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Abstract: μ-opioid receptor (MOR) agonists such as morphine are powerful analgesics used for pain therapy. However, 
the use of these drugs is limited by their side-effects, which include antinociceptive tolerance and dependence. Earlier 
studies reported that MOR analgesic tolerance is reduced by blockade of δ-opioid receptors (DORs) that interact with 
MORs. Recent studies show that the MOR/DOR interaction in nociceptive afferent neurons in the dorsal root ganglion 
may contribute to morphine analgesic tolerance. Further analysis of the mechanisms for regulating the trafficking of 
receptors, ion channels and signaling molecules in nociceptive afferent neurons would help to understand the nociceptive 
mechanisms and improve pain therapy. 
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1    Introduction 

Small-diameter neurons in the dorsal root ganglia 
(DRGs) convey signals from nociceptors, thermorecep-
tors and sensitive mechanoreceptors to the dorsal horn of the 
spinal cord through afferent Aδ- and C-fibers that terminate in 
laminae I and II. In response to peripheral noxious stimula-
tion, the excitatory neurotransmitter glutamate is released 
from these afferent terminals in the superficial dorsal 
horn. Studies over the past decades showed that this 
excitatory neurotransmission is negatively regulated by 
inhibitory regulators released from local neurons, such 
as opioid peptides acting on the presynaptic μ- and δ-opioid 
receptors (MORs and DORs). Accumulating evidence 

suggests that the DOR/MOR interaction in nociceptive 
afferent neurons is a mechanism for morphine analgesic 
tolerance. In the present review, we summarize the recent 
studies on the expression and interaction of opioid recep-
tors in primary sensory neurons and their functional impact 
on pain modulation, and discuss their potential roles in the 
pain therapy. 

2    Expression of opioid receptors in nociceptive 
afferent neurons

Autoradiographic studies provide evidence showing 
the presence of opioid receptors in afferent Aδ- and C-
fibers in laminae I and II of the spinal cord, including the 
binding sites for DOR and MOR agonists[1-5]. The presence 
of DORs on nociceptive afferents is supported by findings 
that release of the excitatory neurotransmitters glutamate, 
substance P and calcitonin gene-related peptide (CGRP) 
from afferent C- and Aδ-fibers is inhibited by the activa-
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tion of DORs[6,7]. These early findings suggested the pres-
ence of DORs on nociceptive afferent neurons, including 
the peptidergic subset of small DRG neurons. 

Following the cloning of opioid receptor genes, DOR1 
mRNA is found in ~70% of DRG neurons, including both 
peptidergic [isolectin B4 (IB4)-negative] and non-peptidergic 
(IB4-positive) subsets of small neurons and large neurons, 
while MOR1 mRNA is mainly present in peptidergic small 
neurons[8-12]. DOR-mediated spinal analgesia is attenuated 
by the intrathecally applied antisense oligodeoxynucleotide 
of the DOR1 gene (Oprd1), and the deletion of Oprd1 or 
the preproenkephalin gene (Penk1)[13-15]. 

Endogenous DORs can be detected specifically by im-
munoblotting with DOR antibodies, including commercially 
available antibodies, in the DRGs and the dorsal spinal 
cord of wild-type but not DOR-deficient mice[10,11,15,16]. 
However, the proper dilutions of the same antibodies are 
required to immunostain DORs specifically in the DRGs 
and laminae I and II[10]. This is an example for testing the 
specificity of receptor antibodies, though it is well-known 
that all antibodies must be used at appropriate concentra-
tions for specific immunoblotting and immunostaining 
in various tissues. So far, no antibodies are available to 
simultaneously stain the endogenous DORs in all subsets 
of DRG neurons and their afferent terminals. Individual 
antibodies can be used to immunostain DORs in peptidergic 
small DRG neurons and large DRG neurons but not 
DORs expressed in IB4-positive small DRG neurons[10,17]. 
It is possible that the antibodies recognize DORs in differ-
ent states of activation, conformation, glycosylation and/
or palmitoylation[18-21]. To exclude the possibility of non-
specific immunostaining[22], it is important to carefully 
assess the antibody specificity and comprehensively analyze 
the distribution of DORs with multiple experimental 
approaches[10].

Based on the findings of DOR- and MOR-mediated 
inhibitory effects on both the Ca2+ currents in small DRG 
neurons and the release of substance P from C- and Aδ-
afferents, as well as the results of immunostaining[7,16,17,23-29], 
DORs and MORs are suggested to be co-expressed in 
peptidergic small DRG neurons. However, a study in the 

mouse expressing DOR with insertion of enhanced green 
fluorescent protein (eGFP) at the C-terminus showed that 
only ~17% of DRG neurons are immunostained for DOR-
eGFP[22]. Besides, most of these immunostained neurons 
are large and NF200-positive, while DOR-eGFP is rarely 
detected in peptidergic small DRG neurons that express 
MORs. In the dorsal spinal cord, the DOR-eGFP-positive 
structures overlap with PKCγ-expressing neurons in 
inner lamina II[22]. Nevertheless, it remains unclear whether 
these eGFP-positive structures are Aβ-afferents from the 
DOR-eGFP-expressing large DRG neurons or IB4-positive 
C-afferents, or due to ectopic expression of eGFP in 
local neurons. In fact, the mechanosensitive Aβ-afferents 
of large DRG neurons primarily project to spinal laminae 
III and IV in rodents[30]. 

To evaluate these conflicting results, several labora-
tories have recently used multiple approaches, including 
single-cell PCR, in situ double-hybridization, electrophysi-
ological recording, biochemical analysis and pharmaco-
logical approaches, to analyze the expressional correlation 
and functional interaction of DORs with MORs. Their 
results showed that DORs and MORs are co-expressed in 
peptidergic small DRG neurons[10,11,31-33]. Importantly, using 
antibodies that recognize DOR/MOR heteromers, Gupta 
et al.[34] were able to demonstrate the presence of the opioid 
receptor heteromer in DRG neurons. Thus, DORs and 
MORs are co-expressed in a considerable population of 
peptidergic small DRG neurons, and form heteromers that 
are involved in pain modulation[35-37]. 

3    Regulation of the plasma membrane inser-
tion of opioid receptors

In both peptidergic small DRG neurons and PC12 
cells, immunostaining with antibody against epitope-tag 
hemagglutinin (HA) or Myc shows that the exogenously 
expressed HA- and Myc-DORs are mainly intracellularly 
distributed and often associated with large dense-core 
vesicles (LDCVs) which contain neuropeptides[10,17,38,39] 
(Fig. 1). In contrast, HA- and Myc-DORs expressed in 
large DRG neurons are present on the cell surface, sug-
gesting that the trafficking of DORs is regulated by distinct 
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mechanisms in different neurons. It is clear that DOR-
eGFP cannot be sorted into LDCVs to be transported effec-
tively to the afferent terminals for storage and membrane 
insertion in response to stimulation, but can be transported 
via the constitutive secretory pathway for delivery to the cell 
surface without any special stimulation[10] (Fig. 1). Therefore, 
eGFP is not a proper tag for labeling receptors to study the 
trafficking of newly synthesized receptors, although it re-
mains a good tag for analyzing the internalization of recep-
tors on the cell surface.

The subcellular distribution of HA- or Myc-tagged 
DORs expressed in DRG neurons is consistent with the 
endogenous distribution pattern shown by immunostaining 
with DOR antibodies[10,17,24,38-41]. Moreover, the LDCV 
localization of DORs was found to be disrupted in the 
small DRG neurons of protachykinin 1 gene (Tac1)-
knockout mice[10,17,41,42] (Fig. 2), indicating an essential role 
of the DOR/protachykinin interaction in sorting DORs into 
LDCVs. The third extracellular domain of DOR mediates the 
agonist-binding and the interaction with protachykinin[17,43-47]. 
Intracellular DORs are inserted into the plasma membrane 
following a variety of chemical and behavioral stimuli, 
including sustained pain conditions and prolonged treat-
ment with morphine or ethanol[26,33,34,38,48-51]. 

In peptidergic small DRG neurons and PC12 cells, 
both endogenous MORs and exogenously expressed tagged 
MORs can be inserted into the plasma membrane without 
stimulation[10,25,41]. Therefore, the interaction between 
MORs and DORs could be enhanced by stimuli that induce 
the membrane insertion of DORs, although opioid receptor 
heteromers could also be present in the cytoplasm[34]. In 
large DRG neurons that do not contain neuropeptides and 
LDCVs, immunostaining of DORs can be present on the 
surface of cell bodies, but is mostly absent from their af-
ferent terminals in spinal laminae III and IV, consistent 
with the receptor autoradiographic results[10,22,52]. It remains 
largely unknown why the DORs expressed in large DRG 
neurons cannot be efficiently transported to the terminals 
of Aβ-afferent fibers in the deep laminae of the spinal cord. 

Using liquid chromatography-mass spectrometry 
combined with immunoblotting of subcellular fractions, 

Zhao et al.[39] identified 298 proteins in LDCV membranes 
purified from the dorsal spinal cord, including G-protein-
coupled receptors, G-proteins and other signaling mol-
ecules, as well as ion channels. Interestingly, DOR, β2-
adrenergic receptor, Gαi2, voltage-gated calcium channel 
α2δ1 subunit and P2X purinoceptor 2 are localized in 
substance P-positive LDCVs in small DRG neurons, 
whereas β1-adrenergic receptor, Wnt receptor frizzled 
8 and dishevelled 1 are present in substance P-negative 
LDCVs. Furthermore, DOR1/Gαi2/Gβ1γ5/phospholipase C 
β2 complexes are found to associate with LDCVs. Thus, 
the plasma membrane properties of nociceptive afferent 
neurons can be rapidly modified in response to noxious 
stimulation, acute or chronic inflammation and drug treat-
ments. In fact, DOR-mediated functions are involved in 
the DOR interaction with many membrane proteins such 
as Ca2+ channels and Na+,K+-ATPase that are expressed in 
small DRG neurons[53-58]. In addition, DORs and MORs 
may interact with β2- and α2A-adrenergic receptors that are 
expressed in DRG neurons, respectively[39,59-61]. Although 
the functional consequences of the stimulus-induced co-
insertion of LDCV-associated molecules remain largely 
unclear, one could expect that such a reaction would cause 
a “phenotypic” modification of the plasma membrane, 
enabling a shift of the sensitivity of nociceptive afferent 
neurons to many neurotransmitters, neuromodulators and 
applied drugs. 

In the nervous system, DORs expressed in different 
types of neurons may have subcellular distribution patterns 
distinct from that in DRG neurons. Moreover, only 40% of 
DORs expressed in transfected HEK cells are transported 
to the cell surface, while the rest are retained in the endo-
plasmic reticulum[62]. Such intracellular retention of DORs 
may also be present in many neurons. It would be interesting 
to reveal the mechanisms for retaining DORs intracellu-
larly and releasing these receptors from the retention pool. 
Although cell biological analysis of the mechanisms of 
DOR trafficking in the brain is very limited, several studies 
showed that nerve growth factor triggers the cell surface 
expression of DORs, and DOR activation can induce the 
plasma membrane insertion of GABAA receptors[63,64]. 
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Fig. 2. Protachykinin-dependent large dense-core vesicle (LDCV)-localization and transport of δ-opioid receptors (DORs). Dissociated dorsal root gan-
glion (DRG) neurons were transfected with Myc-DOR by electroporation. Tac1 encodes protachykinin, which is a precursor protein of the neuro-
peptide substance P. Substance P and calcitonin gene-related peptide (CGRP) are often co-localized in LDCVs in the small DRG neurons of nor-
mal mice. Double-immunostaining with antibodies against Myc or the neuropeptide CGRP showed that CGRP (green) and exogenously expressed 
Myc-DOR (red) are co-localized in LDCVs in the distal part of the neurites of small DRG neurons cultured from wild-type mice (Tac1+/+). In con-
trast, Myc-DOR is absent from CGRP-containing LDCVs, but is localized on the surface of the neurites of small DRG neurons of Tac1-knockout 
mice (Tac1-/-). Scale bar, 8 μm. Images unpublished. See more details in Wang et al., Proc Natl Acad Sci U S A, 2010[10]. 

Fig. 1. Myc-δ-opioid receptor (DOR), but not DOR-enhanced green fluorescent protein (eGFP), can be sorted into large dense-core vesicles (LDCVs) in 
small dorsal root ganglion (DRG) neurons. Dissociated DRG neurons were transfected with plasmid expressing Myc-DOR or DOR-eGFP by elec-
troporation. Double-immunostaining with antibodies against Myc (green) or neuropeptide calcitonin gene-related peptide (CGRP) (red) showed 
that Myc-DOR is localized in CGRP-containing LDCVs in small DRG neurons. However, immunostaining with CGRP antibody showed that 
DOR-eGFP (green) does not localize in CGRP-positive LDCVs (red), but is distributed on the cell surface of small DRG neurons. Scale bar, 8 μm. 
Images unpublished. See more details in Wang et al., Proc Natl Acad Sci U S A, 2010[10]. 
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4    Opioid receptor interaction in nociceptive 
afferent neurons

Given that co-expression of DORs and MORs in pep-
tidergic small DRG neurons could be a cellular basis for 
opioid receptor interaction in the pain pathway[10,11,27,29,31-34], 
the functional analysis of MOR/DOR heteromers would 
be critical for understanding opioid physiology and phar-
macology[35-37]. Recent studies show that treatment with 
either DOR agonists or the MOR agonist Tyr-D-Ala-
Gly-MePhe-Gly-ol (DAMGO) and methadone but not 
morphine results in endocytosis of DOR/MOR heterom-
ers in transfected HEK293 cells[11,65]. The receptor com-
plexes internalized by DOR agonists are ubiquitinated for 
lysosomal degradation, leading to a reduction of surface 
MORs[11]. In addition, a basal level of co-internalization 
and co-degradation of DORs and MORs occurs in the 
transfected cells[11,65]. The mechanism of such a reaction 
in the cells remains unknown. However, the basal level 
of co-degradation of MOR/DOR heteromers in the spinal 
cord may be caused by opioid peptide enkephalin released 
from dorsal horn neurons[11,66]. The co-degradation of these 
opioid receptors is enhanced by treatment with exogenously 
applied DOR agonists[11] or persistent release of endog-
enous opioid peptides with a high affinity for DORs. It is 
interesting that DOR antagonists attenuate the methadone-
induced co-internalization of MOR/DOR heteromers in 
transfected HEK293 cells[65]. MOR/DOR heteromers could 
recruit β-arrestin, while DORs but not MORs are normally 
coupled with β-arrestin[67,68]. Taken together, the interac-
tion between DORs and MORs plays an important role in 
regulating receptor trafficking, signaling, functioning and 
metabolism, and is involved in the mechanisms of pain 
modulation and brain disorders[35-37,69-71]. 

Both MORs and DORs have been known for decades 
to inhibit nociceptive transmission in the spinal cord. 
However, a study published in 2009 suggested that DORs 
and MORs function in segregated spinal sensory circuits 
mediating the inhibitory effect on mechanical or thermal 
hyperalgesia respectively, due to the absence of DOR-
eGFP in the MOR-expressing peptidergic small DRG 

neurons and the presence of DOR-eGFP in large DRG 
neurons[22]. However, during the past two years, many studies 
have demonstrated that DOR agonists and MOR agonists 
induce analgesic effects on both thermal and mechanical 
hyperalgesia through activating these opioid receptors 
co-expressed in nociceptive afferent neurons[11,12,31,33,72], 
consistent with the finding of coexistent DORs and MORs 
in peptidergic small DRG neurons. Thus, accumulating 
evidence shows that DORs and MORs can interact and 
function in the same nociceptive sensory circuit.

It has been noted that the translocalization of DORs 
and the opioid receptor interaction in nociceptive sensory 
neurons may enable modulation of the pharmacological 
effects of opioid agonists. The inhibitory effect of a DOR 
agonist on the Ca2+ current in small DRG neurons is 
enhanced after 10-Hz electrical stimulation[10]. Opioid 
receptor ligands are known to bind to opioid receptor 
subtypes with various affinities[73,74]. The opioid agonists 
targeting preferentially to one type of opioid receptor often 
also bind to the other two types at low affinities. Endog-
enous opioid peptide enkephalins have the highest affinity 
for DORs, ~10-fold lower affinity for MORs, and very 
low affinity for κ-opioid receptors (KORs); β-endorphin 
binds to MORs and DORs with high affinity, but has little 
affinity for KORs; dynorphin has preferential affinity for 
KORs, but also binds to MORs and DORs with high af-
finity. DAMGO has ~1 000-fold higher affinity for MORs 
over DORs. Deltorphin II binds to DORs with ~3 000-fold 
higher affinity over MORs. The selectivity of opioid recep-
tor agonists and antagonists is a concern in the interpreta-
tion of experimental data.

In the resting state, only a limited number of DORs 
is present on the cell surface of nociceptive afferent neurons 
while MORs are abundant. MORs might be activated 
when a high dose of DOR agonist is used, whereas a low 
dose of DOR agonist could be sufficient to induce a DOR-
specific effect when a large number of intracellular DORs 
are inserted into the plasma membrane in response to 
various stimuli. This idea may explain some seemingly 
conflicting findings that DOR agonist-induced antinocicep-
tion is mediated by MORs under normal circumstance, but 
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mainly by DORs following physiological or pathological 
stimulation[15,22,33,75-78]. Under basal conditions, presynaptic 
inhibition in laminae I–II of the spinal cord is induced by 
a high concentration of a DOR agonist, and this effect is 
attenuated by a MOR antagonist[79]. However, after treat-
ment with the TRP agonist icilin, the presynaptic inhibition 
induced by the DOR agonist increases and is blocked by 
the DOR antagonist[79], suggesting that the TRP agonist-
induced surface expression of DORs is important for 
producing a DOR-selective inhibitory effect. Therefore, 
the ratio of DOR versus MOR in the plasma membrane 
and the formation of DOR/MOR heteromers appear to be 
important factors that regulate the pharmacological proper-
ties of opioid ligands in vivo. 

5    Contribution of opioid receptor interac-
tion to the mechanism of morphine antinoci-
ceptive tolerance

Opioid analgesics (e.g. morphine) with high affinity 
for MORs are still the most powerful analgesics available 
for pain relief. However, their chronic use may lead to 
the development of antinociceptive tolerance and depen-
dence[80-82]. Early pharmacological studies showed that 
blockade of DORs often results in enhanced morphine 
analgesia and reduced tolerance[83-86], suggesting that DORs 
interact with MORs in the pain pathway[87-90]. Further 
studies revealed that morphine tolerance can be reduced by 
preventing DOR phosphorylation, deleting either Oprd1 or 
Penk1, or deleting Tac1 that reduces DOR transport to 
the spinal dorsal horn via LDCVs[14,15,17,91]. 

A recent study showed that the DOR agonist-induced 
co-degradation of MORs may contribute to morphine 
antinociceptive tolerance, and morphine tolerance can 
be attenuated by treatment with an interfering molecule 
containing the first transmembrane domain of MOR that 
interacts with DOR and disrupts the MOR/DOR interac-
tion[11]. Thus, dissociation of MORs from DOR-mediated 
co-degradation in nociceptive afferents may be a potential 
strategy to improve opioid analgesic therapies. Further 
studies are needed to more comprehensively understand 
the mechanisms of morphine antinociceptive tolerance, 

because the processes of internalization of MOR/DOR 
heteromers might involve many receptors, ion channels, 
pumps, G-proteins and other signaling molecules that in-
teract with these opioid receptors[39] (see also references 37 
and 92). Moreover, it would be interesting to further study 
the regulatory mechanisms for post-endocytic trafficking 
of the MOR/DOR heteromers, including mechanisms for 
degradation and recycling, following different MOR 
agonists such as DAMGO, methadone and other opioid 
analgesics[11,65,93-95]. 

6    Conclusion

In addition to the renewed concept of the coexistence of 
DORs and MORs in peptidergic small DRG neurons, there 
are several emerging concepts related to the stimulus- or 
activity-dependent dynamic distribution of opioid recep-
tors, their interacting membrane proteins, and signaling 
molecules in nociceptive sensory circuits. Typical 
examples could be the stimulus-induced cell surface ex-
pression of the intracellularly stored DORs and the for-
mation and trafficking of DOR/MOR heteromers. These 
dynamic changes in presynaptic opioid receptor trafficking 
would modify the sensitivity of nociceptive afferents to 
the opioid analgesics, and could be involved in morphine 
antinociceptive tolerance and other side-effects. Taking 
advantage of the advanced approaches of molecular cell 
biology, researchers can further explore the mechanisms 
for controlling the trafficking of opioid receptors in 
different subsets of DRG neurons. Such studies would 
contribute not only to the pain mechanism and therapies 
but also to the molecular cell biology and physiology of 
neurons.
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