side-effects requires further 
investigation. 

4    Conclusion

NG2 cells have long been recognized to play an 
essential role in a variety of human CNS diseases. 
However, the current data on their functional roles are still 
superficial. The intimate relationship of NG2 cells with 
axons and synapses renders them extremely sensitive to 
changes in the neuronal environment, allowing them to 
respond to pathological challenges by rapid proliferation, 
differentiation and migration. Moreover, NG2 proteoglycan 
interacts with growth factors and extracellular matrix, and 
activates the subsequent cascades of signal molecules. 
Thus it is considered not only as the marker of a specific 
cell type, but also as a marker of "activated" status (i.e. 
development, injury and pathology). More importantly, 
since NG2 cells can give rise to other cells, it is possible 
that disturbance in the lineage decision and plasticity of 
NG2 cells results in CNS diseases, especially AD and 
epilepsy. Overall, it is not surprising that NG2 cells in the 
adult CNS are a dynamic and heterogeneous population. 

Subsequent studies have tried to identify the mecha-
nisms by which NG2 influences various aspects of cell 
behavior including proliferation and migration. Functional 
understanding of the cellular and molecular alterations of 
NG2 cells in MS will help to clarify the physiological roles 
of NG2 cells in neural function. Further studies of NG2 cells 
in glioma may lead to the identification of novel molecular 
targets. It is also important to investigate the cellular and 
molecular properties of subsets of hippocampal glial cells 
in human epileptic tissue and to unravel the course of their 
functional alterations.
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NG2 细胞与中枢神经系统疾病

许建平，赵杰，李韶

大连医科大学生理学教研室，大连 116044 

摘要：NG2细胞是新发现的一类广泛存在于成熟和发育期中枢神经系统的胶质细胞群体。这些细胞表面表达NG2
硫酸软骨素蛋白多糖，因而常被称作NG2细胞。随着NG2细胞形态学研究的深入，NG2胶质细胞的功能也越来越

受到关注。NG2细胞在人类多种中枢神经系统疾病中扮演重要角色。本文结合最新的研究报道，就其在一些常见

的中枢神经系统疾病中的作用进行概括综述。
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