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ABSTRACT Human psychiatric disorders such as schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder often
include adverse behaviors including increased aggressiveness. Individuals with psychiatric disorders often exhibit social withdrawal,
which can further increase the probability of conducting a violent act. Here, we used the inbred, sequenced lines of the Drosophila
Genetic Reference Panel (DGRP) to investigate the genetic basis of variation in male aggressive behavior for flies reared in a socialized and
socially isolated environment. We identified genetic variation for aggressive behavior, as well as significant genotype-by-social environ-
mental interaction (GSEI); i.e., variation among DGRP genotypes in the degree to which social isolation affected aggression. We
performed genome-wide association (GWA) analyses to identify genetic variants associated with aggression within each environment.
We used genomic prediction to partition genetic variants into gene ontology (GO) terms and constituent genes, and identified GO terms
and genes with high prediction accuracies in both social environments and for GSEI. The top predictive GO terms significantly increased
the proportion of variance explained, compared to prediction models based on all segregating variants. We performed genomic prediction
across environments, and identified genes in common between the social environments that turned out to be enriched for genome-wide
associated variants. A large proportion of the associated genes have previously been associated with aggressive behavior in Drosophila
and mice. Further, many of these genes have human orthologs that have been associated with neurological disorders, indicating partially
shared genetic mechanisms underlying aggression in animal models and human psychiatric disorders.
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VIOLENT behavior is a common comorbidity among hu-
manpsychiatric disorders such as schizophrenia, bipolar

disorderandattention-deficit/hyperactivitydisorder (Volavkaand
Citrome 2008; Retz and Rösler 2010; Hodgins et al. 2014;
Volavka 2014; Hoptman 2015). Not all patients with a diagnosis
of a psychiatric disorder will show elevated aggressiveness; how-
ever, such individuals have an increased risk of performing an

aggressive act (Volavka and Citrome 2008; Retz and Rösler
2010; Hodgins et al. 2014). Social withdrawal is frequently
observed for patients with a psychiatric disorder, which fur-
ther contributes to an increased risk of performing a violent
act (Retz and Rösler 2010; Hansen et al. 2013) and could
point to a potential genotype-by-social environmental inter-
action (GSEI). Some data indicate that GSEI for aggressive-
ness in human populations does exist. Caspi et al. (2002)
provided the first evidence for an interaction between geno-
type and early life maltreatment affecting the probability of
developing antisocial behavior later in life. These findings
were later replicated in a laboratory study (Gallardo-Pujol
et al. 2013).

Studying the genetic basis of aggressive behavior in human
populations is challenging due to the difficulty in quantifying
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the phenotype, genetic heterogeneity, and uncontrolled en-
vironmental conditions. Animal models not only provide
a valuable tool for understanding the genetic basis of aggres-
siveness, which is evolutionarily conserved (Loren et al. 2003;
Mosca et al. 2012; Jones andNorton 2015), but also provide a
way to investigate how the social environment affects the
degree and direction of individual levels of aggressive behav-
ior. Aggressive behavior has been studied in several model
organisms, including mice (Miczek et al. 2001), voles
(Gobrogge and Wang 2011), zebrafish (Jones and Norton
2015), and fruit flies (Chen et al. 2002; Edwards et al.
2006; Wang et al. 2008; Kravitz and Fernandez 2015;
Shorter et al. 2015). In the fly model, studies have demon-
strated repeatedly that socially isolated individuals exhibit
increased levels of aggressive behavior compared to socially
experienced individuals (Wang et al. 2008; Zhou et al. 2008;
Dankert et al. 2009). However, it is unknown whether the
effect of social isolation is genetically variable (i.e., exhibits
GSEI) or what the underlying genetic basis of GSEI for ag-
gressive behavior is.

The Drosophila Genetic Reference Panel (DGRP) consists
of 205 largely unrelated inbred lines derived from a natural
population with full publicly available genome sequence data
(http://dgrp2.gnets.ncsu.edu) (Mackay et al. 2012; Huang
et al. 2014). Since the DGRP lines are inbred, it is possible to
assess many individuals of the same genotype in multiple
environments, an ideal design for detecting and quantifying
the magnitude of genotype-by-environment interactions. To
investigate the underlying genetic mechanisms of aggressive
behavior, and potentially the genetic mechanisms driving
GSEI, we quantified the aggressive behavior of 87 DGRP lines
for multiple individuals reared under socialized or socially
isolated conditions.

We performed a quantitative genetic analysis and showed
there was significant genetic variation for aggression in both
social environments, as well as significant GSEI. We then
performed several genomic analyses to identify genes and
gene ontology (GO) terms associated with male aggression,
and genomic features determining the interaction term.
The genomic analyses included a genome-wide association
(GWA) using single marker regression to assess the contribu-
tion of individual polymorphic markers on aggressive be-
havior in the two environments, and for the difference in
aggressiveness between socialized and socially isolated indi-
viduals (GSEI). The small sample size of the DGRP, expected
small effects of individual genetic markers, and the large
number of tests to be performed with sequence data results
in limited statistical power to detect true associated genetic
variants (Hirschhorn and Daly 2005; McCarthy et al. 2008;
Wang et al. 2010a, 2011; Fridley and Biernacka 2011; Rohde
et al. 2016a).Methods that combine the signals frommultiple
genetic markers, including set-test approaches [i.e., the se-
quence kernel association test (Wu et al. 2011) and covari-
ance association test (Rohde et al. 2016a)] and genomic
prediction models [genomic best linear unbiased prediction
(GBLUP) (Meuwissen et al. 2001)], may better capture the

signal from numerous genetic markers with small effect sizes.
Extending GBLUP by fitting multiple genetic components has
been shown to increase predictive ability (PA) (Speed and
Balding 2014; Tucker et al. 2015). In particular, fitting mul-
tiple genetic components can be used to partition genetic
variance by pathway (Edwards et al. 2015), or to test the
PA of predefined sets of genes using genomic feature BLUP
(GFBLUP) (Edwards et al. 2016; Sarup et al. 2016; Fang et al.
2017). The second set of genomic analyses therefore in-
cluded genomic prediction models where the aims were to
identify sets of genes predictive of the trait variation, but also
to investigate means to predict aggression across social rear-
ing conditions.

Materials and Methods

Drosophila and establishment of social
rearing conditions

87 DGRP lines (Mackay et al. 2012) and an isogenic control
strain, Canton-SB (CSB) (Norga et al. 2003), were maintained
in the Mackay laboratory at North Carolina State University
(Raleigh, NC) under controlled conditions (cornmeal-molasses-
agar medium, 25�, 70% humidity, and a 12 hr light-dark cycle).
Two social rearing environments were established by initially
setting up the DGRP lines and an equal number of CSB flies in
two replicate bottles per social group, each consisting of 20males
and 20 females, and allowing them tomate and lay eggs for four
consecutive days.

Socially experienced flies: Twelve days after the initial cross,
the bottles were cleared for emerged flies. The following
morning, flies that had emerged within the last 16 hr were
sorted into two vials, with 24 mixed-sex flies per vial. Three
days later, theflieswere lightly anesthetizedandsortedby sex.
Up to 24 males/DGRP line were kept, and 16 hr prior to the
aggression assay the socially experienced DGRP and CSB
males (see below) were transferred to the Flydiator arena
(Figure 1), where they had access to food.

Socially isolated flies: Eleven days after the initial cross, the
bottles were cleared. The next morning, newly-eclosed (deter-
minedbymeconium)DGRPmaleswereseparatedintocollection
vials, 24–32 per DGRP line. Individual males were then placed
into cells of a 96-well plate (2.2 ml deep) containing fly food.
16 hr prior to the assay, the isolated DGRP and the social CSB
males (see below) were added to the Flydiator arena with ac-
cess to food (Figure 1), but separated by cardboard.

Control flies: The same day the socially experienced DGRP
flies were established, two vials of 24 mixed-sex CSB flies
were prepared. Three days later, CSB males were lightly
anesthetized and sorted by sex. Twenty-four males were
placed in vials corresponding to the number of DGRP lines
to be assayed.

Note that our definition of social isolation includes
physical isolation from both males and females and thus
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includes a mating component (socially isolated males
are virgins while the normally socialized males are most
likely mated) and a male–male interaction component
(socially isolated flies have no experience with other
males while normally socialized males will likely have
participated in, and learned from, previous aggressive
encounters).

Drosophila aggression assay: the Flydiator arena

A behavioral arena, the Flydiator arena, was developed to
facilitate high-throughput acquisition of aggression data on
pairs of individuals; one DGRP and one control fly (CSB). The
arena was constructed in transparent polycarbonate (3.5
in. 3 5.0 in. 3 1 in.) with 4 3 6 wells (diameter of 0.625
in.). The top and bottom were removable, which allowed
exchange between smooth plates and plates with indenta-
tions (diameter of 0.25 in.) for food supply. Each well could
be divided into separate containers (diameter of 0.625 in.,
height 0.5 in.) by an interchangeable cardboard barrier to
keep the pair of flies separated until the start of the assay
(Figure 1).

All assayswere performed between 8–11 AM, andflieswere
starved for 90 min prior to the aggression assay. New food
was introduced 2 min before the initiation of the assay, and
the barrier separating the isolated DGRP flies and social CSB
flies was removed. Flies were filmed for 2 min using an iPad
Mini (Apple, Cupertino, CA). Subsequently, the total num-
ber of aggressive encounters for the DGRP and the CSB
individuals were manually scored using Jwatcher software
(Blumstein et al. 2012). These behaviors included wing
threat (the fly raises both wings to a 45� angle toward the
opponent or flicks wings at a 45� angle while facing away
from the opponent), head butt (strikes the opponent with the
head), kicking (extends leg and makes contact with the op-
ponent), and chasing (runs after the opponent with close
proximity) (Zwarts et al. 2012). The manual scoring was
accomplished by the same person to minimize variation
caused by different persons scoring and to avoid potential
bias.

The aggression assaywas conducted in five blocks with 21,
17, 15, 23, and 11 DGRP lines represented in each block

(Supplemental Material, Figure S1 in File S1), and pheno-
types were obtained one block at a time.

Genomic data

SNP genotypes were obtained from whole-genome sequence
data (available at http://dgrp2.gnets.ncsu.edu/). A total of
1,725,755 SNPs with a minor allele frequency (MAF) of
$ 0.05 were present in the 87 DGRP lines, distributed on
the six chromosome arms; 2L, 2R, 3L, 3R, 4, and X. SNPs
were annotated to genes (defined as SNPs within the tran-
scribed region of the gene) using FlyBase annotation v5.49
(flybase.org, Figure S2 in File S1), and mapped to a total of
10,517 genes. Genes were linked to GO terms using the org.
Dm.eg.db package (Carlson2015) for Bioconductor (Gentleman
et al. 2004). We only considered GO terms with $ 10 directly
evidenced genes and a minimum of 199 SNPs. This cutoff
resulted in a total of 1134 GO terms and a total of 963,207
unique SNPs.

Quantitative genomic parameters

GSEI: An individual’s phenotype can be described as the sum
of its genotypic and environmental effects. Genotype-by-
environmental interaction occurs when different genotypes
respond differentially to environmental changes (Falconer
and Mackay 1996; Lynch and Walsh 1998). A two-way fac-
torial mixed model ANOVA was fitted to test for GSEI;
y ¼ Bþ E þ Lþ L : E þ e; where y is a vector of phenotypic
values of flies from both rearing environments (square root
transformed to fulfill assumptions of normality), B is a fixed
experimental block effect, E is a fixed environmental rearing
effect (i.e., social or socially isolated environment), L is a
random line effect, L : E is a random interaction term be-
tween line and rearing environment, and e is the residual.
The significance of L : E was obtained using a likelihood ratio
test comparing the model to a reduced model neglecting the
interaction term.

GSEI can be viewed as a trait itself. Here, GSEI was
quantified as the difference in adjusted phenotypic values
(~y) for socially experienced and socially isolated flies within
each DGRP line, i.e., ~yGSEI ¼ ~ysoc 2 ~yiso (see Adjusted pheno-
types used in genomic association and prediction models).

Figure 1 Assay used to quantify aggressive behavior. (A) Illustration of the Flydiator arena. (B) Top view of the Flydiator arena loaded with pairs of CSB
and DGRP flies. CSB, Canton-SB; DGRP, Drosophila Genetic Reference Panel.
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Estimating variance components: Variance components
were estimated using the R package lme4 (Bates et al.
2015) for flies reared in a socialized environment, flies reared
in social isolation, and for the two-way interaction model
(see above). The models within social environment were:
y ¼ Bþ Lþ e; where y is a vector of phenotypic values of
flies from one of the rearing environments (social or isolated,
square root transformed to fulfill assumptions of normality),
B is a fixed experimental block effect, L is a random line
effect, and e is residual effect. Segregating polymorphic chro-
mosomal inversions (Huang et al. 2014) and Wolbachia in-
fection status were tested for association with aggressive
behavior; none had major effects (results not shown), thus,
these were not accounted for.

The proportion of phenotypic variance explained by ge-
netic variance within social environment was estimated as
H2 ¼ s2

G=ðs2
G þ s2

e Þ; and across social environments as H2 ¼
ðs2

G þ s2
G:EÞ=ðs2

G þ s2
G:E þ s2

e Þ: s2
G is the genetic variance

among lines, s2
G:E is the genotype-by-environment interaction

variance, and s2
e is the pooled within-line variance.

Cross-environment phenotypic and genetic correlations:
Phenotypic and genetic correlations were computed between
DGRP lines from the two social rearing conditions. The phe-
notypic correlation (rp) was computed as Pearson’s correla-
tion using line means, and the cross-environment genetic
correlation was computed as rG ¼ s2

G=ðs2
G þ s2

G:EÞ; using
the estimated variance components from the two-way
ANOVA.

Adjusted phenotypes used in genomic association and
prediction models

The phenotypes used in the single marker regressions and
the prediction models were the observed number of aggres-
sive encounters, transformedby the square root to achievean
approximation of a Gaussian distribution, or GSEI, adjusted
for experimental block effect by fitting the linear mixed
model

y ¼ Xbþ Zg þ e; (1)

where y is a vector of repeated phenotypic observations, X
and Z are design matrices linking fixed and random effects to
the phenotypic values, b is a vector of fixed effects, g is a
vector of random genetic effects defined as g � Nð0;Gs2

GÞ;
and e is a vector of residual effects defined as e � Nð0; Is2

e Þ:G
is the genomic relationship matrix computed using all segre-
gating markers, G ¼ WW9=m; where m is the total number
of genetic markers, and W is a centered and scaled geno-
type matrix. Each column vector of W was computed as
wi ¼ ai 22pi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið12 piÞ

p
; where pi is the MAF of the i-th

marker, and ai is the i-th column vector of the allele count
matrix, A, containing the genotypes encoded as 0, 1, or 2,
counting the number of minor alleles (VanRaden 2008).

Model (1) is an animal model with repeated phenotypes
per DGRP line, resulting in the number of estimated genetic

effects (ĝ) corresponding to the number of DGRP lines. The
residual effects (ê) have the same dimension as the vector of
phenotypes, thus, to retain the replicated structure in the
data for the following analyses the adjusted phenotypic val-
ues (~y) were computed as

~yi ¼ ĝi þ êi; (2)

where ~yi is a vector of adjusted phenotypic values for the i-th
DGRP line, ĝi is the estimated genetic effect for DGRP line i,
and êi is a vector of residual effects for line i. The estimated
genetic and residual effects were derived using average in-
formation restricted maximum likelihood, as implemented in
DMU (Madsen et al. 1994).

Single marker regression

Single marker regression, also known as GWA, evaluates the
contribution of each segregating geneticmarker one at a time,
allowing detection of markers with large effects. The test
for association of each genetic marker was a t-test on the
regression coefficient from the regression of estimated genet-
ic effects (ĝ; equation 1) on each polymorphic marker
(i.e., 1,725,755 SNPs at MAF . 0.05). A nominal P-value
,   13 1025 was used as the significance threshold. The ge-
netic effects were used as the response variable because these
comprise the DGRP line means adjusted for fixed effects and
the genetic structure among DGRP lines.

Identification of predictive SNP sets

The set of causal genetic variants for a given trait should be
predictive of the trait value. Therefore, statistical models
that allow genomic predictions based onmultiple groups of
genetic variants could provide a valuable tool for identifi-
cation of SNP sets containing causal variants. Genetic
markers associated with trait variation may not be uni-
formly distributed across the genome, but may be enriched
for genes connected in pathways (Allen et al. 2010; Lage
et al. 2012; O’Roak et al. 2012). GO terms are a useful
resource of groups of genes with shared biological, molec-
ular, or cellular functions (The Gene Ontology Consortium
2000). An extension of the standard GBLUP (Meuwissen
et al. 2001), which allows the addition of an extra genetic
component for a set of genetic markers, e.g., all those
within a certain GO term, is GFBLUP (Edwards et al.
2015, 2016; Ehsani et al. 2015; Sarup et al. 2016; Fang
et al. 2017). The genomic feature model is described be-
low, along with a method to decompose the genetic vari-
ance within a GO term to the variance explained per gene
within a GO term.

Genomic feature models: The following methodology was
used to identify groups of genetic markers predictive of the
phenotype. First, a NULLmodel (GBLUP) based on all genetic
markers was obtained

~y ¼ Zg þ e: (3)
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Then, for all sets of genetic markers (i.e., GO terms), a sep-
arate model was fitted (GFBLUP),

~y ¼ Zf þ Zrþ e; (4)

where f denotes the genetic effects captured by the genetic
markers within a subset of markers, and r was the genetic
effects captured by all genetic markers not included in the
first set. In particular, the random genetic effects were de-
fined as f � Nð0;Gfs

2
Gf
Þ; and r � Nð0;Grs

2
Gr
Þ; where

Gf ¼ WfW9
f=mf and Gr ¼ WrW9

r=mr:

Using a standard 10-fold cross validation scheme adapted
fromanimal breeding, the PAwasmeasured as the correlation
between the observed genetic values (corresponds to the
adjusted line means), and the predicted genetic effects in
thevalidation set. Toensureaccurate estimationofPAs, a total
of 100 training (t) and validation (v) sets were generated
(Figure S3 in File S1). For each pair of training and validation
sets the GBLUP (equation 5) and GFBLUP (equation 6) mod-
els were fitted. The genetic effects in the validation set (ĝv)
for the GBLUP model were obtained as

ĝv ¼
�
Gv;tŝ

2
G
�h
Gt;tŝ

2
G þ It;tŝ2

e

i21ðyt 2 m̂tÞ; (5)

and for the GFBLUP model,

ĝv ¼
�
Gfv;tŝ

2
Gf

þ Grv;tŝ
2
Gr

�h
Gft;tŝ

2
Gf

þ Grt;tŝ
2
Gr

þ It;tŝ2
e

i21

3 ðyt 2 m̂tÞ:
(6)

Predictive GO terms were defined as those that significantly
increased PA compared to theNULLmodel. To assesswhether
aGOterm increasedPAcompared to theNULLmodel,Welch’s
t-test was applied (Welch 1947). Subsequently, all t-test
P-values were adjusted for multiple testing (Bonferroni cor-
rection) and the significance threshold was set at P , 0.05.

In addition, 10 random sets of SNPs were generated for
each predictive GO term. The properties of these random sets
corresponded to that of the true GO term. That is, the archi-
tecture of the set was retained, such that the number of SNPs
was the same, and the SNPs were clustered in groups corre-
sponding to the number of genes in the true GO term. The
predictive abilities of these random sets were compared to the
PA of the true GO term using a t-test.

Genetic decomposition of predictive SNP sets: GO terms are
composed of several genes, and it is unlikely that all genes
within a GO term contribute equally to the PA. Therefore, to
dissect the genetic contribution of the genes within the pre-
dictive GO terms, the genetic variation within the set of
predictive GO terms was decomposed to gene level (Rohde
et al. 2016b).

For each predictive GO term (i.e., those with an adjusted
P-value, 0.05), the marker effects for those genetic markers
belonging to a particular GO term (ŝf ) were obtained by

multiplication of the centered and scaled genotypes (Wf )
and the estimated genetic effects corresponding to that par-
ticular GO term (f):

ŝf ¼ W9
f

�
WfW

9
f

�21
ĝf : (7)

Using ŝf ; the genetic effects for the xj genes constituting the
GO term (f̂ f ) were computed as:

f̂ f ;xj ¼
Xmxj

i¼1

Wf ;xj;iŝf ;i; (8)

where ŝf ;i is the marker effect of the i-th marker computed for
feature f, and mxj is the number of markers within gene xj:
Thus, if a GO term has the genetic effect ĝf ; and consists of x
genes, then ĝf ¼

Px
i¼1 f̂ i: A measure of the genetic variation

for each feature per gene adjusted for the number of SNPs
within gene (VarF), was approximated as:

VarFxj ¼ Var
�
f̂ f ;xj

��
mxj (9)

Across-environment prediction

Twopredictionapproacheswereused todetermine thedegree
of shared genetic signal for aggressive behavior forflies reared
in the socializedor socially isolatedenvironment, aswell as for
GSEI.

Genomic prediction using sets of candidate genes: The
GFBLUPmodels (equation4)wereused to test if the combined
set of predictive GO terms and genes within one environment
was predictive of the genetic effects within another environ-
ment. In this scenario, the feature group contained all the GO
terms or genes predictive within a given environment. A total
of 18predictionswereperformed:nine for the set of predictive
GO terms (e.g., social-to-social, social-to-isolated, and social-
to-GSEI), and nine for the set of genes capturing .10% of
the genetic variance within the set of predictive GO terms.

Genomic prediction based on single marker regression:
Single marker regressions were performed for each training
set (and environment), and genomic predictions (equation 4)
were performed within the validation set for each environ-
ment, e.g., social-to-social, social-to-isolated, and social-to-
GSEI. Here, the feature group contained sets of SNPs that,
from the single marker regression, had a nominal P-value
, 131025; , 13 1024; , 0:001; , 0:01; , 0:05; , 0:1;
, 0:2; , 0:3; , 0:4; , 0:5; ,0:6; , 0:7; ,0:8; or , 0:9:
The second random genetic component was the genetic ef-
fects captured by all genetic variants.

For each within-environment prediction (i.e., social-to-
social, isolated-to-isolated, or GSEI-to-GSEI) we applied a
resampling scheme to obtain the PA of randomly sampled
SNPs. A total of 100 randomly sampled SNP sets were gen-
erated for each P-value threshold. The number of sampled
SNPs within each set corresponded to the average of the
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observed number of SNPs below that threshold (Figure S4 in
File S1).

Enrichment of associated variants within the predictive
SNP sets

To link the results from GFBLUP with the single marker
regressions, the set of predictive GO terms and the set of
genes explaining . 10% of the genetic variance were tested
for enrichment of individual genetic markers with a nominal
P-value , 0.001. The enrichment test was performed using
a standard procedure by applying a hypergeometric distri-
bution (Rivals et al. 2007; de Leeuw et al. 2016). The
enrichment test was performed both within and across envi-
ronments, i.e., the predictive set of GO terms and genes
explaining . 10% of genetic variance was tested for enrich-
ment of associated genetic markers from both environments
and from GSEI (18 comparisons).

Software

All statistical analyses were performed within R version 3.1.0
(R Core Team 2016). The mixed models were fitted using
DMU software (Madsen and Jensen 2013) using the DMU
interface within the R package “qgg” (http://psoerensen.
github.io/qgg/). In particular, GBLUP and GFBLUP models
were fitted with the “reml” function, the genetic decomposi-
tion was done with the function “covSets,” and the
enrichment test was performed with the function “setTest.”

Data availability

The DGRP genotypes can be accessed via the website http://
dgrp2.gnets.ncsu.edu, and the phenotypic data are available
in Table S1.

Results

Quantitative genetics of aggressive behavior

Wequantified the total number of aggressive encounters (i.e.,
the sum of wing threats, head butting, kicking, and chasing)
for 87 DGRP lines reared in a socialized or socially isolated
environment (Figure 2A and Table S1).We used linearmixed
models to infer the genetic variation among lines as well as
genetic variation in the social environment interaction term
(GSEI). We observed significant genetic variation for aggres-
sive behavior in each social environment and averaged across
the two environments, as well as significant GSEI (Table 1).
GSEI can be viewed as a trait itself, here quantified as the
difference in aggressive behavior between the social and so-
cial isolation environments (Figure 2B). The nature of the
GSEI was that some DGRP lines showed elevated aggressive
behavior when reared in the socially isolated environment,
some DGRP lines became less aggressive when reared in so-
cial isolation, and some lines were not affected by the rearing
regime (Figure 2). We estimated the broad sense heritability
averaged across the two social environments (H2 = 0.14) as
well as for socially reared (H2 = 0.14) and socially isolated
(H2 = 0.12) flies (Table 1). An increase in residual variance

(s2
e ; Table 1) within the social isolation environment resulted

in the decreased H2 estimate for this environment (Table 1).
The estimate of the phenotypic correlation (rp) between

the number of aggressive encounters for flies reared in the
social and socially isolated environment was rp = 0.52, and
the cross-environment genetic correlation (rg) was rg = 0.59
(Table 1). Thus, from our quantitative genetic analysis, we
infer that the genetic basis of aggression is in part shared
between social environments and in part genetically distinct
within each environment.

An aggressive encounter requires interaction between two
(ormore) individuals, and successive encounters may require
the individuals to move. Thus, a correlation between mea-
sures of locomotor activity and aggressionmight be expected.
Previously, it has been shown that eliminating social interac-
tions affects locomotor activity (McCarthy et al. 2015). To
assess whether the differences in aggressive encounters were
mainly driven by phenotypic differences in locomotor activ-
ity, we computed Pearson’s correlations between aggressive
behavior in the social rearing conditions and previously pub-
lished measures of locomotor activity obtained for the DGRP
(Mackay et al. 2012; Harbison et al. 2013). None of the avail-
able measures of locomotor activity were significantly corre-
lated with aggressive behavior (Figure S5 in File S1).

Genetic markers and genomic features associated with
aggressive behavior

An advantage of inbred genetic resource populations, such as
the DGRP, is the ability to phenotype multiple animals of the
same genotype because it increases the precision of the
estimate of the genotypic value of the trait for each genetic
background.Theheritabilityofaggressivebehaviorwas low in
both the social and socially isolated environment, as expected
for behavioral traits. However, the heritability of linemeans is
H2 ¼ s2

G=½s2
G þ ðs2

e=nÞ�; where s2
G and s2

e are, respectively,
the among-line and within-line variance of the individual
data, and n is the number of individuals scored per line.
The average number of flies per DGRP line assessed for ag-
gressive behavior was 20 for the social environment and
19 for the socially isolated environment. Therefore, the broad
sense heritabilities of line means for the socialized and so-
cially isolated flies are, respectively, H2 = 0.76 and H2 =
0.73. This increases the power of association mapping as well
as PA (Edwards et al. 2016).

We first performed GWA analyses using single marker
regressions to identify variants associated with aggressive
behavior for flies reared in a socialized environment and flies
reared in a socially isolated environment, aswell as GSEI. At a
nominal P-value , 13 1025; 25 SNPs in 15 unique genes
were associated with variation in aggressiveness for socially
reared flies, eight SNPs in six unique genes were associated
with variation in aggressive behavior for flies reared in a
socially isolated environment, and 24 SNPs in 17 genes were
associated with GSEI (Table S2). None of the variants were
significant following correction for multiple tests (Table S2).
A quantile–quantile plot of 2log10ðPÞ did not show any
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evidence of confounding factors inflating the overall signal;
however, deviations from the expected probabilities below
P  ,   13 1025 toward more extreme values were observed,
suggesting enrichment of true positive associations (Figure
S6 in File S1).

Because methods that consider all variants jointly can
capture small polygenic effects, which is not possible in un-
derpowered GWAanalyses, we asked towhat extent a GBLUP
NULL model using all variants could predict aggressive be-
haviorusing cross validation.ThePA is then the correlation (r)
between the predicted and observed phenotypes in the vali-
dation set. We found low PAs (6SE) for normally socialized
flies (PA = 0.186 0.03), socially isolated flies (PA = 0.256
0.04), and GSEI (PA = 0.246 0.03) (Table S3). Similar low
predictive abilities for the GBLUP NULLmodel were observed
previously for other quantitative traits measured in the DGRP
(Ober et al. 2012, 2015; Edwards et al. 2016). To put this in
perspective, the maximum PA is H2 ¼ r2 ¼ PA2 (Mrode
2005; Goddard 2009). Thus, for normally socialized flies,
the GBLUP NULL model only explains 0.03/0.76 = 3.9% of
the observed heritability of line means, while for socially
isolated flies the NULL model explains 0.06/0.73 = 8.2% of
the observed heritability of line means.

However, the NULLmodel assumes, unrealistically, that all
markers contribute equally to variation in the trait. It is more
likely that only a subset of markers affects the trait variation,
while the majority have no effect. In this case, strategies to
weight markers by the strength of their association in the
training set (Ober et al. 2015) or to group markers according
to prior biological information and utilize these feature
groupings in prediction models may offer significant im-
provements over the NULL model (Speed and Balding
2014; Edwards et al. 2016; Sarup et al. 2016). Therefore,
within each environment we performed GWA analyses in
the training set and developed prediction models using SNPs
at various P-value thresholds to assess PA in the validation set
[Figure 3A (red line), Figure 3B (green line), and Figure 3C
(blue line)]. This strategy resulted in a significant increase in

PA for the normally socialized flies for markers with
P  ,   131025 (PA = 0.70 6 0.03), but not for socially
isolated flies (PA = 0.24 6 0.04) nor for GSEI (PA = 0.26
6 0.03) (Figure 3). The PA of the randomly selected SNP sets
was stable across the different P-value thresholds and corre-
sponded to the GBLUP PA (dashed lines Figure 3). We then
used GO terms to generate sets of genetic markers, used these
sets as priors in genomic prediction models, and assessed
whether these marker sets increased the model PA compared
to the NULL model that used all segregating genetic markers.
We found that 50 GO terms significantly increased PA for flies
reared in the social environment, 14 GO terms increased PA
for socially isolated flies, and 11 GO terms increased PA for
GSEI (Table S3). All predictive GO terms also performed
better than sets of random SNPs defined as having the same
structural properties as the true predictive set (Figure S7 in
File S1). The lack of strong correlation between the GO term
PA for flies reared in the socialized environment, the socially
isolated environment, and for GSEI (Figure S8 in File S1),
and having few GO terms in common across environments
(Figure S3 in File S1 and Table S3), further supports the
inferences of both distinct and shared genetic control of ag-
gressive behavior under the different social rearing condi-
tions. Two GO terms (phosphotransferase activity, alcohol
group as acceptor, and epithelial cell migration) were pre-
dictive for aggressive behavior in both social environments,
and one of the predictive GO terms (regulation of neurotrans-
mitter secretion) was in common for flies reared in the so-
cialized environment and for GSEI (Table S3). In contrast to
the NULL model, the PA of the top GO term explains a sub-
stantial fraction of the heritability of lines means: 53.6% for
normally socialized flies and 46.7% for flies reared in social
isolation.

When a set of SNPs increases PA, it is likely because the set
is enriched for trait-specific causal variants. We assessed
whether the predictive sets contained features discriminating
them from nonpredictive sets, in particular with respect to
MAF. The average MAF within the predictive sets did not

Figure 2 Variation in aggression
among DGRP lines in two social en-
vironments. (A) Mean adjusted phe-
notypic values of aggressive behavior
for flies reared in an isolated environ-
ment as a function of the mean ad-
justed phenotypic values for socially
experienced flies. The red dashed
line illustrates the expected point
with no difference in phenotype
from the two social environments.
(B) GSEI (~yGSEI ¼ ~ysoc 2 ~y iso) ordered
by increasing trait value. The hori-
zontal dashed line indicates the
expected value in absence of GSEI.
Shaded areas illustrate in which so-
cial environment the DGRP lines be-
came more aggressive (orange, flies

from the socially isolated environment; purple, flies from the socialized environment). DGRP, Drosophila Genetic Reference Panel; GSEI, genotype-by-
social environmental interaction.
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deviate from the mean MAF across the genome, of randomly
selected GO terms, or similar sized nongene regions (Figure
S9 in File S1); however, we did observe a tendency for more
genes within the predictive GO terms to be significantly
enriched for low-frequency variants (Figure S10 in File S1).
We asked whether low-frequency variants contributed more
to increased PA than common variants by fitting the GFBLUP
models (equation 4) and removing either low-frequency
(MAF , 0.1 or MAF , 0.2) or common variants (MAF .
0.1 or MAF . 0.2) from the feature group of the predictive
GO terms. These analyses did not reveal any specific pattern
as the PA of the selected GO termswere increased, decreased,
or not changed (Figure S11 in File S1), indicating little bias in
allele frequency for variants affecting aggressive behavior
(and GSEI).

GO terms are composed of several genes, and the same
gene can be associatedwithmultipleGO terms. Therefore,we
computed and ranked the proportion of variance explained
per gene within each predictive GO term to estimate the
importance of individual genes. Of the 50GO terms predictive
of aggressive behavior for flies reared in the social environ-
ment, a total of 97 genes explained. 10% of the total genetic
variance. Nine of these genes (AP-2s, CG17821, CG31141,
Egfr, Elo68b, Frq2, pnt, sgl, and wg) were represented by two
or three GO terms (85 unique genes, Table S4). For socially
isolated flies, 39 unique genes explained . 10% of the ge-
netic variation within the set of predictive GO terms for ag-
gressive behavior; one gene (chb) appeared in two GO terms
(Table S4). A total of 16 genes explained . 10% of the ge-
netic variation within the predictive GO terms for GSEI; one
gene (cv-c) was associated with two GO terms and one other
(Dys) was associated with three GO terms (13 unique genes,
Table S4). Of the genes capturing . 10% of the genetic var-
iance within the predictive GO terms, four genes (Ady43A,
CG2794, Egfr, and rhea) were in common between the social-
ized and social isolation environment, three (CASK, Dys,

Figure 3 Genomic predictions within and across environments using GWA
results with bins defined by P-value cutoffs. The data were divided into
training and validation sets (10-fold), and GWA analyses were performed
on each training set. Each training GWA analysis was then used to predict
the genetic values in the validation set [socially experienced flies (red), so-
cially isolated flies (green), or GSEI (blue)] using GFBLUP with feature sets
defined by P-value bins. Each panel shows the predictive ability using GWA
results from the social environment (A), the socially isolated environment (B),
or GSEI (C). Shaded areas indicate the SEM. As comparison, the dashed lines
represent the PA (within environment) from sets of randomly selected SNPs
of size corresponding to the number of SNPs within environment below the
P-value cutoff. GFBLUP, genomic feature best linear unbiased prediction;
GSEI, genotype-by-social environmental interaction; GWA, genome-wide
association; PA, predictive ability; SNP, single nucleotide polymorphism.

Table 1 Estimated quantitative genetic parameters for socialized
individuals, socially isolated individuals, and for a joint analysis
with the social rearing regime as a factor to determine potential
genotype-by-social environment interaction

Parameters SOC:ISO SOC ISO

s2
P 0.89 0.81 0.97

s2
G 0.072*** 0.11*** 0.12***

s2
GE

0.049*** — —

s2
e 0.77 0.70 0.84

H2 0.14 0.14 0.12
rG 0.59 — —

rp 0.52 — —

The estimated parameters were the variance components (s2
P total phenotypic

variance, s2
G genetic variance, s2

G:E genotype-by-social environment variance, and
s2
e residual variance), the broad sense heritability (H2), the cross-environment ge-

netic correlation (rg), and the phenotypic correlation estimated by Pearson’s corre-
lation (rp). *** indicates statistical significance (P-value , 1  3   1026) of variance
components. SOC:ISO, for a joint analysis with the social rearing regime as a factor
to determine potential genotype-by-social environment interaction; SOC, estimated
quantitative genetic parameters for socialized individuals; ISO, estimated quantita-
tive genetic parameters for socially isolated individuals.
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Frq2) between the socialized environment and GSEI, and one
(cv-c) between socially isolated flies and GSEI (Table S4).

Predictions within environment based on predictive
feature sets

We determined the PA of a GFBLUP model where the feature
group contained all predictive GO terms, or genes explaining
. 10% of the genetic variance within the set of predictive GO
terms, within each environment, and for GSEI. In all cases,
these models performed significantly better than the NULL
model (Table 2). For flies reared in the social environment,
the PA from GO terms (PA = 0.56 6 0.02) was not signifi-
cantly different from the PA from top genes (PA = 0.60 6
0.02). However, the PA from GO terms (PA = 0.60 6 0.02)
gave improved performance over top genes (PA = 0.47 6
0.03) for socially isolated flies, while for GSEI, the PA from
top genes (PA = 0.71 6 0.02) was better than that from GO
terms (PA = 0.526 0.03) (Table 2). Next, we asked to what
extent these GO categories or genes were enriched for GWA
analysis variants (P, 0:001) from the analysis of the whole
data set, thus, integrating association analyses and predic-
tion. We found considerable enrichment for socially reared
flies and for GSEI, but not for socially isolated flies (Table 2).

Predictions across environments

The genetic correlation of aggressive behavior between the
two social groups was significantly different from both zero
and one, indicating both a shared and distinct genetic basis of
aggressionwhenflies are reared separately or together. To the
extent that the samegenes affect variation in aggression in the
two environments, we expect that GO categories and genes
that are predictive in one environment should also be pre-
dictive across environments. We used two methods for pre-
dicting across environments; the first was based on single
marker association results and the second on results from the
GFBLUP and the genetic decomposition of GO terms to genes.

Predictions based on bins of single marker regression
P-values showed that when predictions were performed using
the social environment as the training environment, the PA

increased within the social isolation environment (Figure
3A) at a P-value threshold of , 131025: However, when
the prediction models were trained on the socially isolated
environment or GSEI, no improvement of PA was observed
(Figure 3, B and C). The lack of improvement is not easily
explained, other than the constraint of small sample size.

When we used the set of predictive GO terms or the subset
of genes capturing . 10% of the genetic variance from the
social environment to predict aggression of flies reared in
isolation or vice versa, we found no significant improvement
over the NULL model (Table 2). However, we did find a
significant increase in PA over the NULLmodel whenwe used
the predictive GO terms or genes from the social environment
to predict GSEI, and vice versa, and in both cases we found
that the predictive GO terms or genes (Table S3 and Table
S4) were also enriched for associated single genetic variants
(Table 2).

By selecting the genes capturing . 10% of the genetic
variance within the set of predictive GO terms, we expected
an increased PA compared to the prediction models based on
the complete set of predictive GO terms. However, this was
only observed when training on GSEI and predicting within
the social environment (Table 2), which indicates that more
genes with even smaller effects (, 10%) are contributing to
the variation in aggressive behavior.

Discussion

This study was designed to determine the effect of social
isolation on aggressive behavior; to investigate whether the
effect of removing prior social experiences was genetically
variable; and to gain insight to the genetic basis of this
phenomenon by mapping the phenotypic variation of aggres-
sive behavior in both social environments and the response to
social isolation to genetic markers, genes, and GO terms.

Aggressive behavior and the effect of social isolation

Aggressive behavior has been studied in several model sys-
tems, such as mice (Miczek et al. 2001), voles (Gobrogge and

Table 2 Within- and across-environment genomic predictions using the set of predictive gene ontology terms, or the set of genes
explaining >10% of genetic variance within predictive gene ontology terms

Train Validate PA[GO] p(t) Enrichment PA[Fb] p(t) Enrichment p(GO < Fb)

Social Social 0.56 (0.02) *** *** 0.60 (0.02) *** *** Ns
Social Isolated 0.29 (0.04) Ns Ns 0.24 (0.04) Ns Ns Ns
Social GSEI 0.44 (0.03) *** * 0.40 (0.03) *** Ns Ns
Isolated Isolated 0.60 (0.02) *** Ns 0.47 (0.03) *** Ns Ns
Isolated Social 0.22 (0.03) Ns Ns 0.12 (0.03) Ns Ns Ns
Isolated GSEI 0.28 (0.03) * Ns 0.31 (0.03) * Ns Ns
GSEI GSEI 0.52 (0.03) *** *** 0.71 (0.02) *** *** ***
GSEI Social 0.34 (0.03) *** *** 0.41 (0.03) ** ** *
GSEI Isolated 0.35 (0.03) Ns Ns 0.34 (0.03) Ns Ns Ns

The predictive abilities were compared to the corresponding NULL model [p(t)], and for each set an enrichment test was performed to test whether the set was enriched for
genetic variants with low nominal P-values (i.e., P-value , 0.001). p(GO , Fb) is a P-value from Welch’s t-test on whether the predictive ability based on target genes had
higher predictive ability than prediction based on selected GO terms. Input GO terms for PA[GO] are found in Table S3. Input genes for PA[Fb] are found in Table S4.
* P-value , 0.05, ** P-value , 0.01, and *** P-value , 0.00001. PA[GO], predictive gene ontology terms; PA[Fb], genes explaining . 10% of genetic variance between
predictive gene ontology terms; Ns, not significant; GSEI, genotype-by-social environmental interaction.
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Wang 2011), zebrafish (Jones and Norton 2015), and fruit
flies (Chen et al. 2002; Edwards et al. 2006;Wang et al. 2008;
Kravitz and Fernandez 2015; Shorter et al. 2015), as well as
in humans (Caspi et al. 2002; Gallardo-Pujol et al. 2013;
Fernàndez-Castillo and Cormand 2016). In this study, we
developed and used the Flydiator arena (Figure 1) to achieve
high-throughput acquisition of aggressive behavior of multi-
ple animals of the same genome-wide genotype. The design
of the Flydiator arena enabled us to keep two flies within the
same arena but separated until the start of the assay (Figure
1A), allowing us to test the immediate effect of social iso-
lation without the confounding effects of recent exposure
to CO2 or excess aggravation from vigorous handling of the
flies.

Detection of genotype-by-environmental interaction in
general, and GSEI interaction in particular can be difficult
because of the need to control environmental factors and
to test the same genotype in multiple environments. The
DGRP is a resource that can mitigate both of these chal-
lenges. Thus, it was possible to investigate the effect of
social isolation on naturally occurring variation for aggres-
sive behavior by combining the DGRP with the Flydiator
arena.

Previous studies investigating the effect of social isolation
on aggressive behavior in fruit flies have reported increased
levels of aggressiveness when flies were reared in a socially
isolated environment (Wang et al. 2008; Zhou et al. 2008;
Dankert et al. 2009). The results of this study partially sup-
port these prior findings (Figure 2), and more importantly
demonstrate the existence of genetic variation in the effect of
social isolation, GSEI (Table 1). This finding is consistent
with human studies indicating a genotype-by-environment
interaction between prior social experience and certain ge-
netic polymorphisms on aggressive behavior (Caspi et al.
2002; Gallardo-Pujol et al. 2013).

Determining the genotype–phenotype map

Withadvances in sequencing technologies and reduced cost of
genome sequence data acquisition, it has become increasingly
important todevelopnewmethods to identify geneticmarkers
contributing to the variation in phenotypes, particularlywhen
the majority of markers are expected to have individually
small phenotypic effects. Single marker regression methods
are extensively used to associate genetic markers with trait
variation (Hirschhorn and Daly 2005; McCarthy et al. 2008).
However, as a consequence of multiple testing penalties,
most of the signal will disappear and leave a large fraction
of the true causal variants undetected. In addition, quantita-
tive traits are likely to be genetically complex; thus, statistical
methods that exploit prior information to group genetic
markers, such as set tests (Wang et al. 2007, 2010a, 2011;
Mooney et al. 2014) or predictionmodels (Speed and Balding
2014; Edwards et al. 2016; Sarup et al. 2016), might be better
suited for identifying genomic features containing SNPs with
small effects, and have the potential to improve biological
inference.

The different statistical models have different pros and
cons; therefore, applyinga rangeofmodelsmightprovidenew
insight into the distinctive layers of the underlying biology.
Moreover, the choice of statisticalmodelmight alsodictate the
genetic model. Single marker regression models detect ge-
netic markers with large effect sizes (Hirschhorn and Daly
2005), whereas genomic prediction using GBLUP assumes
an infinitesimal genetic model (Meuwissen et al. 2001).
The GFBLUPmodel is an intermediate between singlemarker
regression and GBLUP in that it assumes a quasi-infinitesimal
genetic model (Edwards et al. 2016). Because the genetic
model for a given complex trait is unknown, restricting the
analysis to one type of statistical model will set a limit to what
can be identified given the model. Here, we used both single
marker regressions and GFBLUP to gain insight into the ge-
netic basis of aggression in socialized and socially isolated
individuals.

Previous work has demonstrated that prediction models
incorporating prior biological information enriched for causal
variants can increase the PA of complex traits (Edwards et al.
2016; Sarup et al. 2016; Fang et al. 2017). Recently it was
shown in the DGRP that the level of PA of complex traits
depends on the underlying genetic architecture (Edwards
et al. 2016). An advantage of inbred reference populations
is the ability to phenotype multiple animals of the same ge-
notype, which increases the precision of the estimate of the
genotypic value of each line and increases the broad sense
heritability, which in turn can increase the PA (Edwards et al.
2016). The measure of GSEI used in this study was based on
mean differences in aggressive behavior between the two
social rearing environments, resulting in loss of the replicated
design, thus potentially limiting the PA of GSEI. However,
comparing the GBLUP predictive abilities for flies reared in
a socialized and socially isolated environment with the PA for
GSEI did not indicate any reduction in predictive power.

Using theGFBLUPmodels resulted in a substantial increase
in predictive abilities (Figure 3 and Table S3). This was some-
what surprising given the small sample size. However, our
findings were robust in the sense that predictions based on
randomly selected SNPs did not increase the PA (Figure 3 and
Figure S7 in File S1), and indicates that the predictive SNP
sets do tag causal variants. However, estimation bias and
nonindependence among genomic features could contribute
to artificially high accuracies, similar to the overestimation of
variance explained by the predictive genes (Table S4), which
is known as the Beavis effect (Beavis 1998). In this case, the
overestimation could also be due to some degree of noninde-
pendence among the GO terms (i.e., genes and SNPs repre-
sented within less than one GO term).

Previously, it has been shown that partitioning of genetic
variance intomultiple components can increase thePA(Speed
and Balding 2014; Tucker et al. 2015). The great increase in
PA observed here could in part be due to the precise mea-
surement of each genotype obtained by multiple phenotypic
records per genotype, but it may also be the case that parti-
tioning genetic variance into multiple components allows
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separation of the true genetic signal and noise if the partition-
ing is correct. Low predictive abilities are commonly seen for
complex trait predictionwhen based onGBLUP, especially for
unrelated populations, such as humans (de los Campos et al.
2013; Speed and Balding 2014; Tucker et al. 2015). There-
fore, prediction models such as the GFBLUP model might
provide similar improved results when applied to other data
sets and species. Here, the genomic features were specified
according to GO categories, but classifications based on ex-
pression profiles, protein–protein interactions, and other
types of “omic” data might also perform well.

Insights about the molecular genetic basis of natural
variation for aggressive behavior

The singlemarker GWA regressions and the GFBLUP analyses
of GO terms and genes give different perspectives about the
genetic basis of naturally occurring aggressive behavior in
socialized and socially isolated flies. Only a few genetic
variants were associated with aggressive behavior in the
two social environments and GSEI from the single marker
regression analyses, and none of the individual variants or
genes in close physical proximity to them was in common.
However, the function of the genes harboring the index SNPs
had common functional themes. Both dally and spg were
associated with aggressive behavior in the social environ-
ment. dally affects the development of sensory organs
(Fujise et al. 2001), and spg is involved in the embryonic
development of the central nervous system (Biersmith et al.
2011). Rbfox1, which affects the development of the nervous
system, was associated with variation in aggression of flies
from the social isolation environment. Two genes associated
with aggressive behavior in the socially isolated environ-
ment, CG34371 and zormin, have been implicated in sensory
perception of pain (Neely et al. 2010). Three of the genes
associated with GSEI were: osa, which is believed to be in-
volved in neurogenesis (Neumüller et al. 2011); Ten-a, which
has shown to affect synaptic growth (Mosca et al. 2012); and
trv, which has shown to regulate dendritic morphogenesis
(Honjo et al. 2016). In addition, two of the associated genes
have previously been associated with sleep [CG13868 and
DNaseII (Thimgan et al. 2015)], and two have been found
to influence memory [Rbfox1 (Guven-Ozkan et al. 2016) and
Syn (Michels et al. 2011). tow was found to be associated
with GSEI. tow interacts with fz, which has previously been
associated with Drosophila aggressive behavior (Edwards
et al. 2006; Shorter et al. 2015), and was functionally vali-
dated by RNA interference suppression of gene expression
(Shorter et al. 2015).

As noted above, the statistical model used will impose a
certain genetic model. Therefore, an overlap in the genes
found with single marker regression and GFBLUP was not
expected a priori, and only one gene, RecQ4, was found as-
sociatedwith GSEI using bothmethods (Table 3). GFBLUP, in
combination with partitioning of predictive GO terms to the
genes capturing a large fraction of the genetic variance, iden-
tified a large number of genes associated with GSEI andTa
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aggressive behavior in both social environments. Two addi-
tional sources of evidence can further strengthen the support
for a subset of those genes. First, GO terms are constructed in
a hierarchical structure (The Gene Ontology Consortium
2000), therefore a genemay be present inmultiple GO terms.
If the same gene is identified within multiple GO terms, this
may indicate stronger support for the particular gene. Sec-
ond, the positive genetic correlation between the two social
conditions suggests some shared underlying genetic mecha-
nism, thus, an overlap in the genes identified would be
expected, which was also observed (Table 3).

Nine genes were present in two or three GO terms for flies
reared in a socialized environment (Table 3). Among these
were: AP-2s, which is involved in neurogenesis (Neumüller
et al. 2011); Egfr, which is believed to be related to differen-
tiation of the nervous system (Kim et al. 2015); a transcrip-
tion factor that promotes neural progenitors, pnt (Zhu et al.
2011); wg, which controls the growth of dendrites of periph-
ery sensory neurons (Li et al. 2016); Frq2, which is believed
to control neurotransmitter secretion (Attrill et al. 2016); and
sgl, which has been previously associated with Drosophila
aggressive behavior (Edwards et al. 2006). Three genes
(CG17821, CG31141, and Elo68b), about which there is no
prior knowledge, were also represented by two or more GO
terms in the social environment. For flies reared in social
isolation, only chb was present in multiple GO terms. chb
has been shown to mediate axon guidance (Lee et al.
2004). Two genes were represented by two and three GO
terms for GSEI, cv-c and Dys, both of which previously have
been associated with Drosophila aggression (Edwards et al.
2006; Shorter et al. 2015).

Four of the genes capturing . 10% of the genetic variance
within the predictive GO terms were associated with aggres-
sion for both social environments (Table 3). These were: Egfr
(which was also represented in multiple GO terms, see
above); rhea, which regulates transcription (Bécam et al.
2005); and two genes about which there is no prior molecu-
lar or biological knowledge, Ady43A and CG2794. Three
genes were in common between flies reared in the social
environment and GSEI. These were CASK, Dys, and Frq2; Dys
and Frq2were alsowere represented bymultipleGO terms (see
above). CASK has been shown to regulate neurotransmitter

release (Zordan et al. 2005) and affect locomotor activity
(Sun et al. 2009; Slawson et al. 2011). cv-c (also represented
by multiple GO terms, see above) was associated with both
GSEI and aggression of flies from the socially isolated
environment.

A total of 35 genes that were associated with Drosophila
aggressive behavior in any of the analyses performed in this
study (Table S3 and Table S4) have been associated with
Drosophila aggressive behavior in other studies (Table 3),
and eight of the genes identified in this study have orthologs
that have been previously associated with aggressive behav-
ior in mice (Table 4). Furthermore, several of the genes with
mouse orthologs affecting aggression were also previously
implicated in Drosophila aggressive behavior (kirre, ftz-f1,
and Fas3) (Shorter et al. 2015), suggesting that they are true
positive associations (Table 3 and Table 4). For all the genes
discussed here (Table 3 and Table 4), except for CG13868
and CG2794, we identified human orthologs using the Dro-
sophila RNAi Screening Center Integrative Ortholog Predic-
tion Tool (Hu et al. 2011): 24% (14/59) of them have a
human ortholog that has previously been associated with
human neurological disorders, such as bipolar disorder or
schizophrenia (Table 3 and Table 4).

In summary,weestablished two social rearing conditions, a
normally social and a socially isolated environment, and
assayed aggressive behavior among a subset of DGRP lines
for multiple individuals per line per environment in the
Flydiator arena.We found that the genetic basis of aggression
is in part shared between social environments, and in part
genetically distinct within each environment. Furthermore,
we provide evidence that the phenotypic response to social
isolation is genetically variable, that is, evidence forGSEI. The
phenotypic variation was mapped to individual genetic var-
iants, genes, and GO terms. The large number of associated
genes is consistent with a highly polygenic basis of aggressive
behavior, with many genes with individually small effects.
However, many of these genes have been previously associ-
ated with other behavioral traits and neurological processes,
as well as with aggressive behavior in Drosophila. Candidate
genes identified in this study have mouse orthologs that have
been associated with aggressive behavior, and human ortho-
logs with prior associations with neurological disorders.

Table 4 Summary of genes associated with aggressive behavior for flies reared in a socialized or socially isolated environment, or with
GSEI using single marker regression or with genomic prediction, that have been associated with aggressive behavior in mouse models

Drosophila Gene Symbol Drosophila Gene Name SMR GFBLUP Mouse Ortholog Reference

cac cacophony S Cacna1b Kim et al. (2015), Murakami et al. (2007)
dysfa dysfusion I Npas4 Coutellier et al. (2012)
Fas2b Fasciclin 2 I Ncam1 Stork et al. (1997, 2000)
Fas3 Fasciclin 3 G Cadm1 Takayanagi et al. (2010)
ftz-f1 ftz transcription factor 1 S Nr5a1 Grgurevic et al. (2008)
kirre kin of irre S Kirrel3 Prince et al. (2013)
loco locomotion defects S Rgs2 Oliveira-Dos-Santos et al. (2000)
rst roughest S Kirrel3 Prince et al. (2013)

SMR, single marker regression; GFBLUP, genomic feature best linear unbiased prediction; S, socialized; I, socially isolated; GSEI, genotype-by-social environmental interaction.
a The human ortholog is NPAS4, which has been associated with bipolar disorder (Psychiatric GWAS Consortium Bipolar Disorder Working Group 2011).
b The human ortholog is NCAM1, which has been associated with suicide attempts in depression and bipolar disorder (Mullins et al. 2014).
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Thus, these findings suggest a partially conservedmechanism
for aggressive behavior across animals, but also between an-
imal aggression and human psychiatric disorders resulting in
altered, undesirable behaviors.
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