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Abstract

Surgery is a therapeutic option for people with epilepsy whose seizures are not controlled by

anti-epilepsy drugs. In pre-surgical planning, an array of data modalities, often including

intra-cranial EEG, is used in an attempt to map regions of the brain thought to be crucial for

the generation of seizures. These regions are then resected with the hope that the individual

is rendered seizure free as a consequence. However, post-operative seizure freedom is cur-

rently sub-optimal, suggesting that the pre-surgical assessment may be improved by taking

advantage of a mechanistic understanding of seizure generation in large brain networks.

Herein we use mathematical models to uncover the relative contribution of regions of the

brain to seizure generation and consequently which brain regions should be considered for

resection. A critical advantage of this modeling approach is that the effect of different surgi-

cal strategies can be predicted and quantitatively compared in advance of surgery. Herein

we seek to understand seizure generation in networks with different topologies and study

how the removal of different nodes in these networks reduces the occurrence of seizures.

Since this a computationally demanding problem, a first step for this aim is to facilitate tracta-

bility of this approach for large networks. To do this, we demonstrate that predictions arising

from a neural mass model are preserved in a lower dimensional, canonical model that is

quicker to simulate. We then use this simpler model to study the emergence of seizures in

artificial networks with different topologies, and calculate which nodes should be removed to

render the network seizure free. We find that for scale-free and rich-club networks there

exist specific nodes that are critical for seizure generation and should therefore be removed,

whereas for small-world networks the strategy should instead focus on removing sufficient

brain tissue. We demonstrate the validity of our approach by analysing intra-cranial EEG

recordings from a database comprising 16 patients who have undergone epilepsy surgery,

revealing rich-club structures within the obtained functional networks. We show that the

postsurgical outcome for these patients was better when a greater proportion of the rich club

was removed, in agreement with our theoretical predictions.
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Author summary

Epilepsy is a chronic neurological disorder that affects about 1% of people worldwide. The

administration of antiepileptic drugs is the preferable treatment, but in around one third

of cases, drugs do not stop seizures, and these patients are potential candidates for surgery.

Epilepsy surgery however is too often unsuccessful, with around one half of patients con-

tinuing to experience seizures. In this work we use mathematical models to study epilepsy

surgery so to inform surgeons concerning the brain tissue that should be considered for

surgery resection. We show that functional networks derived from data of epileptic

patients considered for surgery present rich-club organization. For this kind of network

structure, we propose an optimal surgery strategy that consists of disrupting the rich-club.

Introduction

Epilepsy is a chronic neurological disorder that affects about 1% of people worldwide [1].

Antiepileptic drugs are the preferred treatment, but in around one third of cases, drugs do

not stop seizures, and patients for whom this is the case are potential candidates for surgery

[2]. Surgeons use an array of data modalities, including intra-cranial electroencephalogram

(iEEG), in an attempt to map regions of the brain thought to be crucial for the generation of

seizures [3]. If these regions of the brain are amenable to surgery (e.g. they do not overlie

eloquent cortex), then they are removed with the hope that the individual is rendered sei-

zure free as a consequence. However, long-term success rates from surgery may be as low as

15%, presumably in part due to failures of the assumptions used in the decision making pro-

cess [4,5]. It is therefore crucial to advance our understanding of the mechanisms that gen-

erate seizures and the reasons why removing regions of brain tissue may or may not lead to

seizure freedom.

In this regard, seizures are increasingly recognised as arising in large-scale brain networks [6–

9]. Emerging from such networks, both healthy and pathological dynamics are observed, for exam-

ple through EEG, MEG or fMRI. These dynamics emerge due to the interplay between intrinsic

properties of brain areas, structural connectivity, and modulating influences across multiple tem-

poral and spatial scales [10–12]. This networks paradigm has led to imaging or electrographic data

being used to inform network representations of the brain (for example structural or functional

brain networks), and graph theoretical measures are used to characterise the topology of these net-

works [13–19]. Studies analysing graph theoretical properties of networks have reported differ-

ences between functional and structural networks derived from healthy individuals versus people

with epilepsy [20–26].

The emerging field of dynamics on networks is complementary to these traditional, “static”

network analyses [27,28], and moves beyond the study of the topology of networks. In this

approach, mathematical models are used to link networks and the intrinsic properties of indi-

vidual nodes to dynamic data [29], which provides an avenue to understand the relationship

between structure and function [30]. In particular, mathematical models that can recreate ele-

ments of pathological dynamics, for example the occurrence of seizures, have been used to

understand the network mechanisms of disorders such as epilepsy [9,31–37]. Such approaches

are also being used in translational applications, for example providing additional information

to complement clinical interpretation, namely within the diagnosis of epilepsy [35,38]. Cru-

cially, a dynamics on networks approach can be extended to study perturbations to networks.

On one hand, lesions and traumatic brain injury can lead to the emergence of pathological
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brain activity, on the other hand, perturbations such as pharmacological treatment, single

pulse electrical stimulation (and other electrical stimulations), transcranial magnetic stimula-

tion, thermocoagulation, among others, can transform brain dynamics from pathological to

healthy states [36,39–41], therefore revealing potential avenues for therapy. In the case of epi-

lepsy surgery, we have demonstrated that a network model derived from iEEG data could pro-

vide relevant predictions for the outcome of epilepsy surgery [42]. Our findings have been

recently replicated in an independent cohort of 16 people with pharmacoresistant epilepsy

[43] offering further support to a dynamics on network approach. However, the ways in which

networks with different topologies respond to perturbations is at present unknown. For exam-

ple, in analogy to epilepsy surgery, it is unclear whether particular networks are amenable to a

reduction in pathological dynamics upon removing nodes and if so which nodes would be best

to target.

Here, we use a dynamics on networks approach to study the generation of pathological activ-

ity in networks and how the removal of nodes can restore healthy dynamics. Our starting point

is a neural mass model that has previously been shown to generate epileptiform rhythms in

focal seizures [32,37,44], and that we have successfully used to quantify and predict the outcome

of epilepsy surgery [42]. It has been shown that the model, when placed close to a saddle-node

on invariant circle (SNIC) bifurcation, can generate spontaneous, recurrent transitions to epi-

leptiform dynamics (both inter-ictal spikes as well as seizures) when driven by noise [32,37,42].

In our framework, the neural mass model describes the dynamics of a single node within a

wider network. The systematic exploration of node removal in brain networks is computation-

ally demanding, and hence we seek a computationally efficient version of this model that pre-

serves the quantification of the effect of removing nodes. We show that a modification of the

theta-neuron model [45] is appropriate for this purpose since it is the canonical form of the

bifurcation under consideration. This model is capable of generating spiking dynamics, which

here represents seizure-like activity.

The computational benefits of the theta-neuron model allow us to study the emergence of

spiking dynamics in different types of networks and also to systematically quantify the effect of

removing different nodes. Here, we study small-world, random, rich-club and scale-free and

find that rich-club and scale-free networks more readily generate spiking dynamics, since they

require a lower strength of coupling between connected nodes to do so. In terms of the contri-

bution of nodes, we find that rich-club, random and scale-free networks possess a small num-

ber of nodes that drive spiking dynamics, whereas the propensity of generate spiking dynamics

is more evenly distributed across nodes in small-world networks. Collectively, this suggests

that patients whose brain networks display rich-club properties should be particularly amena-

ble to current surgery paradigms. In order to test the relevance of these findings, we analyse

data from patients who underwent surgery and for whom postoperative outcome is known.

We demonstrate that functional networks inferred from iEEG during seizures display a rich-

club connectivity structure and that the proportion of rich-club nodes removed correlates with

the success of surgery.

Methods

Ethics statement

This study was approved by the Internal Review Board of the Inselspital (approval No. 159399,

dated 26th of November, 2013). All patients gave written informed consent that imaging and

EEG data may be used for research purposes.
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Wendling model

In order to model epilepsy surgery, we consider large-scale brain networks, where each net-

work node is capable of generating epileptiform activity but will do so depending on the con-

nectivity structure of the network. In this framework, a node putatively represents a portion of

brain tissue potentially responsible for the emergence of seizure activity across the network.

We assume that the dynamics of each node can be described by a neural mass model, such as

the Wendling model [37,42]. The model depicts the dynamics of a macroscopic circuit in

which a population of excitatory pyramidal neurons interacts with three populations of inter-

neurons (representing one excitatory and two inhibitory populations). The two inhibitory

populations are classed as slow and fast, representing dendritic-projecting GABAA and

somatic-projecting GABAA interneurons, respectively. The dynamics is described by the fol-

lowing 10 first-order ordinary differential equations (ODEs):

_z1ðtÞ ¼ z6;

_z2ðtÞ ¼ z7;

_z3ðtÞ ¼ z8;

_z4ðtÞ ¼ z9;

_z5ðtÞ ¼ z10;

_z6ðtÞ ¼ AaSfz2ðtÞ � z3ðtÞ � z4ðtÞg � 2az6ðtÞ � a
2z1ðtÞ;

_z7ðtÞ ¼ Aaðp þ C2SfC1 z1ðtÞgÞ � 2az7ðtÞ � a
2z2 ðtÞ;

_z8ðtÞ ¼ BbC4SfC3z1ðtÞg � 2bz8ðtÞ � b
2z3ðtÞ;

_z9ðtÞ ¼ GgC7SfC5 z1ðtÞ � z5ðtÞg � 2gz9ðtÞ � g
2z4ðtÞ;

_z10ðtÞ ¼ BbC6SfC3z1ðtÞg � 2bz10ðtÞ � b
2z5ðtÞ;

where z1-z5 are the output potentials in mV of the neuronal populations, namely z1, z2, z3, and

z4 are the outputs of the pyramidal cells, excitatory population, slow inhibitory population,

and fast inhibitory population, respectively. z5 is the output of the slow inhibitory population

that interacts with the fast inhibitory population. z6-z10 are auxiliary variables, S is a sigmoid

function,

S nð Þ ¼
2e0

1þ erðn0 � nÞ
;

and A, a, B, b, G, g, C1-C7, p, e0, r, and ν0 are parameters (see Table 1 for their biophysical inter-

pretation and values).

The output of the model z2(t)–z3(t)–z4(t) corresponds to the aggregated membrane poten-

tial of the excitatory cell population and its bifurcations have been extensively characterized

[47]. In particular, a SNIC bifurcation has been identified as one mechanism for the generation

of epileptiform rhythms observed in typical focal epilepsies [32]. This model and bifurcation

were also previously employed to estimate brain network ictogenicity to predict the outcome
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of epilepsy surgery [42]. Therefore the parameters A, B and Cwere chosen so that the neural

mass is in a steady state close to the SNIC bifurcation that gives rise to spiking dynamics which

we consider a proxy for the patho-phenotype of the epileptic brain (see the third figure, left

panel, in [32]). p is an extrinsic input parameter that represents stimuli from other areas of the

cortex.

Although the neural mass model described above represents the dynamics of four interact-

ing neuronal populations, at the scale we are interested in, it describes the dynamics of a single

node in a wider network consisting of other interacting neural masses. Following previous

studies [33,48], we account for the coupling between neural masses (nodes) using the extrinsic

input parameter p. We make the input of the j-th node both time and node dependent as fol-

lows,

pj tð Þ ¼ pðjÞ0 þ x
ðjÞ tð Þ þ

1

N
P

i6¼jlijaijSfz
ðiÞ
2 ðtÞ � z

ðiÞ
3 ðtÞ � z

ðiÞ
4 ðtÞg:

Here the index j denotes node j (j = 1,2,. . .,N, where N is the number of nodes). pðjÞ0 is used

to control the distance to the SNIC bifurcation; ξ(j)(t) represents noisy inputs from other areas

of the cortex outside of the network under consideration; λij is the coupling strength from

node i to node j; and aij is the i,jth entry of the adjacency matrix (the node receives the outputs

of all his in-neighbours) [33,48]. We consider Gaussian noise with mean pðjÞ0 and

hx
ðiÞ
ðtÞxðjÞðt0Þi ¼ s2

p di;jdðt � t
0Þ;

where s2
p is the variance. A node is in a resting state if pj(t)< pc, where pc is the critical point at

which the SNIC bifurcation takes place.

Table 1. Model parameter values and biophysical interpretations.

Parameter Interpretation Value

A Mean excitatory synaptic gain 5 mV

B Mean slow inhibitory synaptic gain 40 mV

G Mean fast inhibitory synaptic gain 20 mV

a Inverse average time constant–excitatory feedback loop 100 /s

b Inverse average time constant–slow inhibitory feedback loop 50 /s

g Inverse average time constant–fast inhibitory feedback loop 500 /s

C1 Connectivity strength–pyramidal to excitatory 135

C2 Connectivity strength–excitatory to pyramidal 0.8 C1

C3 Connectivity strength–pyramidal to slow inhibitory 0.25 C1

C4 Connectivity strength–slow inhibitory to pyramidal 0.25 C1

C5 Connectivity strength–pyramidal to fast inhibitory 0.3 C1

C6 Connectivity strength–slow inhibitory to fast inhibitory 0.1 C1

C7 Connectivity strength–fast inhibitory to pyramidal 0.25 C1

ν0 Firing threshold potential 6 mV

e0 Half of maximum firing rate of neural masses 2.5 /s

r Slope of potential to rate sigmoid at ν = ν0 0.56 /mV

The values were established in [46], excluding A, B and C.

https://doi.org/10.1371/journal.pcbi.1005637.t001
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Canonical model

Since the Wendling Model (WM) becomes computationally expensive for studying large net-

works, we look for a parsimonious representation for spiking dynamics in brain networks.

Taking into account that nodes of WM are operating in the vicinity of a SNIC bifurcation, we

substitute networks of neural masses with networks in which each node is represented by the

normal form of the SNIC, i.e. the theta-neuron model [45]. It is important to stress that

although this model is traditionally used to describe the dynamics of a neuron, here we use it

(as effectively the canonical form of the SNIC bifurcation) to represent the dynamics of a neu-

ral mass in an epileptic spiking regime. The canonical model (CM) is an alternative formula-

tion of a quadratic integrate and fire neuron. It comprises the following ODE:

_y j ¼ ð1 � cosyjÞ þ ð1þ cosyjÞIjðtÞ;

where θj is the phase of node j, and Ij(t) is its input current. The SNIC bifurcation occurs at Ic =

0. At Ij< Ic, the phase oscillator is resting, whereas at Ij> Ic it is oscillating.

We define the coupling between the “canonical neural masses” analogous to the coupling

defined within the WM,

Ij tð Þ ¼ IðjÞ0 þ x
ðjÞ tð Þ þ

1

N
P

i6¼jwij aij ½1 � cosðyi � y
ðsÞ
i Þ�;

where Ij is the input current of node j, IðjÞ0 þ x
ðjÞ
ðtÞ represents noisy inputs coming from other

areas, wij is the coupling strength from node i to node j, and aij is the i,jth entry of the adjacency

matrix. As in the WM, we consider Gaussian noise (mean IðjÞ0 , and variance s2
I ). We define the

output of the in-neighbour i as 1 � cosðyi � y
ðsÞ
i Þ, where y

ðsÞ
i is its steady state, so that if the

node is resting its output is zero, and if it reaches y
ðsÞ
i þ p, its output is maximum. This uncou-

pled steady state y
ðsÞ
i is obtained from setting _y i ¼ 0,

y
ðsÞ
i ¼ � Re cos� 1 1þ IðiÞ0

1 � IðiÞ0

 !( )

:

We take the real part so that y
ðsÞ
i ¼ 0 at IðiÞ0 > 0. At IðiÞ0 < 0, there are two fixed points: y

ðsÞ
i is

a stable fixed point, and � y
ðsÞ
i is an unstable fixed point. A similar coupling in networks of

theta-neurons was recently studied in [49]. Other authors have considered delta-like interac-

tions [50], or rapid rises in the synaptic gating variable [51], which are a reasonable approxima-

tion for neurons, but inappropriate for neural masses. Note that the output of a neural mass is

an average over the activity of a population of neurons, and so it displays properties of a low-

pass filter [52].

Parameter comparison

For simplicity, we consider homogeneous nodes in both models, i.e., all nodes in a network

are at the same distance to the SNIC bifurcation (pðjÞ0 ¼ p0 and IðjÞ0 ¼ I0), and have the same

coupling strength (λij = λ and wij = w). This is a strong assumption that enables us to focus

explicitly on the contribution of the network structure to the network ictogenicity. Thus, there

are three free parameters in each model: (p0,σp,λ) in WM, and (I0,σI,w) in the CM. Since our

aim is to consider whether the two network models display similar changes in dynamics upon

the removal of nodes, it is important that these parameters are comparable between models.

Taking into account that we require that the node dynamics switch between the resting state

and the spiking dynamics, the three parameters are interdependent. For example, as parameter
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values of the nodes move closer to the SNIC the required noise variance to elicit spikes

becomes smaller. Note, however, that the variance of the noise should not be too large as we

wish to ensure that network interactions play a role in the emergent dynamics. Thus, we define

s�p ¼ sp=ðpc � p0Þ and s�I ¼ sI=ðIc � I0Þ to scale the effect of noise by the distance to the SNIC

bifurcation so that the effect of the noise on the dynamics of both models is comparable. In

order to establish a relation between the coupling strength and the noise, we also define λ� =

2e0cλ/(Nσp) and w� = 2cw/(NσI), where c is the mean degree of the network. These relations

compare the noise to the average maximum input that a node can receive, 2e0cλ/N and 2cw/N
for WM and the CM, respectively. It provides a scale that compares noise perturbations to

inputs received from in-neighbours.

Note that, with respect to the input parameter, the dynamics of a node j change from resting

to spiking in WM if pj(t)> pc, and likewise, in the CM a node j transitions to spiking if Ij(t)>
Ic. Thus, in both models we have the following condition for a node j to be in the parameter

region corresponding to a spiking regime at time t,

xðjÞ0 þ x
ðjÞ tð Þ þ

C
N
P

i6¼jaijYiðtÞ > T;

where xðjÞ0 þ x
ðjÞ
ðtÞ is the noise, C the homogeneous coupling strength, Yi(t) the output of node

i, and T the bifurcation point. If we assume that the network is in the resting state with an aver-

age node output of hYi, then we can estimate the critical coupling Cc at which on average a cer-

tain node starts to spike,

Cc ¼
N ðT � ½xðjÞ0 þ hx

ðjÞ
ðtÞi�Þ

hYikðiÞj
;

where kðiÞj is the in-degree of node j (hξ(j)(t)i = 0 in the case of Gaussian noise). Therefore, for a

given network of size N, the larger the in-degree, the smaller is Cc, meaning that nodes with

higher in-degree are more likely to transition to spiking. This is valid in both models. Similarly,

one can find the critical distance to the SNIC bifurcation,

xðjÞ0c ¼ T �
ChYikðiÞj

N
;

which is smaller than T due to the inputs from the network (hYi> 0).

Artificial networks and measurements of nodes

The adjacency matrix encodes the network structure on top of which the nodes interact. We

consider random, scale-free, small-world and rich-club networks, both directed and undi-

rected (we discarded networks with disconnected components) [53,54]. In order to quantify

the “importance” of each node, we analyze the following traditional measures: degree, average

neighbour degree, eigenvector centrality, betweenness centrality, closeness centrality, cluster-

ing coefficient, and local efficiency [55,56]. Additionally, we also consider eigencentrality

based on Jaccard dissimilarity [57] and dynamical importance [58]. In the case of directed

networks, we also consider in-degree, out-degree, as well as the sum and product of these

measures.

Definition of spiking dynamics and treatment perturbations

We focus our analysis upon two measurements that are relevant for our purposes of studying

epileptic dynamics and surgery in silico, namely Brain Network Ictogenicity (BNI) [23,42,59],
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and Node Ictogenicity (NI) [42]. BNI is a practical approach for quantifying the tendency of a

network to generate spiking dynamics. It measures the average fraction of time spent in spik-

ing dynamics by each node [23,42,59]:

BNI ¼
1

N
P

i
Time spent in spiking dynamics by node i

Total time
:

Specifically, in the WM, first we extract the spikes generated by a node by applying a thresh-

old to the average absolute amplitude of the model output over a sliding window of 0.05 s.

Then, contiguous epochs of spiking dynamics are identified by evaluating the overlap of 1 s

time windows centred in each spike. Finally, the time spent in spiking dynamics corresponds

to the total time of these spiking epochs [42]. In the CM we use the same method, with similar

time scales (we use as conversion time scale the ratio of the full widths at half maximum of the

spikes in each model).

NI quantifies the contribution of each node to the ictogenicity of the network by measuring

the relative difference in BNI upon removing node i from the network:

NIi ¼
BNIpre � BNIipost

BNIpre
;

where BNIpre corresponds to the BNI over the network prior to node resection and BNIipost is

the BNI after the removal of node i. Note that NIi = 1 means that the removal of node i renders

the network free of spiking dynamics, whereas NIi = 0 means that the resection of node i made

no difference to the BNI. In practice, this quantity measures the success of a given surgery

resection in silico, and it may have the potential to guide the search for an optimal surgical

strategy. In general, this quantity may also be useful to quantify the result of temporary abla-

tion, assuming that the ablation takes place in a much slower time scale than the network

dynamics. In this paper we set BNIpre = 0.5 (we have confirmed that the results are qualitatively

the same for other reference values of BNIpre).
To evaluate if the CM can be used as a proxy of the WM in this framework, we compare the

NI ordering of the two models for a number of networks. Note that NI is essentially a vector

with N entries quantifying the result of removing each node individually, being of particular

interest the relative impact of each node removal compared to the others, rather than the abso-

lute value of each one (which is parameter dependent). We use a weighted Kendall’s rank cor-

relation measure [60,61], which is defined as follows. Given two rankings (NI) of the same

items (nodes of the network), we calculate

t ¼
P � Q
P þ Q

;

where P is the number of items in the same order in the two rankings, and Q counts the

number of items in reverse order. When τ = 1 the two rankings predict the same order-

ing, whereas τ = −1 means a reverse order of all items. Here we consider a weighted mea-

sure to take into account the relative values of NI: each NI comparison between two

nodes i and j is weighted by the product of the distances in NI predicted by the two mod-

els, jNIiWM � NI
j
WMj � jNIiCM � NI

j
CMj, (where NIiWM and NIiCM are the NIs of node i calcu-

lated using WM and the CM, respectively). We assume that there are no ties.

Patient data and functional networks

We focus on patients with pharmacoresistant epilepsy, since such patients are candidates for

surgery. Data were collected from 16 patients (11 female, mean age 31, and median post-
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surgical follow up 3 years) who underwent pre-surgical monitoring at Inselspital Bern [42,62].

Following epilepsy surgery, six patients fell into Engel class I (free of disabling seizures), five

into Engel class II (rare disabling seizures) and five into Engel class IV (no worthwhile im-

provement). All patients gave written informed consent that imaging and iEEG data may be

used for research purposes. Other details about the data can be found elsewhere [42,62]. Before

analysis, the signals were down-sampled to a sampling rate of 512 Hz and re-referenced against

the median of all the channels free of permanent artefacts as judged by visual inspection by an

experienced epileptologist (K.S.). For each patient, two peri-ictal epochs were considered,

which included three minutes before seizure onset, the seizure itself and three minutes after

seizure termination (seizure onset and offset were identified by visual inspection (K.S.)). Fol-

lowing the methods described in [62,63], first we applied a band-pass filter between 0.5 and

120 Hz and a notch filter (48 to 52 Hz) using a Butterworth filter. Each epoch was divided in a

set of 8 seconds segments (the segments were chosen 1 second apart from each other). For

each segment we obtained 10 univariate iterated amplitude adjusted Fourier transform

(IAAFT) surrogates independently. Next, the segments were divided in 10 subsegments of

1024 sampling points (2 seconds) distributed with minimal overlap. Thus, we generated an

ensemble of 10 subsegments for the original time series, and 100 subsegments for the surro-

gates (10 for each surrogate). To estimate the correlations between the time series of each

iEEG channel, we used the Pearson’s equal-time (zero-lag) cross-correlation coefficient ρ, and

a non-parametric Mann-Whitney-Wilcoxon U-test was performed to assess the significance of

different medians of ρ between the original time series (ρo) and the surrogates (ρsurr). We fur-

ther applied Bonferroni-Holm corrections to account for multiple comparisons. Finally, we

obtained a surrogate-corrected correlation matrix using the heuristic formula [63,64]

C ¼
ro � rsurr

1 � rsurr
s;

where s = 1 if the null hypothesis of the statistical test is rejected, or s = 0 otherwise. Using this

method, we derived 102 ± 18 functional networks based on cross-correlation for each patient,

depending on the duration of each seizure epoch.

Rich-club organization

The organization of functionally derived networks into rich-clubs [65–67] was studied using a

weighted rich-club parameter ϕ(k) [66]. The richness parameter is the degree k, and the procedure

consists in finding groups (clubs) of nodes whose richness is larger than k. For a given degree k,

we counted the number of connections E>k of the club, and summed their weightsW>k. We then

calculated the fraction of weights shared by the club out of the maximum edge weights that the

club could have if they were linked by the strongest connections of the network, i.e.,

�
w kð Þ ¼

W>k
PE>k

l¼1
wrank
l

;

where wrank
l are the ranked weights of the network. This fraction is not enough to verify the exis-

tence of a rich-club, since even random networks can have an increasing function ϕw(k) as a result

of chance alone (nodes with higher degree are more likely to be connected). Therefore, ϕw(k) is

normalized relative to ϕrand(k) obtained from a set of comparable random networks,

� kð Þ ¼
�
w
ðkÞ

�
rand
ðkÞ

:
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Thus, a network exhibits rich-club organization if there is a range of degree k for which ϕ(k)>

1 [65,66]. We generated 100 random networks by applying a reshuffle procedure to the weights

while keeping the topology of the original network intact, followed by a link and weight reshuffle

procedure that preserves the original degree distribution [56,67]. ϕrand(k) was calculated as the

average rich-club coefficient for each level of k. Finally, we evaluate the statistical significance of

rich-club organization using a permutation test [67], by testing whether ϕ(k) was statistically sig-

nificantly larger than ϕrand(k) (a one-sided p value was calculated as the percentage of the distribu-

tion of ϕrand(k) that exceeds ϕ(k)). We measured the rich-clubs of the average functional networks

of the pre-seizure, seizure, post-seizure, and whole peri-ictal epochs for each patient separately.

Results

Predictions for the effect of node removals are preserved in a canonical

model

We compared the dynamics of the CM to the WM in terms of the effect that model parameters

have on BNI and the profile of NI for a suite of networks. Fig 1 demonstrates typical dynamics

of each model applied to the same network (a directed random network with N = 10, and

mean degree c = 1.6). Both models display spiking dynamics, with a heterogeneous distribu-

tion of activity across nodes. For each model, nodes 2, 5, 7, 9 and 10 show a greater extent of

spiking dynamics than other nodes; thus the distribution of activity across the network is

Fig 1. Node activities in the (a) WM and (b) CM. Although the spikes have different forms between models and the CM shows higher noisy activity, both

models identify the same set of nodes as having a larger propensity to spike. The network is the same for both models, a directed random network with

N = 10 nodes and mean degree c = 1.6. Parameters: ðp0;s
�
p; l

�
Þ ¼ ð94; 5; 2:57Þ and ðI;s�I ;w

�Þ ¼ ð� 1:2; 5; 1:6Þ.

https://doi.org/10.1371/journal.pcbi.1005637.g001
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preserved in the canonical model. On the other hand, it is clear that the resting state is noisier

in the CM. A predominant feature accounting for this is that the ratio of amplitude of the spik-

ing trajectory to noise is larger in the WM. Moreover, one should also realize that whereas in

the WM only positive inputs can move the system towards the SNIC bifurcation, in the CM

both positive and negative inputs displace the phase, θ, from the resting state. Furthermore,

the output of the resting state in the CM is zero, but non-zero in the WM.

As described in the Methods, although we have identified three free parameters, the net-

work dynamics are in fact affected by only two competing factors: the distance to the SNIC

bifurcation and the coupling strength. The strength of noise required to elicit spikes is corre-

lated with the distance to the SNIC bifurcation (that is smaller noise variance is required to

elicit spikes the closer the system is to the bifurcation). Thus, we can fix the noise variance and

consider BNI as a function of the distance to the SNIC bifurcation and coupling strength. Fig 2

provides an evaluation of this function for an ensemble of 10 random networks with 15 nodes

and demonstrates that the smaller the distance to the bifurcation, the easier it is to generate

spiking dynamics, and consequently BNI is larger. In addition, BNI grows with increases in

coupling strength. Fig 2 demonstrates that the shape of the BNI surface is similar for the two

models, which provides evidence that the normal form of the SNIC is appropriate for the

study of the propensity of a network to generate spiking dynamics. Similar results were

obtained for both smaller and larger networks.

Our results thus far indicate that despite some expected quantitative differences, network

dynamics, and in particular the way that BNI changes with respect to system parameters, are

qualitatively similar across the WM and the CM. However, our primary focus is to determine

whether the CM would provide the same prediction for the effect on BNI of node removals (i.e.

NI). With the application of surgical resections in mind, we are predominantly interested in how

comparable the ordering ofNI is between the two models. In order to investigate this, we calcu-

lated the distribution ofNI for a suite of random networks of sizeN = 15,30 and 50 and calculated

the similarity in ordering ofNI using Kendall’s τ (see Methods). Fig 3 shows that within models,

theNI distribution is robust across different parameter sets for which BNIpre = 0.5, which is our

starting point for the calculation ofNI (see Methods) and defines a line in the surface of Fig 2.

Across different choices of parameters within the WM, we find τ> 0.97 for all networks consid-

ered, indicating a strong preservation of the ordering ofNIwhen different parameters are used.

Within the CM, τ> 0.89 and thus there is slightly more variation across NI orderings for this

model. Fig 3C and 3D show τ for comparisons ofNI orderings between the two models. Fig 3C

demonstrates that when model parameters are chosen randomly, the ordering ofNI is preserved

between the two models for small networks, but differences in predictions between the two mod-

els arise in larger networks (for example with 50 nodes). However, Fig 4D demonstrates that a

parameter set for each model can be found such thatNI distributions are preserved across models

in the larger networks studied (50 nodes, τ = 0.85 ± 0.09).

We note that as N increases, nodes become topologically similar in a random network, and

therefore one can expect a homogeneous distribution of NI. However, we are primarily inter-

ested in networks for which nodes exist that should be resected to reduce the presence of spik-

ing dynamics. We therefore study networks for which we might expect the distribution of NI
to be heterogeneous (as we will show below). A natural choice is a scale-free network charac-

terized by a power law degree distribution P(k)*k−γ with a small exponent (γ< 3) [54]. Fig 3

demonstrates that for scale-free networks arbitrary choices of parameters yield a strong simi-

larity in ordering of NI (τ = 0.87 ± 0.16) and that model parameters exist for which the order-

ing is essentially identical (τ = 0.996 ± 0.003).

Fig 3E demonstrates the computational advantage gained by using the CM over the WM.

We find that the ratio of computational time of the WM to the CM when estimating BNI is 4.6
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for networks of size N = 15, 4.9 for N = 30, and 6.2 for N = 50. Note that this gain does not cor-

respond to the ratio of floating point operations needed by each model to simulate a time step

because the time scales are different between these two models. Crucially, such gain will be

very useful when applying this framework in the clinical setting, as it represents a speed-up in

the computational time from days to hours.

Having demonstrated similarity in the ordering of NI across the WM and CM, we proceed

in the following sections to use the CM to study how NI varies across different types of net-

work. We fix the number of nodes that we consider to be 64, in line with a typical number of

iEEG and depth electrodes used in pre-surgical planning applications [42,62,68].

Fig 2. BNI as function of coupling strength and distance to the SNIC bifurcation. The left and right columns

correspond to the WM and CM, respectively. The resemblance between the two surfaces suggests that the CM is a

good parsimonious model of WM for the of study BNI. The red lines on the surfaces correspond to BNIpre = 0.5. The

surfaces in panels (a) and (b) represent an average over an ensemble of 10 directed random networks, and the

error bars in panels (c)-(f) account for the variability of BNI between different network realizations. Parameters:

s�p ¼ s�I ¼ 5; N ¼ 15, and c = 1.6. Additionally, in panels (c) λ* = 1.09, (d) w* = 1.33, (e) pc−p0 = 1.45, and (f) Ic−I0 =

1.62.

https://doi.org/10.1371/journal.pcbi.1005637.g002
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The role of topology in network ictogenicity

Fig 4 shows how BNI varies as a function of the coupling strength under different choices of

network topology. Scale-free networks are the most prone to transit to spiking dynamics since

BNI becomes non-zero for smaller coupling strengths relative to the other topologies. The

effect is more noticeable in networks with smaller exponent γ, which have a greater degree

Fig 3. Consistency of NI within and between models and computational gain. The consistency of ordering

nodes according to their NI value, quantified by Kendall correlation rank τwithin (a) the WM, (b) the CM, and (c),

(d) comparison between the two models. The comparison is performed for networks of size N = 15, 30 and 50. In

each scenario 10 realizations of directed random networks with mean degree c = 1.6, 3.2, and 5.3 are considered.

For each case, the NI ranking is contrasted across 5 different parameter realizations. In panel (c) all combinations

of parameters are compared, whereas in panel (d) the parameter set that maximizes τ is used. Although the

distribution of NI tends to differ between the models as N increases, panel (d) shows that it is possible to find

parameters such that the NI ordering is consistent between models. The red bars in panels (c) and (d) correspond

to undirected scale-free networks (10 network realizations, N = 50, γ = 2, and c = 6). Panel (e) demonstrates the

computational gain of using the CM relative to the WM. The gain corresponds to the computational time the WM

takes to compute the BNI divided by the time the CM takes to perform the same task.

https://doi.org/10.1371/journal.pcbi.1005637.g003
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variance (i.e. are more heterogeneous). However, the maximal value of BNI is less than one for

scale-free networks, in particular in directed networks. Fig 4 demonstrates that rich-club net-

works exhibit a similar profile of increases in BNIwith increases coupling strength features to

scale-free networks, which is presumably a consequence of similarities in the degree distribu-

tions of these networks. Small-world and random networks have similar profiles, implying

that the high clustering coefficient of small-world networks has little impact on a network’s

ictogenicity (BNI). Similar results were obtained for smaller and larger networks (up to N =

128), as well as for sparser (c = 4) and denser networks (c = 10), and in the case of small-world

networks for smaller rewiring probabilities (p = 0.1). Fig 4B shows that whilst the profile of

random and small-world networks is similar for directed and undirected networks, the profile

changes for rich-club and scale-free networks, most significantly for scale-free networks,

whose BNI in directed networks has a very gradual increase with increasing coupling strength.

This is likely due to the disparity between the in- and out-degree of nodes (note that nodes can

have a high out-degree but a low in-degree, meaning they can influence the network activity,

but not be influenced by it, and vice versa).

The role of topology in node ictogenicity

Fig 5 demonstrates the way that NI is distributed amongst nodes in networks with different

topologies, and furthermore how NI correlates with graph theoretical properties of nodes. The

Fig 4. BNI(w*) for different network structures in the CM, namely in panel (a) undirected and in panel (b) directed networks. The red curves correspond to

random networks, the blue and green to scale-free (SF) networks with γ = 3 or γ = 2, respectively, the orange to small-world (SW) networks, and the brown

to rich-club (RC) networks. Note that scale-free and rich-club networks show a non-zero BNI value at smaller coupling strengths, and take higher strengths

to get to BNI = 1 in comparison to random and small-world networks. Each curve is an average over 10 network realizations of the same topology.

Parameters: N = 64, c = 6, probability of rewiring for SW networks p = 0.5, and the rich-club has 10 nodes (with p1 = 0.7, and p2 = 0.2 the connection

probabilities within and from the rich-club to the rest of the network, respectively).

https://doi.org/10.1371/journal.pcbi.1005637.g004
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first column of Fig 5 shows that random, scale-free and rich-club networks each have a skewed

NI distribution, with a small subset of nodes having large NI, whereas small-world networks

have a flat distribution, with small values of NI across nodes. Nodes in rich-clubs were found

to have high NI. Similarly, we found several measures of node importance to correlate with NI,
but in a topology-specific way. For example, whilst node degree correlates to a great extent

with NI in scale-free networks, it does not for random networks, particularly when the mean

degree is large. Eigenvector centrality and dynamical importance were found to be good pre-

dictors of NI (R2 > 0.80, see Fig 6) in all networks except those with small-world topology and

random networks with large mean degree (c = 10). We found that small-world networks

required all considered measures to achieve an adequate prediction of NI (R2 > 0.85 for multi-

ple regressions with all the considered node properties, for c = 4 and c = 6). We note that

directed networks typically did not contain nodes with NI> 0.5 and furthermore that NI did

not correlate with graph theoretical measures in directed networks (R2 < 0.3, see S1 Fig). We

tested the robustness of these results for other reference values of BNIpre (BNIpre = 0.3 and

BNIpre = 0.7) in all the networks (c = 6). We obtain similar results, although the networks

become less sensible to perturbations for BNIpre = 0.7.

Targeted and random node removal

Depending upon the particular choice of network representation, resections from brain net-

works could include more than one node. We therefore sought to gain insight into how many

nodes have to be removed from a network in order to render it incapable of generating spiking

dynamics. In order to resect a minimum number of nodes while reducing BNI as much as pos-

sible, it seems sensible to target the highest NI nodes first. Fig 7 demonstrates how this strategy

compares to random node removal (we use the eigenvector centrality as a proxy of NI and

therefore we target nodes with highest eigenvector centrality, but similar results were obtained

targeting nodes with highest NI). Note that in the case of targeted node removal, when one

node is removed, the whole network changes, and therefore the distribution of NImay change

as well. Therefore, we recalculated the eigenvector centrality of each node of the new network

after each node removal. The figure shows that a targeted node removal is much more effective

than a random strategy in all topologies except small-world networks, in which the two strate-

gies give similar outcomes. This is to be expected taking into account the highly homogenous

distribution of NI in small-world networks (see Fig 5). Accordingly, the difference between the

two strategies is particularly noticeable in scale-free networks, because of its heterogeneous NI
distribution.

Rich-club organization in iEEG-derived functional networks

Our results thus far demonstrate the distribution of NI throughout a network is dependent

upon network structure. In particular, rich-club, or networks with highly connected hubs were

found to contain nodes with high NI, even though all nodes were equivalently parameterized

and therefore those nodes were not apparently pathological. In a practical setting those nodes

would be natural targets for epilepsy surgery. We therefore sought to understand whether typi-

cally used clinical data would yield network representations of the brain with these properties.

We thus quantified the presence of rich-club organization in functional networks derived

from iEEG recordings from patients that were considered for epilepsy surgery. We considered

peri-ictal recordings, and we found evidence of rich-club structure in the functional networks

of pre-seizure, seizure and post-seizure epochs in each patient. Fig 8 shows rich-club functions

for 3 representative functional networks from seizure epochs of 3 different patients. A rich-

club coefficient larger than one over a range of degree k indicates the presence of rich-club
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Fig 5. Comparison of NI across different undirected network structures and its relation to node properties in the CM. Each row corresponds to a

different network topology: (a)-(d) random network; (e)-(h) scale-free network (SF) (γ = 3); (i)-(l) scale-free network (γ = 2); (m)-(p) small-world network

(SW); (q)-(t) rich-club (RC) network. In the first column the nodes are sorted by their NI, so that it is monotonically increasing; in the second column NI is

sorted by the degree of the nodes; in the third column it is sorted by the betweenness centrality (BC); and in the fourth column it is sorted by the eigenvector

centrality (EC). A linear correlation is particularly clear between NI and eigenvector centrality. The shaded areas in the first column and the dots in the other

panels correspond to 10 different network realizations of the same topology (the line represent the mean). Parameter choices are as in Fig 4.

https://doi.org/10.1371/journal.pcbi.1005637.g005
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organization [65,66] and we found this to be the case in all patients. Note that scale-free net-

works also display rich-club organization [65], and so both types of network are identified by

this type of analysis.

Disruption of rich-club predicts postsurgical outcome

Next we extended this analysis taking into account the location of resections relative to the

placement of iEEG electrodes and the postoperative outcome [42,62]. Our model analysis led

us to hypothesise that if the rich-club was partially or totally resected, the outcome for patients

would likely be favourable, since we would expect nodes in the rich-club to have high NI. To

Fig 6. Coefficient of determination (R2) of linear regressions of NI for a set of node measurements applied in different network

topologies for the CM. Each row corresponds to a node measurement (degree, average neighbour degree, eigenvector centrality,

eigencentrality based on Jaccard dissimilarity, dynamical importance, betweeness centrality, closeness centrality, clustering coefficient,

and local efficiency), whereas each column corresponds to a different network topology (within topologies, we present results for three

different mean degrees). The last row is the R2 of a multiple linear regression combining all measurements. Eigenvector centrality,

eigencentrality based on Jaccard dissimilarity, and dynamical importance are the node measures whose correlation with NI is higher.

Colour code: green corresponds to R2 > 0.95; blue to 0.90 <R2� 0.95; orange to 0.80 <R2� 0.90; and red to R2� 0.80. All networks

are undirected and parameter choices are as in Fig 4.

https://doi.org/10.1371/journal.pcbi.1005637.g006
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test this, we estimated which nodes were members of the rich-club in each functional network

(over the pre-seizure, seizure, and post-seizure epochs and all combined) as the collection of nodes

belonging to the ‘richest’ club, i.e., the nodes with degree larger than kr, where kr corresponds to

the maximum of ϕ(k) (see Methods). Fig 9 demonstrates that for networks derived from pre-sei-

zure, post-seizure, or full peri-ictal epochs, the fraction of rich-club resected did not correlate with

the outcome of surgery. However, in functional networks derived from the seizure epoch, there

was a significant difference in fraction of rich-club resected between patients with good (Engel clas-

ses I and II) and poor (Engel class IV) post-operative outcome (p = 0.038, Kruskal-Wallis test).

Patients with good postoperative outcome (seizure free or almost seizure free) had a significantly

larger disruption to the rich-club than those with no postoperative improvement.

Discussion

In this study we used a canonical form of the Wendling model to systematically explore the

influence of network topology on the generation of spiking dynamics and the effect that

Fig 7. BNI as function of the number of nodes removed from a network in the CM. Each panel corresponds to a different undirected network

topology: (a) random networks, (b) scale-free networks (γ = 3), (c) small-world networks, and (d) rich-club networks. The two curves represent two

strategies of node removal: the blue curves correspond to targeted node removal according to highest eigenvector centrality, whereas the red curves

correspond to random node removal. Target node removal is much more effective to reduce BNI in all network topologies except for small-world networks

in which both strategies provide a similar outcome. The probability of rewiring for SW networks was p = 0.1, and other parameters choices were as in Fig 4.

https://doi.org/10.1371/journal.pcbi.1005637.g007
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removing nodes from a network has on its ability to generate such dynamics (i.e. its ictogenicity).

We demonstrated that networks with scale-free and rich-club topology are more ictogenic in the

sense that they require a smaller coupling strength between connected nodes to lead to the onset

of spiking dynamics. Furthermore, we showed that on the whole, the ictogenicity of nodes within

an undirected network correlate with graph theoretical measures most notably degree, eigenvec-

tor centrality and dynamical importance [58]. This led us to hypothesise that disruption of rich-

clubs in networks should lead to diminished ictogenicity. We tested this hypothesis by first dem-

onstrating the presence of rich-clubs in functional networks derived from iEEG data of people

with pharmacoresistant epilepsy, and further showing a significantly greater extent of disruption

to rich-club structures in patients who had good postoperative outcome, compared to those with

poor postoperative outcome.

It has recently been suggested that there exists a local pathological hub near the epilep-

tic focus responsible for spreading epileptic activity, which should be resected by surgery

[69]. This hypothesis is supported by evidence demonstrating that betweenness centrality

correlates with resected cortical regions in patients who had a favourable surgery outcome

[70,71]. Our results are in agreement with this hypothesis. Indeed, the rich-club comprises

a group of nodes with high betweenness centrality that can work as pathological hub spre-

ading epileptic activity.

Functional networks can be thought of as representing communication pathways in the

brain that are active, or open, at a given moment. In the case of brain disorders such as epi-

lepsy, we assume that there exist pathological pathways that support the emergence of seizures

(i.e. ictogenic networks). Since it is natural to assume that these networks are also expressed in

electrographic data and can be characterized in terms of functional connectivity, we use such

networks in our models. This is in contrast to modeling based on the structural connectivity of

the brain [73]. Structural networks place a constraint on the rhythms of the brain that can

Fig 8. Rich-club functions ϕ(k) of functional networks of pharmacoresistant epileptic patients. Each

curve ϕ(k) was obtained from an average functional network of a different patient. ϕ(k) > 1 indicates the

presence of rich-club organization.

https://doi.org/10.1371/journal.pcbi.1005637.g008
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emerge. However, network models of brain rhythms built on structural networks typically

neglect biochemical processes taking place over multiple different time scales preventing us

from knowing, at any given time, which connections are actually active. That is why we have

chosen functional connectivity based modeling in this study. A potential limitation of this

approach, however, is that the network studied depends on the choice of epoch and the

method used to characterize functional connectivity. Interestingly, in our analysis a significant

difference in fraction of the rich-club resected was only found for functional networks derived

from epochs containing seizures. This is in line with our previous analysis in which the effect

of resections could be predicted based on functional networks derived from seizure epochs

[42]. Furthermore, our previous study utilised functional networks derived from a nonlinear

Fig 9. Fraction of rich-club (RC) resected versus seizure outcome for 16 patients. Panels (a), (b), (c), and (d) correspond to

a quantification based on functional networks derived from pre-seizure, seizure, post-seizure, and whole epochs, respectively.

Braces indicate the p-value of Kruskal-Wallis one-way analysis of variance to quantify the statistical difference between good and

bad responders.

https://doi.org/10.1371/journal.pcbi.1005637.g009
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channel association measure (the surrogate corrected mutual information [62,63]), and we

have therefore demonstrated that information relevant to the ictogenic network can be

extracted from spatiotemporal seizure dynamics using both linear and nonlinear measures to

infer the connectivity structure between nodes. Previous analyses of scalp EEG or MEG have

demonstrated that information relevant to epilepsy is also present in background epochs (i.e.

those not containing seizures) [22,23,35,38,59,72]. In particular, the predictive power of mod-

els for resective surgery has also been studied using inter-ictal (e.g. away from seizure) epochs

[43]. Therefore future work should seek to ascertain whether information capable of guiding

surgical strategies can be extracted from background data recorded using iEEG. Additionally,

it is necessary to examine what neuroimaging modalities contain the most significant informa-

tion to infer the ictogenic network.

For our theoretical analysis of the impact of network structure on ictogenicity we quantita-

tively compared both the canonical model and the full neural mass (Wendling model) [37,46].

Our analysis demonstrated that the canonical model, which is essentially a normal form repre-

sentation of the SNIC bifurcation present in the neural mass model, is a useful parsimonious

model, particularly for the purpose of finding the distribution of node ictogenicity (NI). In

fact, we found that the distribution of NI across nodes of a network is almost independent

from the particular choice of parameters for sufficiently small networks (N< 30). For larger

networks (N = 50) whose topology yields a non-uniform distribution of NI, the two models

also return similar predictions of NI without the need for parameter calibration. This implies

that NI depends predominantly on the presence of a bifurcation to spiking dynamics and net-

work structure. We have further shown that the computational gain increases nonlinearly with

increasing network size and it is therefore significant for networks such as those inferred from

iEEG. The reduction of complexity of models to study fundamental mechanisms of epilepsy

[9,74,75] or healthy brain dynamics [76,77] is becoming a well-accepted approach, and will be

particularly important in computationally intensive applications, such as the study of perturba-

tions to high-dimensional networks.

Although here we have focused on noise-driven models close to a SNIC bifurcation to gen-

erate relevant dynamics, previous studies have suggested the use of other bifurcations, such as

saddle-node and homoclinic bifurcations to model seizure onset and offset, respectively [75].

In particular, Jirsa et al. [75] used a data-driven approach to identify these bifurcations, under

the assumption of a slowly changing control variable moving the model through parameter

space. Further work is required to understand to what extent can data reveal which bifurcation

underlies the observed dynamical transitions and how different bifurcation mechanisms can

influence on the quantification of NI. Patient-specific assessment of the type of bifurcation that

best describes the data may lead to further improvements of this modeling framework.

We demonstrated that networks with high degree variance are more likely to seize for rela-

tively smaller coupling strengths, whereas more homogeneous networks reach BNI = 1 within

a more confined range of coupling strengths. This provides a potential explanation for obser-

vations of increased degree variance in functional networks derived from epilepsy patients,

compared to healthy controls [23]. We also uncovered differences in the interplay between

global and local spiking generating mechanisms in networks with different topologies: random

and small-world networks display a switch-like mechanism for the emergence of spiking

dynamics with respect to changes in global coupling, but a more gradual response to removal

of nodes. Nodes in random or small-world networks have smaller degree variance, whereas

nodes in scale-free or rich-club networks are more heterogeneous in their degree. Therefore,

ictogenicity in the latter networks is likely to be concentrated within a few nodes, and thus

larger connectivity strengths are required for spiking dynamics to be present in the whole net-

work, which is required here for BNI to be large. These results are in agreement with findings
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that the critical coupling for the Kuramoto model decreases as the exponent of scale-free net-

works decreases [78,79]. It is important to note that we assumed all nodes equivalently excit-

able to focus on the contribution of the network structure to the emergence of spiking

dynamics. Future work should consider the potential existence of pathological nodes with

higher excitability that may drive the ictogenicity of the network and whose resection may be

preferable.

Our analysis suggests that if a brain network under consideration does not have rich-club

organization, or if the rich-club were to overlap with eloquent cortex, a resection of a much

greater number of nodes would be required. Note that in this context the brain network mapped

from iEEG does not correspond to the whole brain, instead it corresponds to a clinically prede-

termined brain region under investigation as potential surgical targets. Interestingly, our results

suggest that a considerable BNI reduction could be attained in most 64 node networks upon

removal of 10 nodes at random in all topologies, which is comparable to the average epilepsy

resection [62]. This is in agreement with findings that most patients undergoing surgery experi-

ence some reduction in seizures, even if they do not achieve seizure freedom [80]. In some cases,

the rich-club may comprise non-adjacent nodes making it difficult to resect it through surgery.

To tackle these cases, other techniques might be considered such as radiofrequency thermocoa-

gulation [81]. Our approach may be improved by quantitatively assessing predictions for

changes in seizures frequency, based on the baseline seizures rates of the individuals.

Interestingly, our findings regarding undirected networks did not extend readily to directed

networks. In particular, graph theoretical properties of nodes in directed networks did not cor-

relate with NI, and the effect of node removals was found to be smaller than it would have in

“similar” undirected networks. This has important implications for the choice of network

representation of the brain used in studies of perturbations. Depending on the data modality

under consideration, different approaches should be considered: for modalities that give rise

to undirected networks our framework suggests to target nodes according to their eigenvector

centrality, whereas if directed networks are derived it is necessary to assess NI using a model

(such as the CM). Ultimately, a representation of the brain will be deemed (clinically) useful in

the context of our study if it is able to predict the outcome of perturbations. In the current

study and our previous work [42] we have demonstrated that useful information is present in

an undirected network representation of the brain. However, future work will ascertain

whether approaches yielding a directed network may ultimately prove most beneficial.

Supporting information

S1 Fig. NI of different directed network topologies in the CM. Each row corresponds to a dif-

ferent network topology: (a)-(c) random network; (d)-(f) scale-free network (SF) (γ = 3); (g)-(i)

small-world network (SW); (j)-(l) rich-club (RC) network. In the first column the nodes are

sorted by their NI, so that NI is monotonically increasing; in the second column NI is sorted by

the product of in- and out-degree; and in the third columnNI is sorted by the dynamical impor-

tance (DI) of the nodes. Note that the correlation between these node measures and NI is not as

good as the one found in Fig 5 for undirected networks. The shaded areas in the first column

and the dots in the other panels correspond to 10 different network realizations of the same

topology (the line represent the mean). Parameter choices are as in Fig 4.
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