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ABSTRACT Polycomb group (PcG) and Trithorax group (TrxG) genes encode important regulators of development and differentiation
in metazoans. These two groups of genes were discovered in Drosophila by their opposing effects on homeotic gene (Hox) expression.
PcG genes collectively behave as genetic repressors of Hox genes, while the TrxG genes are necessary for HOX gene expression or
function. Biochemical studies showed that many PcG proteins are present in two protein complexes, Polycomb repressive complexes
1 and 2, which repress transcription via chromatin modifications. TrxG proteins activate transcription via a variety of mechanisms. Here
we summarize the large body of genetic and biochemical experiments in Drosophila on these two important groups of genes.
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THE Polycomb group (PcG) and Trithorax group (TrxG)
genes were first identified in Drosophila as trans-acting

regulators of bithorax complex (BX-C) and Antennapedia
complex (ANT-C) homeotic genes. We will refer to the
BX-C and ANT-C homeotic genes, collectively, as the Hox
genes. The Drosophila body is divided into segments along
the anterior-posterior axis at the embryonic, larval, and
adult stages. The Hox genes specify the identities of seg-
ments at all stages of development, and either loss of func-
tion or ectopic expression can alter segmental identity. In
the maintenance of proper Hox gene expression, the PcG
and TrxG proteins add epigenetic memory to the regula-
tion of their target genes. This is an important function in
metazoans, which must differentiate specialized cells at
specific times and locations during development. Single-
celled organismsmust often rapidly change their specialized
functions to take advantage of changing environments, and
consequently, their use of epigenetic memory can differ from
that in metazoans. A striking example is PcG transcriptional
silencing based on trimethylation of lysine 27 (K27me3) of
histone H3, which is conserved between Drosophila and
vertebrates, but appears to be lacking in both Saccharomyces

cerevisiae and Schizosaccharomyces pombe (Lachner et al.
2004; Garcia et al. 2007).

History of PcG and TrxG

In Drosophila, a specialized row of distinctive bristles (the
sex comb) is present on the first pair of thoracic legs of adult
males (Figure 1A). In 1940, Slifer found a recessive muta-
tion whose phenotype included the presence of partial sex
combs on the second and third pairs of legs of adult males.
She named this mutation extra sex combs (esc) (Slifer 1942).
Several years later, Pam Lewis isolated a dominant mutation
with a similar phenotype, Polycomb (Pc) (Lewis 1947). Over
the next 30 years, additional dominant and recessive muta-
tions with the extra-sex-combs phenotype were isolated, but
they were usually viewed in a leg-specific developmental
context, such as affecting some type of pattern gradient
from anterior to posterior in the thorax (Slifer 1942), or
as a defect in imaginal-disc proliferation causing transdeter-
mination (Gehring 1970; Shearn et al. 1978). The concep-
tual breakthrough came with Ed Lewis’s description of the
phenotype of homozygous Pc mutant larvae (in which the
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thoracic and first seven abdominal segments were partially
transformed toward the identity of the eighth abdominal
segment) and his proposal that Pc encodes a global repres-
sor of all of the BX-C genes (Lewis 1978). This was a fun-
damental shift in thinking that shaped all subsequent
investigations of the PcG genes.

As mutations that caused the extra-sex-combs phenotype
were recovered in an increasing number of genes (Gehring
1970; Shearn et al. 1978; Duncan 1982; Ingham 1984; Dura
et al. 1985; Jürgens 1985), it was suggested that those genes
in which zygotic mutations have phenotypes that resembled
weak Pc mutants in both their dominant adult and recessive
embryonic phenotypes be collectively referred to as the PcG
(Jürgens 1985). While the original list of five PcG genes [Pc,
Additional sex combs (Asx), Polycomblike (Pcl), Posterior sex
combs (Psc), and Sex combs on midleg (Scm)] excluded the
genes for which the extra-sex-combs phenotype was a recessive
rather than dominant mutant phenotype {esc, pleiohomeotic
(pho), Enhancer of zeste [E(z)], super sex combs (sxc), and poly-
homeotic (ph)}, these latter genes have been included in every
subsequent list of PcG genes. Since 1985, mutations that cause
an extra-sex-combs phenotype have been characterized in
only five additional genes {Sex combs extra (Sce), multi sex
combs (mxc), cramped (crm), Suppressor of zeste 12 [Su(z)12],
and wings apart-like (wapl)} (Breen and Duncan 1986;
Santamaría and Randsholt 1995; Yamamoto et al. 1997;
Birve et al. 2001; Cunningham et al. 2012). While the ex-
tra-sex-combs phenotype, which is caused by ectopic ex-
pression of the Hox gene Sex combs reduced (Scr), was the
original phenotype for defining the PcG genes, mutant pheno-
types caused by ectopic expression of other Hox genes have
also been used to suggest inclusion in the PcG. For example,
clones of Scm-related gene containing fourmbt domains (Sfmbt)
or calypso mutant cells in imaginal discs show ectopic expres-
sion ofmultiple Hox genes (Klymenko et al. 2006; Gaytán et al.
2007).

Once the idea of a global repressor of BX-C genes was pro-
posed, the suggestion of a global activator soon followed. Ed
Lewismentionedacandidatemutationforapositiveregulator for
the BX-C genes that he had localized to salivary gland chromo-
some subdivision 88B, but gave no details (Lewis 1968). This
mutation, which Lewis first named lethal(3)bithoraxvariegated

[l(3)bxv] and then renamed Regulator of bithorax (Rg-bx), was
extensively characterized by Capdevila and Garcia-Bellido
(Garcia-Bellido and Capdevila 1978; Capdevila and Garcia-
Bellido 1981). At about the same time, another allele was
characterized under the name trithorax1 (trx1) (Ingham and
Whittle 1980; Ingham 1981). The trithorax mutant pheno-
types mimic the loss-of-function phenotypes of the Hox genes.
Mutants that mimic the Hox gene loss-of-function phenotypes
were also identified at several other genes, including female
sterile (1) homeotic [fs(1)h]; absent, small, or homeotic discs 1
(ash1); and absent, small, or homeotic discs 2 (ash2) (Forquignon
1981; Digan et al. 1986; Shearn et al. 1987). The positive
regulators of the Hox genes are now collectively known as
the TrxG genes. Given the complexity of factors required for

gene expression, the TrxG was expected to be more heteroge-
neous than the PcG (Kennison and Tamkun 1988; Kennison
1993, 1995); an expectation fulfilled by both the diverse mu-
tant phenotypes and the biochemical requirements for TrxG
proteins at multiple steps in transcriptional activation and
elongation (see below).

Genetic Screens Used To Isolate PcG and TrxG Genes

While thefirst PcG and TrxGmutationswere isolated by chance,
there have been several forward genetic screens designed to

Figure 1 Homeotic transformations are diagnostic phenotypes of PcG
and TrxG mutants. (A) Shows the first tarsal segments of the first and
second thoracic legs of adult males. The Hox gene Scr is expressed in the
cells that form the first leg, causing the cells to differentiate the row of
distinctive bristles called a sex comb. At the left of (A) is a wild-type male
with a sex comb on the first leg. In the middle of (A) is a male with loss of
Scr function and no sex comb on either first or second legs (a TrxG mutant
phenotype). At the right of (A) is a male with ectopic expression Scr in the
second leg and sex combs on both the first and second legs (a PcG
phenotype). (B) Shows the wings and halteres of pharate adult flies. At
the left is a wild-type fly and at the right is a homozygous trithoraxB27

mutant fly. Loss of function of the Hox gene Ubx in the third thoracic
segment caused the differentiation of anterior wing structures in place of
the haltere structures. There are also transformations of the posterior
wing to a more anterior identity caused by en loss of function. (C) Shows
the abdominal segments of adult males. At the left is a wild-type male
and at the right is a grappa11 mutant male. Loss of Abd-B function in the
grappa mutant transformed the fifth abdominal segment to a fourth
abdominal segment identity.
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identifynewmembersofbothgroups.Mostscreens forPcGgenes
relied heavily on the extra-sex-combs phenotype (shown in Fig-
ure 1A). Screens for dominant or recessive mutations with the
extra-sex-combs phenotype, however, identified only a few
genes (Gehring 1970; Ingham 1984; Dura et al. 1985; Jürgens
1985). A second approach was to screen for dominant en-
hancers of PcG mutants (Duncan 1982; Kennison and Tamkun
1988; Fauvarque et al. 2001) or dominant enhancers of cis-
regulatory mutations that partially derepressed various Hox
genes (Botas et al. 1982; Breen and Duncan 1986). Again,
mutations were isolated at only a few genes. A recent pheno-
typic screen for PcG mutations used mitotic recombination to
generate clones of homozygous mutant imaginal wing cells
in individuals heterozygous for newly inducedmutations. Mu-
tations with a mutant-wing phenotype that resembled the
phenotype of Pc mutants were then examined for ectopic ex-
pression of Hox genes (Gaytán et al. 2007). Another recent
screen isolated dominant suppressors of the pairing-sensitive
silencing caused by PcG response elements (Cunningham et al.
2012). Finally, additional PcG mutations were isolated in
screens that were not intended to identify regulators of Hox
genes, butwere designed to isolated dominantmodifiers of the
eye colormutant z1, a gain-of-function allele of zeste (z) (Kalisch
and Rasmuson 1974;Wu et al. 1989; Birve et al. 2001).Many of
these dominant modifiers of the z1 mutation are alleles of the
PcG genes Suppressor of zeste 2 [Su(z)2], Su(z)12, Scm, and
E(z). An interesting quirk ofDrosophila nomenclature has caused
considerable confusion for those reading the PcG literature for
the first time. The E(z) genewas named for the first allele, which
is a dominant enhancer of z1 (Kalisch and Rasmuson 1974). This
allele, however, is a gain-of-function allele (Jones and Gelbart
1990). Loss-of-function alleles of E(z) are dominant suppressors
of z1 (Wu et al. 1989; Jones and Gelbart 1990).

Only a few forward genetic screens were actually designed
to identify TrxG genes. One of the reasons for the initial
suggestion that trx is a global activator of the Hox genes was
the dosage-sensitive genetic interactions observed between
trx and Pc mutations (Capdevila and Garcia-Bellido 1981;
Capdevila et al. 1986). In flies heterozygous for mutations or
deletions of trx, the phenotypes of Pc mutants were sup-
pressed; i.e., trx mutations are dominant suppressors of Pc
mutants. Screening for dominant suppressors of Pc identi-
fied more than a dozen new genes required for the positive
regulation of the Hox genes, including brahma (brm),moira
(mor), osa (osa), kismet (kis), kohtalo (kto), and skuld (skd)
(Kennison and Tamkun 1988; Fauvarque et al. 2001). For-
ward genetic screens for dominant enhancers of TrxG mu-
tants have also identified several new TrxG genes (Vázquez
et al. 1999; Gildea et al. 2000; Gutiérrez et al. 2003). An
extensive genetic screen was conducted in the McGinnis
laboratory in the 1990s (Harding et al. 1995; Gellon et al.
1997; Florence and McGinnis 1998) to isolate dominant
mutations that reduced the viability of a mutant genotype
with reduced function of the Hox gene, Deformed (Dfd).
While this was a more general screen designed to isolate
mutations with effects on Dfd regulation or function, TrxG

mutations were a subgroup of the mutations recovered. In
addition to the forward genetic screens to isolate mutations
in PcG and TrxG genes, reverse genetic approaches have
also been used. In the case of reverse genetics, a candidate
gene is first identified based on its protein sequence. Muta-
tions in that candidate gene are then characterized to de-
termine whether the mutant phenotype shows misregulation
of Hox gene function or expression. In the absence of clear
evidence of Hox gene misregulation, a candidate gene is often
then tested for enhancement or suppression of known PcG and
TrxGmutant phenotypes (see Kennison 2004 for a description
of some of the mutant phenotypes used for such genetic tests).

PcG and TrxG Mutant Phenotypes

There have been extensive characterizations of the mutant
phenotypes for both PcG and TrxG genes. These include
descriptions of the differentiation of larval and adult cuticular
structures, the expression patterns of target genes in embryos
and imaginal cells, and the expressions of target genes in
tissue culture cells. The mutants examined may result from
loss of zygotic and/or maternal functions, or from loss in
clones of cells. The loss of function in clones of cells has been
generated in heterozygous mutant flies by mitotic recombi-
nation, or by expression of RNA interference (RNAi) con-
structs. For tissue culture cells, the most common approach
has been reducing expression using RNAi. We will only
describe the results of a few of these studies, primarily to
emphasize that there are additional target genes beyond the
Hox genes and that the PcG and TrxG proteins are not
monolithic in function.

PcG mutants

To determine the complete loss-of-function phenotypes for
Drosophila genes, it is necessary not only to remove the zygotic
functions, but also the maternal contributions of wild-type
gene products deposited in the unfertilized eggs. For at least
70% of Drosophila genes, the maternal contribution can alter
the zygotic mutant phenotype (Perrimon and Mahowald
1986). To examine the phenotype after loss of maternal func-
tion, both pole cell transplantation and mitotic recombination
in the female germ line have been used to block the deposition
of maternally encoded gene products. In some cases, the mu-
tant germ cells failed to produce mature eggs, showing that
the tested gene is required for normal oogenesis. Thus, for the
PcG genes crm, E(z), mxc, Su(z)12, and Sfmbt, the effects of
complete loss of thematernal functions cannot be determined,
since these gene functions are required for oogenesis (Shannon
et al. 1972; Phillips andShearn 1990;Docquier et al.1996; Birve
et al. 2001; Klymenko et al. 2006; Iovino et al. 2013). However,
when fertilized eggs are laid, the effect of maternally encoded
gene products can be examined in embryos that also lack zygotic
gene products, as well as in embryos that receive a paternal
wild-type allele.

Among the PcG genes, the first examined for loss of both
maternal and zygotic function in embryos were Pc and esc.
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Embryos that lacked both maternal and zygotic Pc functions
showed the same homeotic phenotype (transformation of all
thoracic and abdominal segments to an eighth abdominal
segment identity) first described for embryos that lacked only
zygotic Pc functions, but with stronger and more consistent
transformations (Haynie 1983; Lawrence et al. 1983). Em-
bryos that lacked both maternal and zygotic esc functions had
homeotic phenotypes like that of homozygous Pc embryos,
while embryos that lacked only maternal or only zygotic esc
functions gave rise to some viable adults (Struhl 1981;
Lawrence et al. 1983). Neither Pc nor esc is required for
oogenesis or for normal segmentation of the embryo. However,
the lack of effects on oogenesis or segmentation in embryos
that lack esc function may be due to the presence of a second
gene, escl, which partially compensates for some esc functions
(Wang et al. 2006; Kurzhals et al. 2008; Ohno et al. 2008).
Loss of escl function alone does not affect viability, fertility, or
visible phenotype, but it strongly enhances many esc mutant
phenotypes.

Loss of maternal and zygotic functions for Sce, Scm, or Asx
produced embryos with homeotic transformations of most
segments, but no segmentation defects (Breen and Duncan
1986; Soto et al. 1995; Fritsch et al. 2003). Loss of both
maternal and zygotic functions for either sxc or calypso also
produced embryos with no segmentation defects and only
weak homeotic transformations of abdominal segments
(Ingham 1984; Gaytán et al. 2007). Loss of both maternal
and zygotic functions for Pcl produced embryos with not
only homeotic transformation, but also with defects in even
numbered segments (Breen and Duncan 1986).

The esc gene is not the only PcG gene whose analyses have
been complicated by the presence of a related gene in the
genome. The PcG genes pho, ph, and Psc also have related
genes in the genome. Almost all embryos that lacked both
maternal and zygotic functions of pho failed to differentiate
the cuticle, but the few that did differentiate the cuticle
showed severe defects in segmentation (Breen and Duncan
1986). Again, the lack of effects on oogenesis may be due to a
second gene related to pho, pleiohomeotic like (phol), which
can partially compensate for some pho functions (Brown et al.
2003). Since its original description, the ph gene has been
shown to be two adjacent genes, ph-d and ph-p, which appear
to have arisen by tandem duplication and have largely re-
dundant functions at all developmental stages (Dura et al.
1987). Loss of both maternal and zygotic functions for either
gene alone had only minor effects on adult phenotypes (the
extra-sex-combs phenotype being the most penetrant) (Dura
et al. 1985, 1987), but loss of maternal and zygotic functions
of both genes (the double mutant) produced embryos that
failed to differentiate the cuticle (Dura et al. 1988; Smouse
et al. 1988). Finally, the Psc and Su(z)2 genes are also adja-
cent in the genome and encode related proteins. Loss of both
maternal and zygotic Psc functions produced embryos with
homeotic defects, HOX gene misexpression, and early devel-
opmental defects (Martin and Adler 1993; Soto et al. 1995).
Loss of both maternal and zygotic Su(z)2 functions produced

embryos with no homeotic or segmentation defects and no
HOX gene misexpression (Soto et al. 1995). Simultaneous
loss of maternal and zygotic functions for both Psc and
Su(z)2 produced embryos slightly more defective in Hox
gene regulation than loss of Psc alone, suggesting limited
redundancy between Psc and Su(z)2 in HOX gene regula-
tion in embryos which is only observable when Psc function
is greatly reduced (Soto et al. 1995). The situation in ima-
ginal wing disc cells, however, is quite different. Clones of
cells that were homozygous mutants for either Psc or Su(z)2
showed no derepression of Hox genes, while clones of cells
that were homozygous mutants for both genes showed ex-
tensive Hox gene derepression (Beuchle et al. 2001). Thus,
Psc and Su(z)2 appear completely redundant in HOX gene
regulation in wing imaginal cells.

As described above, although PcG genes were first identi-
fied by Hox-gene-misexpression phenotypes, themutant phe-
notypes suggest that somePcGproteins have additional target
genes, such as some of the segmentation genes. For example,
embryos that lacked both ph-d and ph-p zygotic functions
showed extensive misexpression of the segmentation gene
engrailed (en) (Dura and Ingham 1988). In addition, although
embryos that lacked both maternal and zygotic functions of
either Pc, Scm, or Asx appeared to differentiate the larval cu-
ticle with no segmentation defects as described above, closer
examination showed ectopic expression of en in a few cells in
mutant embryos that lacked zygotic function (Moazed and
O’Farrell 1992). The necessity for PcG functions to maintain
repression of en is even more evident in imaginal cells
(Busturia and Morata 1988). In addition to en and the
Hox genes, many other targets of PcG repression have been
identified, including some of the PcG genes themselves
(Fauvarque et al. 1995; Bloyer et al. 2003; Ali and Bender
2004; Park et al. 2012). Each target gene may require a
different subset of proteins to maintain transcriptional re-
pression, and the subset of proteins required may differ
between cell types or at different stages of development.
While there is often disagreement on how broadly to define
the PcG, there is a consensus that the PcG should include
genes that encode proteins directly required for maintain-
ing transcriptional repression of the Hox genes in embryos
and/or in imaginal cells.

Some PcG genes also appear to have functions that extend
beyond transcriptional repression, such as chromosome con-
densation, integrity, or behavior. For example, E(z)mutants
exhibited both failures of condensation and chromosomal
breakage at mitotic metaphase (Gatti and Baker 1989;
Phillips and Shearn 1990; O’Dor et al. 2006). Mutants for
ph-p (but not mutants for ph-d) exhibited anaphase bridges
at mitotic divisions in early embryos (Lupo et al. 2001;
O’Dor et al. 2006). This is the clearest example of a non-
redundant function between the ph-d and ph-p genes. The
PcG gene Psc also appears to have a function in mitosis that
is not dependent on its function in transcriptional regula-
tion. Pscmutant embryos exhibited anaphase bridges at mi-
totic divisions (O’Dor et al. 2006; Mohd-Sarip et al. 2012).
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This may be due to defects in cell cycle control, since Psc
protein physically interacts with Cyc-B protein and Psc mu-
tants showed defects in Cyc-B degradation (Mohd-Sarip
et al. 2012).

TrxG mutants

Onlya fewof theTrxGgeneswerefirst identifiedbecause their
phenotypes mimic the phenotypes of Hox gene loss of func-
tion. These include fs(1)h, trx, ash1, and ash2. Although fs(1)h
is required for oogenesis (Perrimon et al. 1984), loss of mater-
nal and/or zygotic functions have been extensively studied
using the temperature-sensitive allele, fs(1)h1. At more restric-
tive temperatures, fs(1)h1 mutant females laid fertilized eggs
that had defects in the early nuclear divisions (Zalokar et al.
1975). In about half of the embryos, the nuclei were haploid.
There were also defects in both the yolk nuclei and the blas-
toderm nuclei in many embryos, including polyploid mitoses
in later blastoderm stages. At more permissive temperatures,
the fs(1)h1mutant females laid fertilized eggs that gave rise to
viable adults with homeotic defects, including transformations
of anterior metanotum and anterior haltere to anterior mes-
onotum and anterior wing, respectively. These homeotic
transformations mimic loss of function for the Hox gene
Ultrabithorax (Ubx) (Forquignon 1981). In addition to the
homeotic transformations, mutant progeny were oftenmiss-
ing legs, halteres, or tergites.

The trx and ash1 genes have very similar (but not identi-
cal) mutant phenotypes. Neither is required for oogenesis,
and loss of both maternal and zygotic functions for trx or
ash1 gives rise to embryos with no defects in segmentation,
and few homeotic transformations (Ingham 1983; Tripoulas
et al. 1994; Klymenko and Müller 2004). Loss of trx zygotic
function is only slightly more normal than loss of both ma-
ternal and zygotic functions, and reduces the embryonic ex-
pression of multiple Hox genes (Mazo et al. 1990; Breen and
Harte 1993). In contrast, reduction of the expression of Hox
genes was only observed in embryos that lacked both mater-
nal and zygotic ash1 functions (Klymenko and Müller 2004).
While loss of trx or ash1 causes only minor defects in mutant
embryos, the effects on imaginal tissues are striking, with ho-
meotic transformations observed in many segments, including
transformations of distal antenna and arista to distal leg struc-
tures, proboscis to leg structures, dorsal prothorax to wing,
first and third legs to a second leg identity, haltere to wing,
and transformations of abdominal and genital structures to
more anterior identities (Ingham and Whittle 1980; Ingham
1981, 1985; Shearn et al. 1987; Tripoulas et al. 1994). The
transformation of haltere to anterior wing in a trx mutant is
shown in Figure 1B. In addition to the phenotypes expected
from loss of Hox gene functions, trx and ash1 also havemutant
phenotypes that resemble loss of en function in imaginal tis-
sues (Ingham 1985; Shearn et al. 1987). Zygotic loss of ash2
function causes homeotic phenotypes very similar to those of
trx and ash1 (Shearn et al. 1987). In contrast to trx and ash1,
however, the ash2 mutant phenotypes do not suggest defects
in en function in either embryos or imaginal tissues.

The rest of the TrxGgeneswere identified based on genetic
interactions or by reverse genetics. These TrxG genes have
diverse mutant phenotypes that suggest not only the regula-
tion of many target genes beyond the Hox genes, but also
many differences in the sets of target genes. In this review, we
will primarily describe the homeotic and segmentation phe-
notypes of TrxG genes.

In addition to fs(1)h, several other TrxG genes are re-
quired for oogenesis, including brm, mor, Snf5-related 1
(Snr1), and Trithorax-like (Trl) (Brizuela et al. 1994; Bhat
et al. 1996; Brizuela and Kennison 1997; Zraly et al. 2003).
Loss of zygotic mor function is embryonic lethal with head
defects that resemble the defects seen in hypomorphic mu-
tants of theHox geneDfd (Harding et al. 1995). Clones ofmor
mutant cells in imaginal discs caused transformations of
metanotum and haltere to mesonotum and anterior wing,
respectively, and transformations of posterior wing to ante-
rior wing (Brizuela and Kennison 1997). The transformations
of posterior wing to anterior wing were associated with re-
ductions in en expression. Clones of brm and Snr1 mutant
cells were small (suggesting defects in cell division) and
caused no clear homeotic transformations, but had defects
suggesting effects on the adult peripheral nervous system
(Elfring et al. 1998; Zraly et al. 2003). Hypomorphic brm
mutants that survived to adults did have homeotic pheno-
types, including reductions in the numbers of sex comb teeth
and transformations of the fifth abdominal segment to amore
anterior identity (Tamkun et al. 1992). Loss of zygotic func-
tion for Trl is lethal at the third larval instar with no apparent
cuticular defects, but hypomorphic mutant males survive and
have a few bristles on the sixth sternite; suggesting a partial
loss of function of the Hox gene Abdominal B (Abd-B) (Farkas
et al. 1994). Clones of Trl mutant cells in imaginal discs
caused no misexpression of Hox genes (Brown et al. 2003;
Bejarano and Busturia 2004).

The TrxG genes osa, kis, and tonalli (tna) are not required
for oogenesis and the phenotypes after loss of both maternal
and zygotic functions have been examined (Daubresse et al.
1999; Vázquez et al. 1999; Gutiérrez et al. 2003). For osa or
kis, embryos that lacked zygotic function had no obvious
homeotic or segmentation defects. Loss of maternal function
for either caused segmentation defects in embryos, with loss
of maternal osa resembling the phenotypes of gap segmenta-
tion mutants and loss of maternal kis resembling the pheno-
type of pair-rule segmentation mutants. Clones of kismutant
cells in imaginal tissues caused homeotic transformations of
the fifth abdominal segment to a more anterior identity (loss
of Abd-B function), and some transformations of first leg to-
ward a second leg identity (loss of Scr function). The leg
transformations were only observed if the kis mutant clones
were induced early in development, at the cellular blasto-
derm stage. For tna, loss of zygotic function caused lethality
over a broad period of development, from the third larval
instar to the pharate adult stages. Males that survived to
the pharate adult stage had transformations of haltere to
wing and reductions in the numbers of sex comb teeth (loss
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of Ubx and Scr functions, respectively). Loss of maternal tna
function was completely rescued paternally, but loss of both
maternal and zygotic functions caused lethality primarily at
the third larval instar.

Loss of function for either kto or skd causes almost identical
phenotypes. Clones ofmutant cells in regions of the leg imaginal
discs that give rise to distal leg structures showed both home-
otic transformations (reductions in the numbers of sex comb
teeth in the first leg) and defects in segmentation of the tarsal
segments (Loncle et al. 2007). Clones of mutant cells in the
wing imaginal disc causedUbxmisexpression in a small subset
of clones in the wing pouch, but clones of mutant cells in leg,
haltere, wing, or eye-antennal discs caused no misexpression
of the Hox genes Scr, abdominal A (abd-A), or Abd-B (Gaytán
et al. 2007).

Finally, hypomorphic mutants for grappa (gpp) and mod-
ifier of mdg4 [mod(mdg4)] can eclose as adults with homeotic
transformations. Hypomorphic gppmutants showed antenna
to leg transformations, reductions in the numbers of sex
comb teeth on the first legs of males, and transformations
of posterior abdominal segments to more anterior identities
(Shanower et al. 2005). A gppmutant with transformation of
the fifth abdominal segment to a more anterior identity is
shown in Figure 1C. Hypomorphicmod(mdg4)mutant males
also showed some transformation of the fifth abdominal seg-
ment to a more anterior identity (Dorn et al. 1993).

Developmental and Genetic Models for PcG and
TrxG Functions

The current developmentalmodel for PcG and TrxG functions
is relatively simple, and is illustrated for the Hox gene Ubx in
Figure 2. The Hox genes are expressed in restricted spatial
domains within the anterior-posterior axis of the Drosophila
body plan. For each Hox gene, the domain of expression is
determined before the cellular blastoderm stage, and is main-
tained through many cell divisions until differentiation of
either the larval or adult structures. Expression of a Hox gene
within its proper domain requires the TrxG gene products.
Transcriptional silencing of a Hox gene in cells in which it
should not be expressed relies on initial repression by the
products of the segmentation genes (the genes that are re-
sponsible for dividing the Drosophila body into segments),
and subsequent maintenance of repression by the PcG gene
products. This model arose fairly early in the studies of Hox
gene regulation, as described below.

Based on the cell-autonomous requirement for Pc in the
larval imaginal cells and the partial transformations observed
in Pc embryos, it was suggested that the role of Pc is in main-
tenance, rather than initiation, of BX-C gene expression
(Struhl 1981; Denell and Frederick 1983). Struhl and Akam
(1985) provided the first molecular evidence for this model.
They showed that inmutant embryos that lacked bothmaternal
and zygotic esc functions, the Hox gene Ubx was initially
expressed in its normal domain at the cellular blastoderm stage,
but showed extensive ectopic expression after gastrulation and

germ band extension. Similar results were described for em-
bryos that lacked both maternal and zygotic functions of an-
other PcG gene, E(z) (Jones and Gelbart 1990). Around the
same time, the initial domains of Hox gene expressions were
found to be altered in embryosmutant for various segmentation
genes (Duncan 1986; Ingham and Martinez-Arias 1986; White
and Lehmann 1986; Akam 1987; Harding and Levine 1988;
Ingham 1988). Since many of the segmentation gene products
disappear shortly after the initial domains of expression of
the Hox genes are set at the cellular blastoderm stage (al-
though many of them are expressed again later during de-
velopment to determine subsequent cell fates, such as in the
nervous system), the need for the PcG and TrxG proteins to
maintain the domains of Hox gene expressions quickly be-
came apparent (reviewed in Akam 1987; Duncan 1987;
Ingham 1988; Kennison and Tamkun 1992).

How is the switch from the early repression by the seg-
mentation proteins to the PcG maintenance repression ac-
complished? One clue comes from studies on the Ubx gene.
The protein encoded by the hunchback (hb) segmentation
gene binds to sites in the Ubx cis-regulatory elements and
represses Ubx anterior to the normal domain of expression
for Ubx in the early embryo (Qian et al. 1991; Zhang et al.
1991; Zhang and Bienz 1992). Hb protein physically interacts
with the Mi-2 subunit of the NURD chromatin-remodeling
complex (Kehle et al. 1998), which could modify chromatin
to facilitate the recruitment or activation of PcG proteins.
Mutants for either of two subunits of the NURD complex,

Figure 2 Developmental model of the regulation of Hox genes by the
PcG and TrxG proteins. The establishment of the initial domain of the Hox
gene Ubx by the segmentation proteins is shown at the top, with Ubx
repressed anterior to its domain of expression by the Hb gap segmenta-
tion protein. The initial domain of Ubx expression is maintained through
larval and pupal development by the TrxG proteins. Maintenance of si-
lencing of the Ubx gene anterior to this domain requires both PcG pro-
teins and trimethylation of lysine 27 on histone H3 (H3K27me3). Posterior
to its normal domain of expression, Ubx is repressed by the Hox proteins
Abd-A and Abd-B, not by the PcG proteins, or by histone H3K27me3.
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Mi-2 and the histone deacetylase Rpd3, were shown to have
defects in Hox gene silencing (Kehle et al. 1998; Chang et al.
2001). While the PcG proteins maintain repression of the Ubx
gene anterior to its normal domain of expression, the PcG
proteins do not appear to be required for maintenance of
Ubx repression posterior to its normal domain of expression.
In parasegment 7, the region of the embryo just posterior to
the domain of Ubx expression, the Ubx gene does not show
enrichment for trimethylation of histone H3K27 (Bowman
et al. 2014). Instead, Ubx repression posterior to its normal
expression domain appears to be the result of direct repres-
sion by the Hox proteins encoded by abd-A and Abd-B (Struhl
and White 1985; White and Wilcox 1985).

While TrxG proteins are required for the expression of Hox
genes within their normal domain, this requirement appears
to be PcG-dependent for some TrxG genes. In the absence of
PcG repression, neither trx nor ash1 is required for Hox gene
expression in either embryos or in larval imaginal discs. This
was first shown for embryos that are mutant for both esc and
trx (Ingham 1983). While embryos mutant for esc have ho-
meotic phenotypes that result from missexpression of Hox
genes and embryos mutant for trx have homeotic phenotypes
that result from failure to express Hox genes, the double
mutant embryos have phenotypes that are almost wild type.
Even without trx functions, the Hox genes are expressed at
levels sufficient for almost normal cuticle differentiation.
These observations were confirmed and extended by Klymenko
and Müller (2004). They found that in both embryos and in
imaginal discs, mutants for either trx or ash1 failed to express
Hox genes in the proper spatial domains. However, in com-
bination with PcG mutations, Hox gene expression was now
restored in trx or ash1mutants. These results suggest that at
least some of the TrxG proteins function mainly to block
establishment of PcG repression.

While these early models still provide the basic framework
for transcriptional regulation by the PcG and TrxG genes,
considerable progress has been made in understanding the
molecular mechanisms behind the models. The remainder of
this review will focus on our current understanding of the
molecular mechanisms of PcG and TrxG functions in tran-
scriptional regulation.

Mechanism of Action of PcG and TrxG Proteins

The molecular characterization of PcG and TrxG genes and
their products provided the first evidence that they might
regulate transcription by altering chromatin structure. The
fundamental unit of chromatin structure is the nucleosome:
an octamer containing histones H2A, H2B, H3, and H4,
around which DNA is wrapped like thread around a spool.
Nucleosomes and other components of chromatin can repress
transcription by blocking the access of regulatory proteins and
thegeneral transcriptionmachinery toDNA.Twogeneralmech-
anismsareused to regulate the repressiveeffectsofnucleosomes
on transcription: the covalent modification of nucleosomal
histones and ATP-dependent chromatin remodeling. As

discussed at length below, PcG and TrxG proteins have
been implicated in both of thesemechanisms for regulating
gene expression.

The covalent modification of nucleosomal histones by
methylation, phosphorylation, acetylation, or ubiquitination
can alter the binding of structural or regulatory proteins to
chromatin. Some histone modifications, including the meth-
ylation of lysines 9 and 27 of histone H3 (H3K9 and H3K27),
are associated with transcriptional repression; while others,
including the methylation of lysines 4 and 36 of histone H3
(H3K4 andH3K36) and the acetylation of lysine 16 of histone
H4 (H4K16), are associated with transcriptional activation
(Bannister and Kouzarides 2011). Chromatin-remodeling
reactions are catalyzed by proteins and protein complexes
that use the energy of ATP hydrolysis to alter the assembly,
structure, or spacing of nucleosomes (Becker and Workman
2013). By catalyzing ATP-dependent alterations in nucleo-
some structure or positioning, chromatin-remodeling fac-
tors regulate the access of regulatory proteins to DNA in
the context of chromatin. Like histone-modifying enzymes,
ATP-dependent chromatin-remodeling factors have been
implicated in both transcriptional activation and repression.

Thefirst connection between aPcGprotein and chromatin
was revealed when Paro and Hogness (1991) determined
the sequence of the Pc protein and discovered that it con-
tains a 37 aa segment (the chromodomain) that is conserved
in HP1, a heterochromatin-associated protein. HP1 is encoded
by Su(var)205, a suppressor of position-effect variegation
(Eissenberg et al. 1990). Position-effect variegation occurs
when a euchromatic gene is juxtaposed to heterochromatin,
leading to its hereditable silencing. Because Pc had also
been implicated in heritable gene silencing, the presence
of chromodomains in the two proteins immediately sug-
gested that Pc might regulate gene expression by altering
chromatin structure. This possibility was verified when sub-
sequent studies revealed that chromodomains directly bind
methylated histone tails (see below).

Another early connection between PcG proteins and chro-
matin was suggested by the sequence of the E(z) protein
(Jones and Gelbart 1990). E(z) contains a conserved do-
main (the SET domain) that is present in Trx and Su(var)3-9
(Tschiersch et al. 1994), another suppressor of position-effect
variegation implicated in hereditable gene silencing. The SET
domain was later shown to be required for the catalytic activity
of lysine histone methyltransferases, further strengthening the
connection between PcG proteins and chromatin. As described
below, the ability of PcG proteins to function as “writers” or
“readers” of histone modifications is essential for their ability
to maintain heritable gene silencing in Drosophila and other
organisms.

Many PcG Proteins Function in Complexes

Many of the PcG proteins can be isolated in soluble protein
complexes; the best-characterized are Polycomb repressive
complex 1 (PRC1) and Polycomb repressive complex 2 (PRC2)
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(see references below) (Figure 3A). E(z), a core component of
PRC2, encodes a histone methyltransferase that trimethylates
histone H3 at lysine 27 (H3K27me3); the diagnostic mark of
PcG-regulated genes (Figure 3B). “Classical” PcG targets, such
as the Hox genes, are coregulated by PRC1 and PRC2 as well
as other PcG protein complexes including Polycomb repressive
deubiquitinase (PR-DUB), dRing-associated factors (dRAF),
and the recruiter complex Pho repressive complex (PhoRC)
(Figure 3) (Klymenko et al. 2006; Lagarou et al. 2008;
Scheuermann et al. 2010). The combined activities of these
protein complexes lead to stable and heritable transcriptional
repression of PcG target genes. PRC1 and PRC2 are present in
most metazoans and their biochemical properties have been
reviewed extensively (Schwartz and Pirrotta 2013; Simon and
Kingston 2013; Grossniklaus and Paro 2014). Below we re-
view theDrosophila PcG protein complexes and their activities,
aswell as highlight a few of the key experiments thatmade use
of the genetic tools available in Drosophila.

An Early Model of PcG Protein Recruitment

As soon as antibodies to PcG proteins were made, they were
used to detect PcG proteins in embryos and larval tissues. PcG
proteins bind at specific bands on larval salivary gland poly-
tene chromosomes, including the locations of the Hox genes
(Zink and Paro 1989). This suggested there might be DNA
sequences present in Hox genes that could recruit PcG pro-
teins to chromatin. Soon after, specific DNA fragments in
transgenes were discovered that could recruit PcG proteins
to polytene chromosomes and render reporter gene expres-
sion responsive to mutations in PcG genes. These DNA frag-
ments were called “Polycomb group response elements”
(PREs) (see below for references and an expanded discussion
of PREs) (Figure 3B).While most PcG proteins do not contain
DNA-binding domains, one PcG protein, Pho, was found to
bind to a specific sequence present in PREs from Hox genes
and other PcG targets (Brown et al. 1998). In-vitro experi-
ments showed that Pho could directly interact with E(z) and
Esc (L. Wang et al. 2004). This led to the model that PcG
recruitment occurred in a sequential order: first, Pho bound
to PREs via its DNA-binding domain, and directly recruited
PRC2 by protein–protein interactions with E(z) and Esc.
PRC2 then acted on flanking nucleosomes to create the
H3K27me3 mark. Finally, Pc binding to H3K27me3 via its
chromodomain caused the recruitment of PRC1 (L. Wang
et al. 2004). This early model was based on recruitment to
a single PRE in the Ubx gene in wing discs and other exper-
iments do not support this model (see below).

PRC1

Pc and ph were among the first PcG genes cloned (Paro and
Hogness 1991; DeCamillis et al. 1992). Early experiments
showed that their proteins co-immunoprecipitated from em-
bryonic nuclear extracts and copurified in a soluble nuclear
complex (Franke et al. 1992). To purify Pc and Ph protein

complexes, transgenes encoding FLAG-tagged proteins were
cloned in P-element vectors, transgenic Drosophila were
made, and soluble nuclear protein complexes were purified
from embryos (Shao et al. 1999).Mass spectrometry of FLAG-
tagged purified protein complexes identified Pc, Ph, Psc, and
Sce (also known as dRing) as stoichiometric components of a
protein complex, along with substoichiometric amounts of
Scm and many other proteins. Further experiments showed
that Pc, Ph, Psc, and Sce formed a stable complex when pro-
duced in Sf9 insect cells (Francis et al. 2001). This complex is
known as PRC1 (Figure 3A). Su(z)2 is a functional homolog
of Psc and can replace it in the PRC1 complex (Lo et al. 2009).
PRC1 complexes inhibit nucleosome remodeling, transcrip-
tion, and compact chromatin templates in vitro (Shao et al.
1999; Francis et al. 2001, 2004). Further, each protein has
specific domains and activities that give clues to its functions
in the PRC1 complex.

Biochemical properties of core PRC1 proteins

As stated above, Pc contains a chromodomain, a 37-amino-acid
domain that binds methylated histones. Early experiments
expressing truncated andmutated Pc proteins from transgenes
showed that the chromodomainwas essential for thebindingof
Pc to chromatin (Messmer et al. 1992). In addition, the chromo-
domain is sufficient to target Pc to PcG-regulated genes.HP1and
Pc are associated with different chromosomal bands in polytene
chromosomes of the larval salivary gland. Replacement of the
HP1 chromodomainwith the Pc chromodomain created ahybrid
protein that bound both Pc and HP1 targets on polytene chro-
mosomes (Platero et al. 1995). This showed that the Pc chromo-
domain was sufficient to target the hybrid protein to PcG target
genes. Subsequent experiments gave a biochemical basis for this
result. The HP1 chromodomain binds to H3K9me3 (Bannister
et al. 2001; Lachner et al. 2004), amark of heterochromatin; and
the Pc chromodomain binds to H3K27me3, the mark of PcG
target genes (Cao et al. 2002; Czermin et al. 2002; Müller
et al. 2002). The fact that the Pc chromodomain was suffi-
cient to target a hybrid protein to PcG target genes suggests
a hierarchical model for PcG recruitment, i.e., that the
H3K27me3 domain created by PRC2 could recruit PRC1 via
Pc binding directly to H3K27me3.

Ph proteins are encoded by two adjacent genes ph-d and
ph-p (Hodgson et al. 1997), which encode nearly identical
proteins. Both Ph-d and Ph-p are present in purified PRC1
protein complexes. We will refer to the Ph-d and Ph-p pro-
teins collectively as Ph. Ph contains a sterile a-motif (SAM)
domain, a protein-interaction domain that is also present in
the PcG proteins Sfmbt and Scm. tcgqzan almost complete
loss hetero- and homo-oligomerization, and the SAM domain
of Ph can form a helical polymer (Kim et al. 2002). Deletion of
the SAM domain from Ph causes an almost complete loss of
Ph activity (Gambetta andMüller 2014). Mutation of a single
amino acid in the SAM domain, which disrupts polymerization,
also renders Ph unable to repress PcG target genes (Gambetta
and Müller 2014). Thus, the SAM domain of Ph is required for
the repression activity of PRC1.

Polycomb and Trithorax Group Genes 1707

http://flybase.org/reports/FBgn0003944.html
http://flybase.org/reports/FBgn0003042.html
http://flybase.org/reports/FBgn0004860.html
http://flybase.org/reports/FBgn0004861.html


The Psc protein contains a homology region (HR) of
200 amino acids also present in Su(z)2 and in themammalian
proteins Bmi-1 and Mel-18 (Brunk et al. 1991; van Lohuizen
et al. 1991). This HR includes a cysteine-rich sequence known
as a ring finger and a helix-turn-helix motif. Although outside
of this region of homology there are no other recognizable
domains, the C-termini of Su(z)2 and Psc share similar
amino-acid compositions (Brunk et al. 1991; Emmons et al.
2009). In fact, Su(z)2 shares many of the biochemical prop-
erties of Psc (Lo et al. 2009), including the ability to inhibit
chromatin remodeling and compact chromatin. The HR is
required for incorporation of Psc or Su(z)2 into the PRC1
protein complex; the C-terminal nonhomologous region me-
diates chromatin compaction and inhibition of chromatin
remodeling (King et al. 2005; Lo et al. 2009). Functional
analysis of Psc mutants showed the requirement of the non-
homologous region of Psc for Hox gene repression in vivo
(King et al. 2005). Overexpression of a truncated form of
Psc, which contained the HR but lacked the C-terminal re-
pression domain, acted in a dominant-negative fashion in
embryos (King et al. 2005). The simplest interpretation of
this result is that PRC1 complexes could form with the trun-
cated Psc protein but they could not mediate transcriptional
repression and thus interfered with formation of functional
PRC1 protein complexes.

Sce (alsoknownasdRing)hasH2Aubiquitin-ligaseactivity
and is required for the deposition of the H2AK118ub chro-
matin mark (H. Wang et al. 2004). Sce is present in at least

two other protein complexes and the preponderance of evi-
dence suggests that PRC1 has very low ubiquitin-ligase activ-
ity. The protein complex dRAF (Figure 3A) was isolated by
immunoprecipitating Sce from Pc-depleted extracts (Lagarou
et al. 2008). dRAF contains the core components Psc, Sce,
and the demethylase Kdm2, which demethylates H3K36me2,
a histone modification catalyzed by the TrxG protein Ash1
(see below). Decreasing the level of Kdm2 via RNAi in cells
led to a dramatic decrease in H2AK118ub levels. Purified
recombinant dRAF complex ubiquitinated H2AK118, whereas
similarly produced PRC1 did not. Recent experiments suggest
that an alternative complex involving Sce and the protein L
(3)73Ah, a protein that contains homology to Psc and Su(z)2
in the RING domain region, contributes a large amount of the
K2AK118 ubiquitination activity in S2 cells (Lee et al. 2015).

Interestingly, the catalytic activityofSce isnotnecessary for
repression of canonical PcG target genes (Pengelly et al. 2015).
Embryos lacking Sce protein contained no H2AK118ub and
misexpressed the PcG target genes Ubx, Abd-B, Antp, and en.
However, embryos with an enzymatically inactive Sce protein
contained no H2AK118ub, but showed no misexpression of
these same PcG target genes. Similarly, clones of larval
cells that contained mutated H2A and H2Av that cannot
be ubiquitinated showed no misexpression of Hox genes
(Pengelly et al. 2015). These data show that the H2AK118ub
modification is not required for PcG target gene repression.
However, the catalytic activity of Sce is necessary for viability.
Previous work has shown that H2AK118 monoubiquitination

Figure 3 PcG proteins and complexes. (A) PcG protein
complexes discussed in this review are shown. Pcl, Jing,
and Jarid2 are PRC2-associated proteins that modify
the activity of PRC2 (see text). Psc/Su(z)2 and Sce (also
known as dRing) are in both PRC1 and dRAF. A recent
article provided compelling evidence that Scm interacts
closely with PRC1, PRC2, and PhoRC, and suggested
that Scm plays a key role in connecting these three
complexes (Kang et al. 2015; see text). (B) PcG protein
complexes are recruited to DNA by PREs. PREs have
binding sites for a large number of DNA-binding pro-
teins; Pho or Phol, Spps, GAF (encoded by the Trl
gene), and Cg are shown. PRC2 trimethylates H3K27
and PRC1 inhibits transcription by a variety of mecha-
nisms (see text). Me, methylation.
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promotes H3K27 methylation by PRC2 (Kalb et al. 2014);
consistent with this, embryos with catalytically inactive Sce
have lower H3K27me3 levels than wild-type embryos. Thus,
it is likely that H2AK118ub contributes to the robustness of
PcG repression. Finally, some PcG target genes (including eve,
dac, and pros) are not derepressed in embryos lacking both
maternal and zygotic Sce protein (Gutiérrez et al. 2012), rein-
forcing the idea that not all PcG target genes are regulated in
the same way.

Sxc modifies the activity of PRC1 by modifying Ph

The PcG gene sxc encodes the glycosyltransferase Ogt that
adds O-linked N-Acetyl glucosamine (O-GlcNAc) to nuclear
and cytosolic proteins (Gambetta et al. 2009; Sinclair et al.
2009). Ogt is not required for transcriptional repression of all
PcG targets; for example, the Hox gene Abd-B is derepressed
in sxc mutant embryos, while the segmentation gene eve is
not (Gambetta and Müller 2014). Of the PcG proteins, only
Ph has been shown to be modified by Ogt (Gambetta et al.
2009). In the absence of the O-GlcNAc modification, Ph pro-
tein still forms PRC1 complexes, but also forms aggregates.
A serine/threonine (S/T) region of Ph is the target of Ogt.
Interestingly, rescue of a ph null mutant with a Ph protein
with the S/T region deleted yields embryos with an Ogt
phenotype; i.e., Abd-B is misexpressed, but eve repression
is still intact. These data suggest that the PcG phenotype
of sxc/ogt mutants can be completely explained by the lack
of O-GlcNAc on the S/T region of Ph (Gambetta and Müller
2014). In addition, these data again show that different PcG
targets have different requirements for PcG repression.

PRC2

As stated above, the function of PRC2 is to trimethylate lysine
27 on histone H3 (H3K27me3). The core PRC2 complex
consists of E(z), Esc, Su(z)12, and Caf1-55 (reviewed in
O’Meara and Simon 2012) (Figure 3A). In addition to the
core components, the PcG protein Pcl is implicated in PRC2
activity (see references below). Finally, the PRC2-associated
proteins Jarid2 and Jing/AEBP2 are homologs of proteins
originally identified in mammalian PRC2 complexes (Cao
et al. 2002; Li et al. 2010).

Biochemical properties of core PRC2 proteins

E(z) contains a SET domain that is essential for enzymatic func-
tion, however, the enzymatic activity of E(z) is very low in the
absence of the subunits Esc and Su(z)12 (reviewed in O’Meara
and Simon 2012). The catalytic activity of E(z) is absolutely
required for Hox gene repression, strongly suggesting that
the H3K27me3 mark is required for PcG-mediated repres-
sion (Cao et al. 2002; Czermin et al. 2002; Müller et al.
2002). Consistent with this, generating clones of cells with
H3 mutated at K27 to either arginine (K27R) or alanine
(K27A), so it cannot be methylated, caused derepression
of Hox genes in a manner entirely consistent with E(z)
mutations (Pengelly et al. 2013; McKay et al. 2015). This

result strengthens the consensus view that H3K27me3 is
the “hallmark” of PcG-mediated repression.

Esc and the related protein Escl are WD-repeat proteins
that fold into seven-bladed b-propellers that provide a scaf-
fold for interactions with protein partners and effectors (Ng
et al. 1997; Tie et al. 1998;Wang et al. 2006). Esc is present at
its highest levels in midembryogenesis and then rapidly de-
clines. In contrast, the highest levels of Escl are from late
embryonic development through the pupal period (Wang
et al. 2006; Kurzhals et al. 2008; Ohno et al. 2008). Recombi-
nant PRC2 complexes containing either Esc or Escl both have
high activities of H3 methyltransferase activity (Wang et al.
2006; Ohno et al. 2008). The phenotypes of esc, escl, and esc-
escl double mutants suggest that esc provides activity early
in embryogenesis, and escl provides activity later, consistent
with the biochemical evidence (Wang et al. 2006; Kurzhals
et al. 2008; Ohno et al. 2008). Available evidence suggests
that different domains within the Esc protein bind E(z), the
histone core, andH3K27me3 (Xu et al. 2010). Further, binding
of Esc to H3K27me3 increases PRC2 activity andmay facilitate
the spreading of the H3K27me3 domain (Margueron et al.
2009; Tie et al. 2007; Xu et al. 2010).

Su(z)12 is also required for PRC2 formation and activity. A
recombinant Su(z)12, Esc, E(z) complex (without Caf1-55)
has high H3K27me3 activity in vitro (Ketel et al. 2005;
Nekrasov et al. 2005). A cell line was made from cells that
contain the Su(z)124 mutation, a nonsense mutation that is
thought to make no functional Su(z)12 protein. Interestingly,
this cell line has no H3K27me2 or H3K27me3, showing that
Su(z)12 is absolutely required for the H3K27me3 mark
(Lee et al. 2015). Work with recombinant PRC2 complexes
showed that a conserved VEFS domain within Su(z)12 is
important for PRC2 assembly and stimulates its enzymatic
activity in vitro (Ketel et al. 2005). Recent structural stud-
ies on crystallized PRC2 subcomplexes from other species
confirm the biochemical experiments and provide addi-
tional information as to how Su(z)12 and Esc stimulate
the enzymatic activity of E(z) (Jiao and Liu 2015; Justin
et al. 2016).

It is possible that Su(z)12 and Esc/Escl function solely in
the context of the PRC2 protein complex. These proteins have
notbeen found inotherproteincomplexesand thephenotypes
of their mutants are consistent with a dedicated role in PcG
repression. In contrast, Caf1-55 is present in other chromatin-
modifying complexes (Suganuma et al. 2008). Like Esc and
Escl, Caf1-55 is a WD-repeat protein that forms a seven-
bladed propeller (Song et al. 2008). Unlike Su(z)12 and
Esc/Escl, Caf1-55 is not required for PRC2 histone methyl-
transferase activity in vitro (Ketel et al. 2005; Nekrasov et al.
2005); its role in PRC2 activity in vivo is unclear (Anderson
et al. 2011; Wen et al. 2012).

Jarid2 and Jing (Aebp2)

In addition to homologs of E(z), Esc, Su(z)12, and Caf1-55,
mammalian PRC2 contains two other subunits, Jarid2 and
Aebp2,which are thought to play roles in stabilizing PRC2and
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targeting it to chromatin (Li et al. 2010; Ciferri et al. 2012).
Drosophila has homologs of Jarid2 and Aebp2; however, their
role in Drosophila development or PRC2 activity is unclear.
Jarid2 and Jing (the Drosophila homolog of mammalian
Aebp2) were identified as proteins highly enriched in the
purification of BioTAP-tagged E(z) protein from Drosophila tis-
sue culture cells, embryos, and larvae, along with the known
PRC2 components (Kang et al. 2015). Esc, Su(z)12, E(z),
Caf1-55, and Jing also copurified with FLAG-HA-labeled Jarid2
isolated from embryos (Herz et al. 2012). Jing and Jarid2 [as
well as E(z) and Su(z)12] were affinity purified from embryo
extracts on recombinant H2AK118ub oligonucleosomes (Kalb
et al. 2014). Genome-wide ChIP-sequencing (ChIP-seq) experi-
ments in larvae showed that Jarid2 colocalizes with the PRC2
core component Su(z)12 at most sites; however, many PREs at
Hoxgenes are not coboundby Jarid2 in larvae (Herz et al.2012).
Similarly, Jing may act at a subset of PcG targets. Although
genome-wide ChIP experiments are not yet available for Jing,
genetic experiments suggest that some PcG target genes are
more sensitive to jing mutations than others. For example, het-
erozygosity for jing enhances the partial wing to haltere trans-
formations sometimes observed in flies heterozygous for Pc, Psc,
Pcl, or Asx mutations. In contrast, jing heterozygosity does not
enhance the extra-sex-combs phenotype in these same genetic
backgrounds (Culi et al. 2006).

Pcl

The first indication that Pcl associates with PRC2 were the
demonstrations that Pcl interacted with E(z) in a yeast two-
hybrid systemand inGST-pulldown experiments, and that Pcl
co-immunoprecipitated with E(z) from embryo extracts
(O’Connell et al. 2001; Tie et al. 2003). In biochemical frac-
tionation experiments, Pcl copurified with E(z) and other
PRC2 components in embryos and larvae (Tie et al. 2003;
Nekrasov et al. 2007; Kang et al. 2015). In addition, Pcl copuri-
fied with BioTAP-tagged E(z) but not BioTAP-tagged Pc (Kang
et al. 2015). Pcl completely colocalized with E(z) on polytene
chromosomes and colocalized with other PcG proteins to PREs
in ChIP experiments (Lonie et al. 1994; Papp and Müller 2006;
Nekrasov et al. 2007). Thus, there is strong evidence that Pcl
represses PcG targets via interactions with PRC2. However, how
does Pcl function? In one study, Pcl was found to be required for
high levels of H3K27 trimethylation at target genes in embryos
and the authors suggested that Pcl stimulates the histone lysine
methyltransferase activity of PRC2 (Nekrasov et al. 2007). In
another study, Pcl was required for E(z) recruitment both to
polytene chromosomes and to the Ubx PRE in wing imaginal
discs (Savla et al. 2008). While these studies suggest that Pcl
plays different roles at different stages of development, more
work needs to be done to fully understand the role of Pcl in
PRC2 recruitment and activity.

Is Scm a Link Between PRC1 and PRC2?

Scmcontains several functional conserveddomains, including
twoMBT repeats andaSAMdomain (Bornemann et al.1996).

Early biochemical experiments showed a close association of
Scm with PRC1 and Scm has often been classified as a PRC1
component. This was based on the observations that Scm
could bind to the core PRC1 component Ph in a yeast two-
hybrid system (Peterson et al. 1997) and was a substoichio-
metric component of PRC1 (Shao et al. 1999; Saurin et al.
2001). Scm can interact directly with the PRC1 component
Ph via its SAM domain (previously called the SPM domain);
mutation or overexpression of the Scm SAM domain disrupts
PcG silencing (Peterson et al. 2004). The MBT repeats of Scm
bind monomethylated lysine residues, an activity that is also
required for PcG silencing of Hox genes (Grimm et al. 2007).
Thus, Scm plays an important role in PcG repression.

A recent article provides evidence that Scm closely inter-
acts with PRC1, PRC2, and PhoRC. Scm copurified with both
BioTAP-tagged Pc and E(z), suggesting that Scm is tightly
associated with both PRC1 and PRC2 (Kang et al. 2015).
Further, recombinant Scm could interact with recombinant
PRC2 produced using the Sf9 baculovirus system. Consis-
tent with this, isolation of BioTAP-tagged Scm identified
PRC1 and PRC2 components as well as PhoRC and other
repressive complexes (Kang et al. 2015). Further, Scm and
Sfmbt interact directly through their SAM domains (Frey
et al. 2016). Thus, Scm could serve as an important func-
tional link between PhoRC, PRC1, and PRC2.

Other PcG Proteins and Complexes

PR-DUB complex

The PcG proteins Asx and Calypso form a protein complex that
deubiquitinates H2Aub1 at lysine 119 in vertebrates and lysine
118 in Drosophila (Scheuermann et al. 2010) (Figure 3A). Ca-
lypso is the catalytic subunit and is a member of the C-terminal
hydrolase (UCH) subclass of deubiquitinating enzymes. The cat-
alytic activity of Calypso in vitro is greatly increased by its asso-
ciation with Asx. In vivo, Calypso protein levels were greatly
reduced and H2AK118ub1 levels were greatly increased in
Asx mutant embryos. ChIP experiments showed that both Ca-
lypso and Asx are present at many PREs. Clones mutant for a
catalytically inactive Calypso protein derepressed Ubx in wing
discs. Thus, PR-DUB is a bona fide PcG complex; it is bound at
PREs and required for Hox gene silencing.

It is curious that the PcG protein Sce monoubiquitinates
H2AK118andPR-DUBdeubiquitinatesthesameresidue,especially
consideringtherecentobservationthat therewasnomisexpression
of Hox genes in embryos with mutant H2A that cannot be ubiq-
uitinated (Pengelly et al. 2015). Although one target of PR-DUB is
clearly H2AK118ub1, there may be other relevant targets. Finally,
it is worth noting that H2A118ub1 levels vary widely at different
PcG target genes (Lee et al. 2015; Kahn et al. 2016), further
drawing into question the role of H2A118ub1 in PcG repression.

PhoRC

The PcG gene pho encodes a DNA-binding protein homologous
to the mammalian multifunctional transcription factor YY1
(Brown et al. 1998). The Drosophila genome also contains
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another YY1 homolog encoded by the phol gene. Pho and Phol
contain four zinc fingers that are 96 and 80% identical to the
zinc fingers of YY1, including all of the amino acids involved in
making important DNA contacts. As expected, Pho, Phol, and
mammalian YY1 all have the same DNA-binding specificity
(Brown et al. 2003). In addition, Pho and Phol share a short,
conserved “spacer” domain. PhoRC consists of Pho or Phol
bound to Sfmbt (Klymenko et al. 2006) (Figure 3A). Structural
analysis showed that the spacer domain of Pho/Phol binds to
the MBT repeats of Sfmbt (Alfieri et al. 2013). As noted above,
Sfmbt also contains a SAM domain that binds to the SAM
domain of Scm (Frey et al. 2016), thus providing a link be-
tween the DNA-binding protein Pho and Scm recruitment to
the PRE. The physical interactions between the SAM domains
of Scm and Ph provide a method for recruitment of PRC1
(Peterson et al. 2004; Kim et al. 2005). Other evidence that
PhoRC directly recruits PRC1 comes from the observation
that PhoRC copurified with biotinylated Pc from Drosophila
embryos; PRC2 components did not copurify (nor did Scm)
(Strübbe et al. 2011). Similarly, BioTAP-tagged Pc copurified
with Sfmbt (and Scm) but not with PRC2 components (Kang
et al. 2015). No PhoRC components were among the top inter-
acting proteins with BioTAP-tagged E(z) (Kang et al. 2015).
Other evidence suggests that Pho can directly bind to Ph and
Pc in vitro (Mohd-Sarip et al. 2002). These data suggest that
PhoRC plays a direct role in recruiting PRC1 to DNA.

Pho and Phol also facilitate PRC2 recruitment. Mutation
of Pho-binding siteswithin a transgene that contains a strong
PRE from the Ubx gene led to the loss of both PRC1 and
PRC2 on the transgene (Frey et al. 2016), showing that
Pho-binding sites are absolutely required for PRE activity.
Further, PRC1 and PRC2 were both lost from this same PRE
in the endogenous Ubx gene in phol; pho double mutant
wing imaginal discs (L. Wang et al. 2004). In yeast two-hybrid
and GST-pull-down experiments, Pho directly interacts with E(z)
and Esc; Phol directly interacts with Esc (L. Wang et al. 2004).
Thus, available data suggest that Pho binding is required for
recruitment of both PRC1 and PRC2. An early model sug-
gested that Pho first recruits E(z), which then trimethylates
H3K27 to form H3K27me3. The H3K27me3 then recruits Pc
via its chromodomain (L. Wang et al. 2004). However, other
work suggests that this hierarchical model is not correct
(Kahn et al. 2014, 2016; Schuettengruber et al. 2014). In
fact, as discussed above, there is strong evidence that PRC1
is recruited directly by the PhoRC complex. In addition,
experiments in tissue culture cells that lacked PRC1 or
PRC2 components strongly argue that PRC1 recruitment
can occur independently of PRC2 (Kahn et al. 2016). Recent
work on PcG recruitment in mammals showed that H2A
ubiquitination by a variant PRC1 complex was required for
PRC2 recruitment (Blackledge et al. 2014). However, as
discussed above, this modification is not required for PcG
silencing in Drosophila (Pengelly et al. 2015). Currently it is
clear that multiple protein–protein interactions lead to the
recruitment of PRC1 and PRC2 and that the histone modi-
fications catalyzed by these complexes further stabilize the

localization and spreading of these two important PcG re-
pressive complexes.

Mxc and Crm

Asdiscussedabove, themajority of PcGgenes encode subunits
of interacting complexes that repress transcription by altering
chromatin structure. The PcG proteins Mxc and Crm act out-
side of these complexes and their roles are less well under-
stood. The Mxc protein is localized to the histone bodies and
may regulate PcG repression indirectly through its effects
on histone levels (White et al. 2011). Crm is a chromatin-
associated protein that is present mainly during S phase
and physically interacts with Mus209 (the Drosophila ho-
molog of PCNA) (Yamamoto et al. 1997); its biochemical
role in PcG-mediated repression is at present unknown.

PREs

PcG proteins are recruited to their target genes by a special
class of cis-regulatory elements termed PREs. PREs were dis-
covered in transgenes by three different assays. First, trans-
genes that contained PREs formed new PcG protein binding
sites in salivary gland polytene chromosomes (Zink et al. 1991).
Second, PREs silenced transgene expression in region-specific
ways, and this repression was dependent on PcG proteins
(Müller and Bienz 1991; Simon et al. 1993; Chan et al. 1994;
Chiang et al. 1995). Third, in a phenomenon called “pairing-
sensitive silencing,” PREs repressed the expression of the
commonly used P-element reporter gene mini-white (w+mC),
and this repression was stronger in flies that had two copies of
the P{PRE: w+mC} transgene in proximity to each other (Kassis
et al. 1991; Kassis 1994). Because of its simplicity, pairing-
sensitive silencing is one of the most commonly used assays
for PRE activity. Genome-wide ChIP experiments showed that
the PREs characterized in transgenes are strong binding sites
for PcG proteins in chromatin (Schwartz et al. 2006).

PREs contain binding sites for multiple proteins

Pho was the first PRE-binding protein identified, and is the
only known DNA-binding protein encoded by a gene that,
when mutated, gives a PcG phenotype (Brown et al. 1998).
Pho-binding sites are required for PRE activity in transgenes
(Brown et al. 1998; Fritsch et al. 1999; Shimell et al. 2000;
Busturia et al. 2001; Mishra et al. 2001; Fujioka et al. 2008),
and also for the activity of a PRE in the endogenous Ubx gene
(Kozma et al. 2008). As discussed above, Pho (along with
Phol) forms a complex with Sfmbt and plays an important
role in PcG complex recruitment. However, Pho-binding sites
alone are not sufficient to recruit PcG proteins (Americo et al.
2002). PREs contain binding sites for many DNA-binding pro-
teins (reviewed in Kassis and Brown 2013) (Figure 3B). The
sequence GAGAG is enriched in PREs and is bound by two pro-
teins, GAGA factor (GAF) [encoded by the Trithorax-like (Trl)
gene] (Farkas et al. 1994) and Pipsqueak (Psq) (Schwendemann
and Lehmann 2002). In vitro, GAF facilitates Pho binding to a
chromatinized template (Mahmoudi et al. 2003). Psq copurified
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with FLAG-tagged Pc fromDrosophila S2 cells and psqmutations
enhance Pc mutations (Huang et al. 2002). Other DNA-binding
proteins with target sites in PREs include Sp1-like factor for
pairing-sensitive silencing (Spps) (Brown and Kassis 2010),
Combgap (Cg) (Ray et al. 2016), Dorsal switch protein 1
(Dsp1) (Déjardin et al. 2005), Grainyhead (Grh), Adh tran-
scription factor 1 (Adf1) (Orsi et al. 2014), Zeste (Z) (Hagstrom
et al. 1997), and Fs(1)h. Z and Fs(1)h bind the same consensus
binding site (Chang et al. 2007). Mutations of binding sites for
many of these proteins attenuate or destroy the activity of the
PRE in transgenes (Brown and Kassis 2013), but how these
proteins function at PREs is unknown. Many of these proteins
can act as transcriptional activators in a context-dependentman-
ner, making it more difficult to discern their function at PREs.

Diversity among PREs

Genome-wide ChIP experiments have identified hundreds
to thousands of locations in the genome where binding of
Pho, Phol, GAF, Dsp1, Adf1, Z, and Cg proteins overlap with
components of PRC1 and PRC2 (Kwong et al. 2008; Oktaba
et al. 2008; Orsi et al. 2014; Schuettengruber et al. 2014; Ray
et al. 2016). Most of these presumptive PREs are bound by
Pho, but the presence of the other PRE-binding proteins varies
among sites. Sequence analyses of known PREs showed that
while PREs shared a number of consensus binding sequences
for PRE-binding proteins, the number, spacing, and order of
binding sites varied (Brown and Kassis 2013). Given this, it is
perhaps not surprising that computational methods to identify
PREs have only been marginally effective (for review see
Kassis and Brown 2013).

Several factors have complicated the identification and
analysis of PREs using reporter genes and other transgenes
in vivo. PRE activity in transgenes is highly dependent on the
chromosomal insertion site; this is because PRE activity is
influenced by the activities of flanking genes (for examples
see Americo et al. 2002; Brown et al. 2005; Cunningham et al.
2010). Thus, when using P-element vectors that insert in the
genome in a semirandom manner, many lines must be gen-
erated to discover the frequency of PRE activity. PREs gener-
ate pairing-sensitive silencing of mini-white at frequencies
between �25 and 80% in P-element-based vectors (for ex-
amples see Americo et al. 2002 and Brown and Kassis 2013).
Using u-C31 site-specific integration, PRE activity also varies
between insertion sites (Okulski et al. 2011). Further, many
PREs are adjacent to, or overlapping with, other regulatory
elements. Nevertheless, most, if not all, PREs mediate pairing-
sensitive silencing, and PREs from the en, Ubx, and eve genes
can substitute for each other in transgene assays (Fujioka et al.
2013; Americo et al. 2002; Cunningham et al. 2010). Similarly,
PREs from the gap gene giant can substitute for en PREs in an
embryonic reporter transgene (Abed et al. 2013). However, not
all PREs behave the same in every situation. For example, two
PREs from the en gene, PRE1 and PRE2, behave differently in a
u-C31-integrated Ubx-reporter gene (Brown and Kassis 2013).
There is also the suggestion that PREs from the Psc/Su(z)2
gene complex may be functionally distinct from other PREs.

Although the Psc/Su(z)2 gene complex is in a domain of
H3K27me3, these genes are not silenced by this repressive
mark but are ubiquitously expressed (Park et al. 2012). Results
from transgene experiments suggested that some PREs from
the Psc/Su(z)2 gene complex decrease the expression of a re-
porter gene rather than completely silencing it (Park et al.
2012). Whether this reflects a difference in PRE-strength
(i.e., how much PcG protein complex is recruited) vs. a differ-
ence in the PcG proteins recruited is unknown.

Genome-wide localization of PcG proteins also shows di-
versity of binding sites with developmental stage, suggesting
stage-specific PREs (Négre et al. 2006; De et al. 2016;
Lorberbaum et al. 2016). Studies of PcG protein binding in
larvae mutant for the DNA-binding protein Cg suggest that
some PREs require Cg function, while others do not (Ray et al.
2016). Further evidence for PRE diversity comes from a study
on transformed tissue culture cells that lacked either Su(z)12
(and thus PRC2) or Psc and Su(z)2 (thus PRC1). In these
transformed cells, two classes of PREs were evident: (1) those
that required PRC1 for PRC2 recruitment, and (2) those that
recruited PRC2 in the absence of PRC1 (Kahn et al. 2016). We
suggest that while PREs share the core function of recruitment
of PcG proteins, the exact DNA-binding proteins and mecha-
nisms involved vary among genes. Thus, PREs have evolved to
work within the context of the gene(s) they regulate.

Are PREs also TrxG response elements?

Fragments of DNA that contain PREs have also been shown to
mediate gene activation in transgenes under certain condi-
tions and at some chromosomal insertion sites (reviewed in
Ringrose and Paro 2004, 2007; Kassis and Brown 2013).
Some experiments have shown that PRE/TrxG response ele-
ment (TRE) functions can be subdivided to different frag-
ments (Tillib et al. 1999). In other cases, the activating and
repressing sequences appear to be overlapping (Déjardin and
Cavalli 2004; Fujioka et al. 2008). Interestingly, ChIP studies
show that Trx binds to PREs (Schuettengruber et al. 2009;
Schwartz et al. 2010). What recruits Trx to PREs is unknown.
Mutation of Pho-binding sites within an Ubx PRE in a trans-
gene totally abrogated PRC1 and PRC2 binding, but left Trx
binding intact (Frey et al. 2016). Thus, it is reasonable to
conclude that Trx is recruited to PREs independently of Pho
and PcG proteins. While it is generally agreed that transcrip-
tion through a PRE inactivates its silencing activity (Schmitt
et al. 2005; Erokhin et al. 2015), the idea that transcription
turns a PRE into a TRE ismore controversial. The role of PRE/
TRE transcription and their RNA products in PcG and TrxG
function are areas of ongoing research (Hekimoglu and Ring-
rose 2009; Herzog et al. 2014).

What Constitutes Epigenetic Memory of the
Repressed State?

At Hox genes, PcG proteins maintain transcriptional repres-
sion through many rounds of cell division. This is often re-
ferred to as epigenetic memory of the “off” state. But what

1712 J. A. Kassis, J. A. Kennison, and J. W. Tamkun

http://flybase.org/reports/FBgn0263102.html
http://flybase.org/reports/FBgn0003042.html
http://flybase.org/reports/FBgn0003996.html
http://flybase.org/reports/FBgn0000577.html
http://flybase.org/reports/FBgn0003944.html
http://flybase.org/reports/FBgn0000606.html
http://flybase.org/reports/FBgn0001150.html
http://flybase.org/reports/FBgn0000577.html
http://flybase.org/reports/FBgn0000577.html
http://flybase.org/reports/FBgn0003944.html
http://flybase.org/reports/FBgn0003944.html


constitutes epigenetic memory? Beuchle et al. (2001) showed
that deletion of Su(z)2-Psc or ph in mitotic clones in imaginal
discs led to transcriptional activation of Hox genes; however,
when these PcG genes were resupplied, Hox genes again be-
came repressed. Thus, the memory of the off state was not lost
in Su(z)2-Psc or ph clones. Thus, transcription does not erase
the memory of the off state. In agreement with this, transcrip-
tion through a PRE in a transgene did not abrogate the
H3K27me3 mark or binding of PcG proteins to the PRE
(Erokhin et al. 2015). Other PcG genes, including Pc and
Scm, were more important for transcriptional memory than
transcriptional repression (Beuchle et al. 2001). Recent
experiments on PRE-containing transgenes showed that
the H3K27me3 mark was inherited at repressed loci, but
is diluted by unmodified H3 upon DNA replication and cell
division after PRE excision (Coleman and Struhl 2017;
Laprell et al. 2017). Thus, although H3K27me3 is one as-
pect of epigenetic memory, the PRE is absolutely required
for stable inheritance of this mark through multiple cell
divisions.

Mechanisms of Action of TrxG Proteins

Biochemical studies have revealed that TrxG proteins activate
transcription via a wide variety of mechanisms, including the
covalentmodificationof nucleosomalhistones, ATP-dependent
chromatin-remodeling, chromosome cohesion, and the recruit-
ment of RNA polymerase II (RNA Pol II) to promoters. The
remainder of this review is focused on the TrxG proteins that
activate transcriptionandcounteractPcGrepressionbyaltering
chromatin structure.

TrxG Proteins That Covalently Modify Nucleosomes

The cloning and molecular characterization of the TrxG gene
trx revealed that it encodes an extremely large, chromatin-
associated protein with a SET domain related to those found
in other known and presumed regulators of chromatin struc-
ture (Mazo et al. 1990; Kuzin et al. 1994; Tripoulas et al.
1994, 1996; Stassen et al. 1995). As discussed above, the
SET domain is required for the catalytic activity of histone
methyltransferases. Trx also contains four PHD fingers, a do-
main that mediates interactions between histone methyltrans-
ferases and their nucleosome substrates. The sequence of the Trx
protein therefore suggested that it maintains heritable states of
active transcription by methylating histone tails.

One of the best initial candidates for a histonemodification
catalyzed by Trx was trimethylation of lysine 4 of histone H3
(H3K4). This histone modification is associated with ac-
tively transcribed genes and is present at high levels at active
promoters in organisms ranging from yeast to humans. Bio-
chemical studies confirmed that Trx has H3K4 methyltrans-
ferase activity in vitro and a point mutation that abolishes this
activity fails to complement trx mutations, suggesting that
the H3K4 methyltransferase activity of Trx is critical for its
function in vivo (Smith et al. 2004).

Trx and Ash2 are subunits of a complex with histone
methyltransferase activity

The analyses of H3K4 methyltransferases in budding yeast
and humans have provided clues to the function of Trx. A
single enzyme, SET1, is responsible for all forms of H3K4
methylation in budding yeast; this histone methyltransferase
is a subunit of aprotein complexknownasSet1Cor complexof
proteins associatedwith SET1 (COMPASS) (Miller et al. 2001;
Roguev et al. 2001). Humans contain multiple H3K4 methyl-
transferases that function as subunits of complexes related to
COMPASS (Shilatifard 2012; Piunti and Shilatifard 2016).

Interestingly, yeast COMPASS and its human counterparts
each contain a subunit related to the TrxG protein Ash2. Are
Trx and Ash2 subunits of a Drosophila complex related to
COMPASS? Trx and two other H3K4 methyltransferases,
dSET1 and Trithorax-related (Trr), copurify with Ash2, sug-
gesting the existence of three COMPASS complexes in Dro-
sophila (Mohan et al. 2011). Each of the complexes contains
a distinct histone methyltransferase (Trx, dSET1, or TRR),
Ash2, and three other common subunits (Rbbp5, Wdr5, and
Dpy30) (Figure 4). Studies in other organisms suggest that
Ash2 is required for the stability or histone methyltransferase
activity of COMPASS (Dehe et al. 2006; Dou et al. 2006).

dSET1 is responsible for the bulk of H3K4 di- and trime-
thylation in flies (Ardehali et al. 2011; Hallson et al. 2012).
Which H3K4modifications are catalyzed by Trx? Biochemical
evidence showed that the SET domain of Trx monomethy-
lates H3K4 in vitro (Tie et al. 2014). Further, these authors
show a striking correlation between the genomic distribu-
tions of Trx-C (one of the major Trx protein isoforms; see
below) and H3K4me1 in S2 cells, located at enhancers and
PREs (Tie et al. 2014). Amissensemutation that abolishes the
histone methyltransferase activity of Trx reduces the level of
H3K4me1, but not H3K4me3, in vivo (Tie et al. 2014). Recently
another group showed that H3K4me2 (amark not examined
by Tie et al.) is highly correlated with PREs in a genome-
wide study in S2 cells (Rickels et al. 2016). Both groups
found no correlation between H3K4me3 and PREs. More
experiments need to be done to understand the relative
importance of H3K4me1 and H3K4me2 and the relationship
of these marks to Trx activity.

Trx and dCBP are subunits of a complex with histone
acetyltransferase activity

The purification of Trx and associated proteins fromDrosophila
embryos identified a 1-MDa complex, Trx acetylation complex
1 (TAC1) (Figure 4) that is distinct from COMPASS (Petruk
et al. 2001). TAC1 contains three subunits: Trx, dCBP, and
the antiphosphatase Sbf1. dCBP, the product of the nejire
(nej) gene, is the Drosophila homolog of CREB-binding pro-
tein, a mammalian coactivator with histone acetyltransferase
activity (Mannervik 2014). Trx, dCBP, and Sbf1 colocalize at
many sites on polytene chromosomes (Petruk et al. 2001).
TAC1 acetylates nucleosomal histones and nej mutations re-
duce the expression of the Hox gene Ubx and a trx-dependent
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reporter gene (Petruk et al. 2001). These findings suggest that
Trx activates transcription by promoting both the methylation
and acetylation of nucleosomal histones.

Cross talk between histonemodifications is relatively com-
monandrecent studieshave suggested thatTrxanddCBPplay
synergistic roles in transcriptional activation (Tie et al. 2014).
dCBP acetylatesH3K27 in vitro; this activity is strongly enhanced
by the monomethylation of H3K4. Trx, dCBP, H3K4me1, and
H3K27Ac colocalize at active enhancers and PREs and the loss of
either dCBP or Trx function decreases H3K27 acetylation in vivo.
Thus, the monomethylation of H3K4 by Trx appears to directly
stimulate the acetylation of H3K27 by dCBP.

We note that TAC1was purified from Drosophila embryos,
and was not found inDrosophila S2 cells (Mohan et al. 2011).
In mammalian cells, no similar TAC1 protein complex has
been identified, Trx-related proteins are present in COMPASS
complexes. Further, TAC1 has not been reconstituted from
recombinant proteins. Thus, its existence is somewhat contro-
versial. Nevertheless, Tie et al. (2014) demonstrated that CBP
co-immunoprecipitates with Trx from Drosophila embryos. In
addition, they identified protein–protein interaction domains
in Trx and CBP (Tie et al. 2014). Still, more investigation and
characterization of the Trx complexes present in Drosophila
embryos is warranted.

The TrxG protein Ash1 methylates lysine 36 of histone H3

The TrxG gene Ash1 encodes a large chromatin-associated
protein with a SET domain and a PHD finger (Tripoulas et al.
1996). Early biochemical studies suggested that Ash1, like
Trx, methylates H3K4 (Byrd and Shearn 2003) but these
findingswere challenged by several subsequent observations.
Ash1 is not associated with Ash2, a core subunit of H3K4
methyltransferase complexes related to COMPASS (Mohan
et al. 2011). Instead, Ash1 (and its human counterparts) dime-
thylate lysine 36 of histone H3 (H3K36) in vitro (Tanaka et al.
2007; An et al. 2011; Yuan et al. 2011). The replacement of
H3K36, but not H3K4, with an alanine blocks histone H3
methylation by Ash1 in vitro (Tanaka et al. 2007), and the loss
of ash1 function reduces the level of H3K36me2 on polytene
chromosomes (Dorighi and Tamkun 2013). Thus, although
bothAsh1 and Trx are histonemethyltransferases, theymodify
different lysine residues of histone H3. The functional signifi-
cance of these modifications is discussed below.

The TrxG gene fs(1)h encodes BET domain proteins that
physically interact with Ash1

Biochemical studies recently revealed that Ash1 is physically
associated with the products of another TrxG gene, fs(1)h,
suggesting that the functions of the two TrxG proteins are

Figure 4 TrxG proteins and complexes that affect chromatin structure. (Top panel) TrxG proteins and protein complexes that modify histones.
Complexes are shown, along with the histone modification(s) they catalyze. Proteins in green are designated TrxG proteins because mutants have
TrxG phenotypes. All other subunits shown were identified as biochemical components of the complexes. (Bottom panel) TrxG proteins and protein
complexes involved in chromatin remodeling. Proteins identified as products of genes whose mutants have TrxG phenotypes or that act as suppressors
of Pc are in green. Pb, Bap170, and Sayp (blue) are present in PBAP, but not in BAP. All subunits shown in gray are present in both BAP and PBAP.
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intimately related (Kockmann et al. 2013). fs(1)h encodes
members of the BET family of transcriptional activators,
which contain tandem bromodomains and an extraterminal
domain. Bromodomains directly bind acetylated histone tails
and are found in a wide variety of transcriptional regulators
that interact with chromatin (Ferri et al. 2016). Alternative
splicing produces two Fsh isoforms, Fsh-L and Fsh-S, that
share a common N-terminal segment containing the bromo-
domains and extraterminal domain (Haynes et al. 1989).
Fsh-L contains a C-terminal extension that is not present in
the Fsh-S protein. Both Fsh isoforms copurified with epitope-
tagged Ash1, suggesting that the region common to Fsh-S and
Fsh-L is required for the interaction with Ash1 (Kockmann
et al. 2013). The presence of bromodomains in Fsh-S and Fsh-L
suggests that they are readers of histone modifications.

Studies of BRD4, the human counterpart of Fsh, have
suggested possible mechanisms by which Fsh activates tran-
scription. BRD4 binds acetylated histones at enhancers and
promoters via its bromodomains and promotes the transition
to active elongation by recruiting positive transcription elon-
gation factor b (P-TEFb) to promoters (Jang et al. 2005; Yang
et al. 2005; Itzen et al. 2014; Jonkers and Lis 2015). BRD4 is
also a serine-threonine kinase that can directly phosphorylate
the C-terminal domain of the largest subunit of RNA Pol II to
promote transcription elongation (Devaiah et al. 2012).

Fsh-S is also a serine-threonine kinase that activates Ubx
transcription via a regulatory element located near the pro-
moter (Chang et al. 2007). Using the GAL4-upstream activa-
tion sequence system, Chang et al. (2007) found that the
expression of elevated levels of Fsh-S, but not Fsh-L, causes
homeotic transformations due to the ectopic expression of
Hox genes. fs(1)h mutations that cause the loss of both Fsh
isoforms lead to homeotic transformations due to the re-
duced expression of Hox genes. In contrast, individuals ho-
mozygous for the fs(1)h17 allele, which specifically reduces
the expression of Fsh-L, do not display homeotic transforma-
tions (Chang et al. 2007). These findings suggest that Fsh-S,
but not Fsh-L, is an activator of Hox transcription. Differences
in the genomic distributions of Fsh-S and Fsh-L are consistent
with these findings. Fsh-S is associated primarily with en-
hancers and active promoters, while Fsh-L is associated pri-
marily with insulator elements (Kellner et al. 2013). It is
therefore tempting to speculate that Fsh-S, like its human
counterpart, binds acetylated histones at enhancers and pro-
moters and activates transcription by promoting the release
of paused RNA Pol II.

TrxG Proteins Involved in ATP-Dependent Chromatin
Remodeling

Many other TrxG genes encode proteins involved in ATP-
dependentchromatinremodeling:oneofthemainmechanisms
used by eukaryotic cells to regulate chromatin structure and
gene expression. Chromatin-remodeling reactions (including
changes in the structure, assembly, or spacing of nucleosomes)
arecatalyzedby largeproteinsorproteincomplexes thatcouple

ATPhydrolysis to changes innucleosome structure (Becker and
Workman 2013). Dozens of chromatin-remodeling complexes
have been identified in many different species, including the
yeast SWI/SNF complex and its metazoan counterparts.
Each of these complexes contains a catalytic subunit that
belongs to the SWI2/SNF2 family of ATPases. By catalyzing
ATP-dependent changes in nucleosome structure or posi-
tioning, SWI/SNF complexes can regulate the binding of
transcription factors and the general transcriptional ma-
chinery to DNA.

The TrxG proteins Brm, Mor, and Osa are subunits of SWI/
SNF complexes

The cloning and characterization of brm provided the first
evidence that TrxG genes activate transcription via ATP-
dependent chromatin remodeling (Tamkun et al. 1992).
brm encodes a large protein that is highly related to the
yeast proteins SWI2/SNF2 and STH1, the ATPase subunits of
the SWI/SNF, and RSC chromatin-remodeling complexes, re-
spectively. In addition to a highly conserved ATPase domain,
the Brm protein contains the C-terminal bromodomain found
in other members of the SWI2/SNF2 subfamily of ATPases.
The purification of Brm and associated proteins revealed that
Brm is the ATPase subunit of a complex homologous to the
yeast SWI/SNF and RSC complexes (Dingwall et al. 1995;
Papoulas et al. 1998; Kal et al. 2000).

Multiple complexes related to SWI/SNF with different
ATPase subunits are present in most eukaryotes (Kingston
and Tamkun 2014). Drosophila initially appeared to be an
exception to this rule, since Brm is the only ATPase highly
related to SWI2/SNF2 in this organism. Subsequent studies
revealed that Brm is the ATPase subunit of two chromatin-
remodeling complexes: Brahma-associated protein com-
plex (BAP) and Polybromo-containing BAP complex (PBAP)
(Mohrmann et al. 2004) (Figure 4). BAP is more highly re-
lated to yeast SWI/SNF, while PBAP is more closely related to
yeast RSC. In addition to Brm, the BAP and PBAP complexes
contain seven common subunits and a small number of com-
plex-specific subunits (Mohrmann et al. 2004; Chalkley et al.
2008). These findings suggest that BAP and PBAP can be
targeted to specific genes via interactions with transcrip-
tion factors and directly bind acetylated histones via their
bromodomain-containing subunits.

Other TrxG genes, includingmor and osa, also encode sub-
units of the Brm complexes (Figure 4).mor encodes a common
subunit of BAP and PBAP that is related to the SWI3 subunit of
yeast SWI/SNF and RSC (Crosby et al. 1999; Kal et al. 2000).
Studies of SWI/SNF complexes in other organisms suggest
that Brm and Mor directly interact to form the functional core
of the Drosophila Brm complexes (Crosby et al. 1999; Phelan
et al. 1999). osa encodes a BAP-specific subunit related to
the SWI1 subunit of yeast SWI/SNF (Collins et al. 1999;
Vázquez et al. 1999; Kal et al. 2000). Osa contains an ARID
domain, a nonspecific DNA-binding domain thatmay facilitate
interactions between BAP and its target genes (Collins et al.
1999). Distinguishing subunits of PBAP include BAP170,
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Polybromo (Pb), and Sayp (Mohrmann et al. 2004; Chalkley
et al. 2008).

Although none of the genes encoding PBAP-specific sub-
units were identified in genetic screens for TrxG genes, Sayp
mutations, like mutations in osa and many other TrxG genes,
suppress the homeotic transformations observed in Pc hetero-
zygotes; this finding suggests that both the BAP and PBAP
complexes are activators of Hox genes (Chalkley et al. 2008).
Both complexes play relatively global roles in transcriptional
activation and repression, however; arguing against a re-
stricted role for either complex in Hox regulation or epige-
netic inheritance.

The TrxG gene kis encodes amember of the CHD subfamily of
ATP-dependent chromatin-remodeling factors

The TrxG gene kis encodes an extremely large protein (Kis-L)
that is highly related to human CHD7 and other members of
the CHD subfamily of ATP-dependent, chromatin-remodeling
factors (Daubresse et al. 1999; Therrien et al. 2000). In ad-
dition to highly conserved ATPase domains, Kis-L and CHD7
contain two chromodomains and a BRK domain, a short do-
main of unknown function that is also found in Brm and its
human homologs. CHD7 can increase the accessibility of DNA
on the surface of a mononucleosome and catalyze the ATP-
dependent sliding of nucleosomes toward the center of a DNA
fragment in vitro (Bouazoune and Kingston 2012). These find-
ings strongly suggest that Kis activates the expression of Hox
genes by altering the structure or positioning of nucleosomes.

Like Brm, Kis-L is associated with most transcriptionally
active regions of polytene chromosomes (Srinivasan et al.
2008). Although Kis-L is not required for the recruitment of
RNA Pol II to promoters or promoter clearance, the partial
loss of kis function leads to a marked reduction in the level of
RNA Pol II and elongation factors associated with polytene
chromosomes. These results suggest that Kis promotes an
early stage of transcription elongation (Srinivasan et al.
2008). The loss of kis function also causes a significant de-
crease in the level of Ash1 and Trx associated with polytene
chromosomes. This is accompanied by a decrease in H3K36
dimethylation and an increase in repressive H3K27 methyl-
ation, suggesting that Kis counteracts PcG repression by
promoting the histone modifications catalyzed by Ash1
and Trx (Dorighi and Tamkun 2013).

TrxG Proteins That Activate Transcription via
Other Mechanisms

The TrxG genes skd and kto encode mediator subunits

Other TrxG genes, including skd and kto, encode subunits of
mediator, a highly conserved 1.5-MDa complex that activates
transcription by promoting interactions between gene-specific
regulatory proteins, general transcription factors, and RNA
Pol II (Treisman 2001; Janody et al. 2003; Allen and Taatjes
2015). Mediator contains.24 subunits organized into head,
middle, and tail modules (Plaschka et al. 2016). The head
and middle modules directly bind RNA Pol II; the tail module

binds a wide variety of gene-specific regulatory proteins.
Mediator also contains a dissociable kinase module that can
have both positive and negative effects on transcription. The
kinase module contains four subunits: CycC, Cdk8, Med12
(Kto), andMed13 (Skd). Although the precise roles ofMed12
and Med13 in transcription are not well understood, both
proteins are required for the activation of wingless and Notch
target genes during Drosophila development (Carrera et al.
2008; Janody and Treisman 2011). Recent studies of Med12
in mammalian cells have suggested that it is required for the
formation of cohesin-dependent chromosome loops between
enhancers and promoters (Apostolou et al. 2013). These find-
ings suggest that Skd and Kto activate the transcription of Hox
genes by promoting interactions between DNA-binding regu-
latory proteins and RNA Pol II.

A TrxG gene encodes the Rad21 subunit of cohesin

Several recent studies have suggested that a subset of PcG and
TrxG proteins activate transcription by altering aspects of
chromosome organization above the level of the nucleosome.
For example, the TrxG gene verthandi (vtd)was identified in a
screen for dominant suppressors of Pc mutations (Kennison
and Tamkun 1988) and subsequently shown to encode the
Rad21 subunit of cohesin, a ring-shaped protein complex that
encircles DNA (Kennison and Tamkun 1988; Hallson et al.
2008). Cohesin is required for proper chromosome segrega-
tion during mitosis and meiosis. In interphase cells, cohesin
can alter transcription by altering interactions between insu-
lators, enhancers, and promoters, or by other mechanisms
(Dorsett and Merkenschlager 2013; Remeseiro and Losada
2013). Cohesin is loaded along chromosomes during interphase
by the kollerin complex (Nipped-B andMau) and removed by the
releasin complex (Pds5 and Wapl) (Haering and Gruber 2016).
Mutations that lower the level of cohesin on interphase chromo-
somes give TrxG phenotypes (vtd and Nipped-B) (Hallson et al.
2008). In contrast, a mutation in thewapl gene stabilizes cohesin
binding to chromatin and causes a PcG phenotype (Cunningham
et al. 2012). Cohesin is bound to many active promoters
(Misulovin et al. 2008; Fay et al. 2011). These same promoters
are bound by PRC1 (Schaaf et al. 2013). Onemodel posits that
cohesin tethers PRC1 to active promoters; increasing cohesin lev-
els causes more PRC1 binding to these active genes, decreasing
PRC1 levels at repressed PcG target genes, causing a PcG pheno-
type. In contrast, reducing cohesin levels reduces the amount of
PRC1 bound to active genes, increasing the PRC1 pool available
for binding PcG targets, causing a decrease in Hox gene expres-
sion and aTrxGphenotype (Schaaf et al.2013;Dorsett andKassis
2014). Although an attractive model, more work needs to be
done to fully understand the cohesin-PcG-TrxG connection.

Are TrxG Proteins PcG Antirepressors or Global
Activators of Transcription?

One of the key issues in the field concerns the roles of TrxG
proteins in gene expression and epigenetic inheritance. Do
TrxGproteins play relatively global roles in transcription or do
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they directly antagonize PcG repression to heritably maintain
the expression of Hox genes? Many TrxG proteins, including
Ash2, Fsh, Brm, other subunits of the BAP and PBAP com-
plexes, and Kis are broadly associated with transcriptionally
active regions and their loss of function leads to widespread
defects in gene expression (Armstrong et al. 2002; Beltran
et al. 2007; Moshkin et al. 2007; Srinivasan et al. 2008;
Kellner et al. 2013; Kockmann et al. 2013). Although this
does not rule out an important role for these proteins in
epigenetic inheritance, their functions are clearly not limited
to antagonizing PcG repression.

This situation is more complicated for other TrxG proteins,
including Ash1 and Trx. The histone modifications promoted
by Ash1 and Trx (including H3K36 dimethylation, H3K4
methylation, andH3K27 acetylation) are also associatedwith
active regions of the genome (Barski et al. 2007; Bell et al.
2007; Heintzman et al. 2007; Wang et al. 2008). However,
there is strong evidence that both Ash1 and Trx play special-
ized roles in antagonizing PcG repression in addition to play-
ing general roles in transcription (O’Meara and Simon 2012).
For example, both H3K4 and K36 methylation inhibit the
catalytic activity of PRC2 in vitro via an allosteric mechanism
(Schmitges et al. 2011; Yuan et al. 2011), and the acetylation
of H3K27 directly blocks the methylation of this residue (Tie
et al. 2009). These observations are consistent with earlier
genetic studies suggesting that Ash1 and Trx counteract
Polycomb repression (Klymenko and Müller 2004; Schmitges
et al. 2011).

Perspectives

In addition to the Hox genes, there are hundreds of other
genes that bindPcGproteins at presumptive PREs and that are
covered with the H3K27me3 mark. Location of a gene within
an H3K27me3 domain presumably means that PcG proteins
regulate their expression, but, in most cases, direct evidence
for this is lacking.Available evidence suggests thatH3K27me3
“Polycomb domains” contribute to the three-dimensional ge-
nome organization of the Drosophila, the subject of an inter-
esting FlyBook review (Schwartz and Cavalli 2017). It is also
worth noting that although H3K27me3 is predominantly as-
sociated with silent genes, it is also present at rare actively
transcribed genes, including the Su(z)2 and Psc gene com-
plex (Park et al. 2012). Thus, H3K27me3, by itself, does not
silence transcription.

Herewehave reviewed genetic and biochemical studies on
PcG and TrxG genes. One thing absolutely clear from genetic,
biochemical, andgenomic studies is thatnotallPcGtargets are
regulated in the same way. The balance of the “on” vs. the off
transcriptional states is most likely due to a competition be-
tween transcriptional activation (via enhancers and TrxG
proteins) and PcG silencing. Removal of PcG proteins from
a Drosophila gene will not activate gene expression in the
absence of activators. Finally, given the diverse phenotypes
caused by different PcGmutations, it is likely that, in addition
to working in PRC1 and PRC2, many of these proteins also

function independently and/or in other protein complexes.
There is still much to learn.
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