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Abstract

In many human diseases, associated genetic changes tend to occur within non-coding regions, 

whose effect might be related to transcriptional control. A central goal in human genetics is to 

understand the function of such non-coding regions: Given a region that is statistically associated 
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with changes in gene expression (expression Quantitative Trait Locus; eQTL), does it in fact play a 

regulatory role? And if so, how is this role “coded” in its sequence? These questions were the 

subject of the Critical Assessment of Genome Interpretation eQTL challenge. Participants were 

given a set of sequences that flank eQTLs in humans and were asked to predict whether these are 

capable of regulating transcription (as evaluated by massively parallel reporter assays), and 

whether this capability changes between alternative alleles. Here, we report lessons learned from 

this community effort. By inspecting predictive properties in isolation, and conducting meta-

analysis over the competing methods, we find that using chromatin accessibility and transcription 

factor binding as features in an ensemble of classifiers or regression models leads to the most 

accurate results. We then characterize the loci that are harder to predict, putting the spotlight on 

areas of weakness, which we expect to be the subject of future studies.
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INTRODUCTION

Mapping genotype to phenotype has been the focus of many studies in the post genomic era, 

with an increasing focus on the non-coding genome (Farh, et al., 2015; Hindorff, et al., 

2009; Maurano, et al., 2012; Weingarten-Gabbay and Segal, 2014; Welter, et al., 2014; 

Zhou, et al., 2013). Gene expression has been and is still one of the most well investigated 

phenotypes by such studies, starting with the pioneering work that modeled it as a function 

of sequence features of proximal promoter regions, focusing primarily on the occurrence, 

location, orientation, and cooperative interactions (Das, et al., 2004; Segal, et al., 2008) of 

transcription factor (TF) binding motifs, and K-mer frequencies (Beer and Tavazoie, 2004; 

Bussemaker, et al., 2001; Nguyen and D’Haeseleer, 2006). With the development of 

sequencing-based technologies for chromatin profiling (Thurman, et al., 2012), methods for 

prediction of gene expression advanced accordingly, now adding experimentally measured 

chromatin properties as features (e.g., TF binding or histone modifications using ChIP-seq; 

chromatin accessibility using DNAse-seq or ATAC-seq; (Dong, et al., 2012; Gonzalez, et al., 

2015; Marstrand and Storey, 2014; Natarajan, et al., 2012; Wilczynski, et al., 2012)). With 

these new types of data, a number of related questions and challenges emerged. One set of 

studies aimed at annotating the state of the chromatin into broad categories (e.g., enhancers, 

insulators) based on observed chromatin features and/or DNA-sequence (Ernst and Kellis, 

2010; Hoffman, et al., 2012) and then associate the resulting distal regulatory regions with 

the correct target gene (e.g., using chromatin conformation assays (Rao, et al., 2014) or 

computational inference (Gonzalez, et al., 2015)). Another set of studies aimed at predicting 

chromatin features (e.g., accessibility, TF binding) based on DNA sequences (Weingarten-

Gabbay and Segal, 2014), and predict the dependence of epigenetic features on genetic 

variation (e.g., single nucleotide variants (Ernst and Kellis, 2010; Erwin, et al., 2014; Lee, et 

al., 2015)). Recent methods, some of which are applied here, “closed the loop” and use DNA 

sequence alterations to predict changes in epigenetic features, which are then used as 

features for predicting the pertaining effects on the expression of the putative target genes.
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One of the major hurdles in advancing this field and characterizing the regulatory “code” of 

the genome has been the lack of a well-controlled and scalable experimental system, which 

allows to investigate the direct effect of any sequence alteration of interest. A substantial 

progress to this end was the development of Massively Parallel Reporter Assays (MPRA) - a 

cost effective, high-throughput activity screening of fully synthesized DNA regions (Figure 

1; (Smith, et al., 2013; Weingarten-Gabbay and Segal, 2014)). In MPRA, a library of 

thousands of putative regulatory DNA elements (each about 150-nt in length) with coupled 

unique tags is synthesized and used to generate a pool of plasmids; this pool is then 

transfected into cells and the regulatory activity (as an enhancer or promoter) associated 

with the respective DNA element is assessed by sequencing the abundances of the expressed 

tags. Since oligoarrays can now be printed in a cost effective fashion, MPRA provides a 

feasible means (albeit only in an episomal context (Inoue, et al., 2017)) to systematically 

interrogate how regulatory activity is encoded in the DNA (Birnbaum, et al., 2014; 

Kheradpour, et al., 2013; Melnikov, et al., 2012; Mogno, et al., 2013; Patwardhan, et al., 

2012; Sharon, et al., 2012; Smith, et al., 2013), and estimate the effects of sequence variants.

Since MPRA is still a nascent technology, computational methods that make effective use of 

it are still emerging (Gertz, et al., 2009). Specifically – how to leverage MPRA to build 

better and more accurate models for predicting whether a DNA region of interest plays a 

regulatory role, and if so, how does this its activity changes upon slight sequence variations 

(single nucleotide variants (SNV) of short insertions or deletions (indels)), commonly 

observed in human cohorts (Zhou, et al., 2013). The CAGI eQTL challenge is the first 

community effort aimed at advancing this type of studies. It is based on a comprehensive 

profiling of eQTLs observed in a subset of the Geuvadis database (Lappalainen, et al., 2013) 

with MPRA, culminating in over nine thousand regulatory sequences, in their reference 

genome form and their alternative (SNV or indel) form (Tewhey, et al., 2016). The goal of 

the challenge was two-fold – first, participants were asked to predict the regulatory activity 

of each regulatory sequence (reference or alternative allele) in isolation. Then, the 

participants were asked to predict the differences between each pair of alleles.

In the following sections we describe the results of this challenge and the lessons that can be 

learned via a meta-analysis of the competing methods. We start by summarizing the 

properties that were used by the participants as predictive features, divide these properties 

into several categories, and inspect the predictive ability of representative features from each 

category in isolation. We then move to inspect the predictive algorithms used by the 

participants and evaluate their overall performance using a range of metrics. As expected, we 

find that the predictions for the first part of the challenge (i.e., predicting the regulatory 

activity of each allele separately) were much more accurate than the second part (predict the 

differences between alleles), reflecting the difficulty in modeling the effects of nuanced 

sequence modifications. Furthermore, we find that overall the ranking of the participants is 

stable across specific sub-tasks and performance metrics, with the most promising methods 

belonging to the ones that “close the loop” as stated above. These methods use the DNA 

sequence as a primary feature for predicting epigenetic properties. These properties, in turn, 

are used to train an ensemble of models (e.g., using different learning algorithms) to provide 

a robust prediction of transcriptional activity and its dependence on sequence variation.
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Focusing on loci that showed strong transcriptional activity in the MPRA, and taking a meta-

analysis approach, we find that there are two distinct subsets of loci – one whose activity is 

predicted accurately by all (or most) competing methods, and another whose activity is 

poorly predicted by all competitors. Expectedly, we find that the “hard-to-predict” regions 

are associated with “paradigm-violating” properties, such as lack of accessibility or no 

apparent TF binding (as inferred by DNA-seq and ChIP-seq, or predicted by sequence-based 

models). While this is probably to some extent a result of inspecting regulatory activity in 

episomal setting, it may also point to knowledge gaps in defining the predictive features 

(e.g., unknown TF binding preferences) or properly combining these features in a predictive 

model.

THE eQTL-CAUSAL VARIANT CHALLENGE

Tewhey and colleagues used MPRA as a tool for investigating genetic variants that are 

statistically associated with changes to gene expression, considering both SNVs and indels 

(Tewhey, et al., 2016). These expression Quantitative Trait Loci (eQTL) were inferred based 

on a collection of immortalized lymphoblastoid cell lines (LCLs) derived from a large set of 

individuals, where both genome sequences and transcription profiles are available (Tewhey, 

et al., 2016). The eQTL causal SNP CAGI challenge was based on a subset of these loci, and 

included 3,157 eQTLs inferred based on individuals of European ancestry (Genomes 

Project, et al., 2012; Lappalainen, et al., 2013). Each eQTL in this collection is in turn 

associated with one or more variants (with an average of 3 variants per eQTL) whose 

individual effects are statistically indistinguishable due to linkage disequilibrium (LD; 

considering all loci that are in perfect LD with the top associated variant), leading to an 

overall set of 9,116 variants (8,570 SNVs and 546 indels; Figure 1).

For each variant, a sequence of 150-bp was synthesized, which includes the surrounding 

genome sequence (using reference genome hg19) with the variant located at the central 

position (Figure 1A). Each SNV was associated with two sequences that are identical except 

for the respective variation in position 76. For indels, the longer of the two alleles was 

designed as a 150-nt oligonucleotide; the shorter allele was then designed with the same 

flanking sequences as the longer allele (e.g., for a single-nucleotide indel TC/C: X[TC]Y 

and X[T]Y, where X and Y are 74bp long DNA segments that flank the variant in the 

reference genome). To increase the accuracy and sensitivity of the assay, 20-nt barcodes 

were added to the oligos by emulsion PCR, such that each oligo is represented by an average 

of a thousand barcode tags within the plasmid pool (Figure 1B). The plasmid library was 

electroporated into two LCLs (NA12878 and NA19239), using five and three technical 

replicates respectively. Importantly, NA12878 is an ENCODE tier 1 cell line (Consortium, 

2012) and thus a large number of genomic assays performed on this cell line are publically 

available. Twenty-four hours after transfection, the GFP reporter mRNA was captured by 

hybridization, and RNA sequencing of the 3′-UTR-adjacent barcodes was performed to 

quantify the influence of each 150-bp sequence on regulation of the reporter gene. RNA 

expression measured in barcode read counts was normalized relative to the input plasmid 

barcode counts determined by DNA sequencing, such that the reported MPRA output 

consisted of an estimate for the ratio between the number of transcripts (RNA-seq) and 

plasmids (DNA-seq) (Figure 1C).
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The resulting MPRA dataset was divided into a training set, which was made available to the 

participants, and a test set, which was held off and used for evaluation by independent 

assessors. The complete data set, including training and test subsets is provided in Supp. 

Table S1. The training set (Figure 1D–E) consisted of MPRA results for 3,044 variants 

(2,874 SNVs and 170 indels) associated with 1,052 eQTLs. For each variant, the 

information available for training included: (1) the respective genomic coordinates (using 

the hg19 reference genome), and the position and type of the variant. (2) an estimated 

transcript to plasmid ratio for each allele (defined as log fold change (log2FC); averaged 

across replicates). (3) an indication whether or not at least one of the two alleles exhibits a 

significantly high ratio of transcripts to DNA (regulatory hit). Significance of differential 

abundance of transcripts vs. plasmid input was evaluated using DE-seq2 (Love, et al., 2014) 

with a false discovery rate (FDR) cutoff of 1% to call hits. (4) Comparison of transcriptional 

activity between the two alleles. As before, this included a quantitative field indicating the 

fold change between the transcriptional activity of the two alleles (alternative/reference; 

LogSkew); and a binary field, indicating whether the difference is statistically significant 

(expression-modulating variants; emVar hits); Significance of allelic skew was evaluated 

using a t-test on the log-transformed RNA-seq/plasmid ratios across replicates with a FDR 

cutoff of 5% to call hits. (5) the name of the eQTL associated gene and the association’s 

coefficient (beta), t-statistic, and p-value. As expected, hit regions have significantly higher 

expression (Figure 1E (i–ii)).

The challenge consisted of two parts, each with its own test set. In the first part, the 

participants were asked to predict the level of transcriptional activity (log2FC) for each 

allele, and determine for each variant whether at least one of the alleles is a regulatory hit. In 

addition, each prediction should have included a standard deviation, reflecting the 

confidence in the predicted values. The corresponding test set (Supp. Table S1) consisted of 

MPRA results for 3,006 variants (2,811 SNVs and 195 indels) associated with 1,050 eQTLs. 

In the second part, the participants were given variants that are confirmed regulatory hits 
and asked to predict the difference between the transcriptional activity of the two alleles, 

both quantitatively (LogSkew) and qualitatively (emVar hits). As before, each prediction 

should also include an estimate of statistical confidence. The corresponding test data 

consisted of MPRA results for 401 variants (370 SNVs and 31 indels) associated with 1,055 

eQTLs (Supp. Table S1).

Seven groups participated in the challenge. Each group was allowed to submit multiple 

predictions, resulting in overall 20 submissions for the first part, and 13 submissions for the 

second part. The submissions spanned a wide array of predictive features and prediction 

algorithms, as summarized in Table 1.

RESULTS

PREDICTIVE FEATURES

The features that were used by the participating groups can be categorized into several 

classes: (1) Experimentally measured epigenetic properties, including Transcription factor 

(TF) binding sites (TFBS), histone marks, chromatin accessibility (primarily by identifying 

DNase-hypersensitivity sites; henceforth abbreviated as DHS), and DNA-methylation. To 
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define these features, each reference allele is mapped to the reference human genome, and 

then queried against tracks of epigenetic properties (primarily from ENCODE (Consortium, 

2012) and the Epigenome Road map (Romanoski, et al., 2015)), measured in LCLs and 

other cell lines. (2) Predicted epigenetic properties. This set of features covers similar 

properties as the experimentally-derived ones (e.g., TFBS or DHS). However, instead of 

being directly measured, the properties are inferred based on the DNA sequence of the 

respective MPRA construct, using models trained on experimental data (e.g., protein binding 

microarrays (Newburger and Bulyk, 2009) for TFBS, or DNase-seq (Consortium, 2012) for 

DHS). A wide array of models for prediction of epigenetic properties from sequence were 

used, from simple DNA-binding motif scoring (Grant, et al., 2011) to more recent 

supervised learning algorithms such as DeepBind (Alipanahi, et al., 2015), gkm-SVM 

(Ghandi, et al., 2014) and Basset (Kelley, et al., 2016). (3) Other locus-specific properties, 

including Variant information (e.g., indication if a variant is defined as a leading SNP 

(Tewhey, et al., 2016)), and evolutionary conservation; and (4) DNA k-mer frequencies.

Notably, the sequence-based features (feature classes 2 and 4), associate the reference and 

alternative alleles with different values (reflecting the differences in their respective DNA 

sequences). Conversely, in features that are based on direct characterization of the loci in the 

reference genome (feature classes 1 and 3), the two alleles are associated with the same 

value. Features of the former classes may therefore be more directly applicable for 

distinguishing between the two alleles at the second part of this challenge.

While the competing groups combined multiple feature sets using learning algorithms, we 

first wanted to explore the predictive capacity of each feature in isolation. To this end, we 

assembled a representative set from each feature class and measured its accuracy when 

applied on the test data sets (Supp. Table S1, Figure 2). For class 1, we include twenty 

epigenetic properties, derived from experimental profiling of LCLs by the ENCODE 

consortium (Consortium, 2012). These features include DHS (using DNase-seq), multiple 

histone modification, and TFBS (using ChIP-seq). These profiles were interpreted as binary, 

where a value of 1 indicates that the respective region overlaps with a peak of the respective 

signal (provided by the ENCODE unified pipeline (Consortium, 2012)). For class 2, we 

included the number of predicted TFBS based on the presence of DNA binding motifs form 

the ENCODE collection (Grant, et al., 2011; Kheradpour and Kellis, 2014), or using a 

Neural network model trained on protein-binding microarrays (Alipanahi, et al., 2015). We 

also included the distance between the transcription start site of the MPRA construct and the 

nearest motif hit, and several sequence-based properties related to the DNA structure, 

including: length of polyA/T sub-sequence representing nucleosome disfavoring sequences, 

GC content, and predicted DNA shape features including: minor groove width (MGW), roll, 

propeller twist (PROT), and helix twist (HELT) (Zhou, et al., 2013). For class 3, we included 

evolutionary conservation scores, predicted by phastCons (Siepel, et al., 2005). We did not 

include class 4 features (k-mers) in this analysis.

We used a number of tests to evaluate the accuracy of each feature (Supp. Note S1). For the 

regression tasks, i.e. predicting the expression of the reference and alternate allele (log2FC) 

and their ratio (LogSkew), we applied several correlation measures (Person, Spearman, 

Kendall), considering either the entire test data; variants at the top 25% transcriptional 
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activity (defined as the maximum log2FC of the two alleles) or absolute allelic skew; or a 

discretization of the data (predicted and observed) into quintiles. For the binary predictions 

(i.e., Regulatory hit and emVar hit) we record the area under the Receiver Operating 

Characteristic (ROC) and Precision Recall (PR) curves (AUC). To better account for the 

binary predicted values (i.e., class 1 features), we also applied a fold enrichment test by 

examining the overlap between the set of true positives (Regulatory hits or emVar hits) and 

the predicted positives. For quantitative features (classes 1, 3) the predicted positives were 

defined as regions with value higher than the mean. The significance of each test was 

evaluated by the respective statistical test (correlation p-values for the regression tasks; 

Kolmogorov–Smirnov (KS) test for ROC and PR; hypergeometric p-value for the 

enrichment test). All p-values were corrected using the Benjamini–Hochberg procedure, and 

only associations below a false discovery rate (FDR) of 5% are presented.

Consistent with the previous literature (Erwin, et al., 2014; Kwasnieski, et al., 2014; Smith, 

et al., 2013), the most highly predictive features for the absolute expression levels (part I) are 

those related to TF binding (number of bound TF, inferred either computationally or 

experimentally) and chromatin accessibility (Figure 2A). We note that there is an overall 

high correlation within features categories (Supp. Figure S1) and negligible correlation 

between features and eQTL statistics (Supp. Figure S2). Notably, the set of all MPRA 

regions is significantly enriched with majority of histone marks with respect to the entire 

genome (Supp. Table S2), as expected (Francois Aguet, 2017; Fromer, et al., 2016). 

However, within those regions, we find the histone marks to have a low ability to predict 

eQTL strength (Supp. Figure S2).

We also find a significant positive relationship in various histone modifications that are 

associated with active regulatory regions (e.g., H3K27Ac). Considering the contribution of 

individual TFs, we find several regulators whose predicted binding sites are particularly 

predictive of regulatory activity of MPRA constructs (Figure 2B). Interestingly, among the 

top TFs are Batf and Irf4 (supported by ChIP-seq data as well; Figure 2C), which are highly 

expressed in LCL and are known to form a heterodimer that performs pioneer functions (i.e., 

recruitment of chromatin remodeling machinery) in T cell development (Ciofani, et al., 

2012). For part II, we do not observe any individual features that are significantly predictive, 

considering different ways to aggregate the scores of the two alleles in feature class 2 [max, 

min, difference], and using a lenient cutoff of FDR<0.1 (Figure 2D). The only exception was 

a weak positive signal from the differences in number of predicted TFBS, attesting to the 

complexity of predicting differences that hinge on a single or few nucleotide difference. 

Since MPRA is subject to experimental error, as most other assays, we have tested the 

robustness of these results by resampling, and observed overall consistent results (Supp. 

Table S3).

COMBINING PREDICTIVE FEATURES WITH LEARNING ALGORITHMS

The prediction algorithms for the first part of this challenge included a wide array of 

standard machine learning techniques, both for the classification task (regulatory hits; e.g., 

support vector machine (SVM), random forest, neural networks), and the regression tasks 

(Log2FC; e.g., support vector regression (SVR), regularized linear models, regression trees), 
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with random forests being the most widely-used method (Table 1). Some of the groups 

further used an ensemble of predictors, by varying either the type of prediction algorithm 

(e.g., combining linear models and random forest) or the set of predictive features (e.g., 

different classifiers, each using epigenetic features predicted by a different algorithm 

(Alipanahi, et al., 2015; Zhou and Troyanskaya, 2015)). For instance, group #2 applied 

gradient boosting for classification of regulatory hits, and reported an aggregate over the 

predicted scores of eight different models, trained on eight distinct feature sets, with each set 

including either experimentally-derived epigenetic properties (e.g., ChIP-seq signal over the 

respective loci in LCL from ENCODE), or computationally-derived ones (e.g., DNase 

hypersensitivity predictions in 164 cell lines using Basset (Kelley, et al., 2016)).

In part II, we observed two main strategies: the first was to treat this part independently from 

part I, and build predictive models using the feature categories summarized above. The 

alternative strategy was to use the individual activity of each allele, as predicted in part I, to 

infer their differential activity (quantitatively - LogSkew; and qualitatively - emVar hits). For 

instance, using a similar strategy as in the deepSEA framework (Zhou and Troyanskaya, 

2015), group #4 (Haoyang Zeng, 2016) built a two-step classifier: in the first level it applies 

the classifiers from part I to predict the transcriptional activity of each allele; in the second 

part it uses the predicted activity of each allele and the difference between them as features 

for predicting emVar hits using an ensemble of classifiers, including regularized logistic 

regression, random forest, SVM, and K nearest neighbors (KNN).

PERFORMANCE EVALUATION

The groups submitted their predictions for the held-out test data sets, which we then used for 

evaluation. We used similar performance tests as above to rank the groups, and then derived 

an overall ranking by taking the median across tests (Figure 3). Not surprisingly, we observe 

that the relative performance within each part is overall consistent across the different tasks; 

for instance, the accuracy of predicting transcriptional activities (Log2FC) is highly 

indicative of the performance in the related classification task (regulatory hit). The 

consistency between the two parts was less substantial (even though the top ranking group 

was similar), for instance with group #5 performing well in part II, but less so in part I. 

Interestingly, this group based its predictions on feature class 2 only (sequence-based 

predictions of epigenetic properties). While their method was previously shown to be 

predictive of the effects of subtle sequence changes (mostly SNV) on chromatin accessibility 

(Ghandi, et al., 2014), the lack of direct experimental measurements as features (i.e., class 1) 

might be the cause for the less favorable performance in part I compared to groups that used 

class 1 features. More generally, we observe a substantially worse performance in part II vs. 

part I, which is consistent with the single feature analysis above, and reflects the difficulty of 

predicting the effects of nuanced sequence modifications.

Next, we wanted to assess if there are specific classes of models or combinations of features 

that are associated with better performance. To address this, we record for each submission 

the types of models and features that were used (Table 1 and Figure 3). We note that 

ensemble methods were generally better performing, highlighting the need for robust 

inference methodologies, and consistently with other applications of machine learning in 
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biology (Marbach, et al., 2012). Furthermore, it is clear that non-linear methods perform 

better - an expected results given the plausibility of non-linear (Das, et al., 2004) and 

combinatorial (Spitz and Furlong, 2012) effects of the features. For part I, we observe that, 

generally, including TFBS as features (either predicted or experimentally-derived), leads to 

better performance, which is consistent with the individual feature analysis (Figure 3A). For 

part II, we find that relying on models trained in part I (i.e., using the predicted allele activity 

levels as features) leads to improved performance (Wilcoxon ranksum test p-value 0.0028). 

(Figure 3B).

WHERE DO WE FAIL?

We next wanted to characterize the regions that were proven to be hard to predict. We start 

by ranking the MPRA constructs by their observed activity levels (Log2FC). For each 

competing submission and each MPRA construct, we then define the respective accuracy as 

the absolute difference between the observed and predicted rank, scaled by the difference 

expected by a random ranking (which becomes smaller the closer we are to the average). We 

note that this measure is more robust than taking the difference of the original (non-rank 

transformed) values, which due to the scaling of variance with the mean (as expected), leads 

to strong bias for highly active constructs (Supp. Figure S3).

We then assess how consistent different groups are in their performance within a region. To 

this end, we record the Spearman correlation coefficient of region performance between 

every pair of groups (taking the maximal correlation among all pairs of submissions). The 

cumulative distribution of these coefficients (Figure 4A) suggests that there is an overall 

agreement in regions performance for the predictions in part I across the different 

submissions (Figure 4B left panel) and less coherent agreement for part II (Figure 4C left 

panel). Similarly, we observe an overall agreement in regions performance for the 

predictions in part I, based on the 10 most predictive features individually (Figure 4B right 

panel) but not for part II (Figure 4C right panel).

Given the consistency of submissions for part I, we focus our analysis on pinpointing which 

genomic and epigenetic features are associated with the ability to predict the activity level 

(Log2FC) of a region (i.e. region “hardness”). Considering all the variants in the test set of 

part I, we find that regions that are accurately predicted by all or most competing 

submissions, are highly enriched with regulatory hits (Figure 4B left panel). This 

observation, that the activity of truly active regions is generally easier to predict, is expected 

since the activity level of clear non-hits is likely to fall within the regimen of noise. To gain a 

better understanding of what makes a region hard to predict, we focused our attention on 

regulatory hits. We used similar performance tests as above to evaluate the extent to which 

the different feature classes (Figure 2) and other properties (Figure 5A) is indicative for the 

difficulty in predicting the activity of a regulatory hit. First, we find that the measurement 

noise (evaluated based on reproducibility of the MPRA assay (Supp. Figure S3) does not 

discriminate between hard and easy to predict regions. Second, we find that hard-to-predict 

regions are associated with a lower transcriptional activity (as expected), however, this 

association (AUROC = 0.54) is not as strong as that observed for other features (Figure 5A). 

Next, considering the contribution of individual TFs, we find several regulators whose 
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binding sites are enriched in either hard or easy regions (Figure 5B). Evidently, the TFs that 

are enriched in hard regions tend to have more binding sites across the genome (based on 

ChIP-seq in LCL; Figure 5C), which –from the machine learning perspective- naturally 

makes them less powerful in discriminating active from inactive regions. More globally, we 

observe that hard-to-predict regions tend to have less TF binding sites and reduced 

association with open chromatin and active chromatin marks in the genome, as well as lower 

GC content. These results reflect our overall conception of what characterizes an active 

region (Figure 2A) and are in line with the previous literature, for instance that the 

expression of genes whose promoters has a low GC content is more difficult to predict 

(Dong, et al., 2012). Indeed, looking at individual cases, we find a number of regions that 

are highly-active in the MPRA assay, but are not associated with any TFBS or accessible 

chromatin in LCL (Figure 5D). While these apparent discrepancies may be related to the 

episomal nature of the MPRA assay, close investigation of such regions may be valuable for 

identifying genetic or epigenetic properties that are predictive of transcriptional activity, in 

addition to those employed in this challenge.

DISCUSSION

The outcome of the Critical Assessment of Genome Interpretation eQTL challenge serves 

two main purposes. The first is providing a benchmark and encouraging the development of 

methods for predicting transcriptional activity of DNA-regions, thus improving our 

understanding of the individual genetic and epigenetic properties that make up the regulatory 

code, and the appropriate way to model their inter-dependence in a predictive mathematical 

model. The second purpose takes a translational point of view – a given eQTL variant is 

usually associated with multiple loci that cannot be discriminated due to LD. The methods 

developed here thus join and enhance the published cohort of computational studies (e.g., 

(Alipanahi, et al., 2015; Ghandi, et al., 2014; Kelley, et al., 2016; Kircher, et al., 2014; 

Ritchie, et al., 2014; Zeng, et al., 2016; Zhou and Troyanskaya, 2015)) that prioritize likely 

causal variants in an LD block, based on the predicted allelic shift in chromatin state.

As opposed to existing body of computational studies, the task of identifying causal variants 

in high throughput was tackled by Tewhey and colleagues experimentally - using a 

combined pipeline of eQTL analysis followed by MPRA of the identified loci (Tewhey, et 

al., 2016). Evidently, the resulting MPRA data proved valuable for the identification of key 

loci in the original study (Tewhey, et al., 2016) and for development of predictive methods in 

this challenge. However, it is important to bear in mind that MPRA is conducted outside of 

the natural context of the chromatin and the cell’s regulatory network, thus potentially 

leading to inaccuracies. Indeed, it is still not clear whether the MPRA constructs (Figure 1) 

are capable of acquiring physiological chromatin in a manner comparable to endogenous 

loci (Inoue, et al., 2017). While some studies successfully used MPRA to model interactions 

between TFs (Kwasnieski, et al., 2014; Smith, et al., 2013), other studies suggest that 

episomal assays may in some cases fail to reflect cooperative TF activity, e.g., due to 

differences in histone H1 stoichiometry and nucleosome positioning (Archer, et al., 1992; 

Hebbar and Archer, 2007; Hebbar and Archer, 2008; Smith and Hager, 1997). Future novel 

experimental approaches, including lentivirus based MPRAs that can allow for integration 

into the genome (Inoue, et al., 2017), will shed more light on the features that determine 
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regions functionality. Future challenges should focus on finer annotation of TFBS and 

epigenetic assays which seem to encompass the majority of information regarding regions 

regulatory activity. Specifically, considering cellular context (e.g., pioneer factors as shown 

in Figure 2, or RNA-seq data) when prioritizing features may improve prediction, as 

opposed to treating all TFs equally. Lastly, we note this challenge is based on MPRA in 

regions that harbor an eQTL, the results in Figure 1E indicate that distal regions (i.e., regions 

that do not intersect with promoters, introns or exons) show lower transcriptional activity, 

which might be a result of an error in the eQTL association (which, naturally, tends to be 

more error prone for distal sites due to statistical burden).

In conclusion, while the task of predicting expression-phenotype from genotype is 

immensely complex, this challenge has seen some promising methodologies. Development 

of such methods and pinpointing which genetic and epigenetic features contribute to regions 

functionality is essential to the study of human disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental and challenge design: (A) Selection of regulatory regions that harbor a short 

polymorphism (SNV or indel). (B) Design of MPRA constructs for both reference and 

alternative alleles. (C) Transfection into two different LCLs. (D) Data provided for the 

challenge. (E) Alternative vs. reference allele expression for training set regions (i) 

regulatory hit/non-regulatory regions (ii) emVar hit/non- emVar regions (iii) indel/SNP 

regions are marked in blue/red respectively. (iv) exon, intron, promoter and distal regions are 

marked in red/blue/green/black respectively.
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Figure 2. 
Individual feature accuracy using standard statistical tests. Features classes are divided to 

four categories (1) experimentally measured epigenetic properties (i.e., DHS, multiple 

histone modification and TFBS using ChIP-seq). (2) Predicted epigenetic properties (i.e., 

TFBS predictions: #motifs_ENCODE - number of predicted TFBS based on the presence of 

DNA binding motifs form ENCODE), or DeepBind_tot - using a Neural network model 

trained on protein-binding microarrays. min_dist_to_TSS_ENCODE - the distance between 

the transcription start site of the MPRA construct and the nearest motif hit, #PolyA, #PolyT 

- length of polyA/T sub-sequence, GC content and DNA shape features: minor groove width 

(MGW), roll, propeller twist (PROT), and helix twist (HELT)). DeepBind_tot feature was 

derived by marking the regions that score at the top 90% as hits for every TF, and for every 

region, count the number of TFs for which it has a hit. The aggregation method we use for 

these features is log fold between the alternate and reference allele and subtraction for 

DeepBind_tot. (3) locus-specific properties (i.e., evolutionary conservation scores) (4) k-mer 

frequencies (not included in this analysis). For regression tasks we applied several 

correlation measures (Person, Spearman, Kendall), considering either the entire test data 

(purple squares); variants at the top 25% of quantitative measurements (blue squares); or a 

binning of the data (light blue squares). For the binary predictions we record the AUROC 

and AUPRC (orange squares). For both regression and classification tasks we applied a 

hypergeometric test. The features are ranked based on the median performance across all 

tests and presented sorted from the most to the least predictive. Non-significant correlations 

are marked in grey, high positive/high negative/low correlation is marked in red/blue/white 

for regression and dark green/light green/white respectively for classification. Features 

categories 1/2/3/4 (only the first 3 presented in this figure) are denoted by yellow/blue/green/
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pink and the sign of the correlation positive/negative is marked with white/grey. (A) Part I: 

regression tasks include the expression of the reference and alternate allele, classification 

task includes regulatory hit prediction. (B) Contribution of individual TFs for predicting 

regulatory activity of MPRA constructs measured by the minus log p-value of the ks-test for 

AUROC per factor (C) Cumulative distribution of regulatory activity for regions that are 

bound/un bound by two of the most predictive factors (BATF and IRF4). (D) Part II: 

regression tasks includes allelic skew and classification task includes emVar hit prediction.
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Figure 3. 
Summary of performance and features used per submission. The statistical tests used and 

features examined are similar to Figure 2. High/low performance is marked in red/blue and 

dark/light green respectively. Group number and submission are denoted by (G,S), features 

use is indicated by black(1)/white(0) heat maps. The submissions are ranked based on the 

median performance across all tests and presented sorted from high to low performance. (A) 

Part I. (B) Part II. The third class of features for part II indicates if the model is dependent 

on predictions from part I.
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Figure 4. 
Regions hardness. Respective accuracy per region and submission is defined as the absolute 

difference between the observed and predicted rank, scaled by the expected difference (using 

random ranking). The “region hardness to predict” per part is defined as the mean rank 

across all tasks. Hard/easy to predict regions are denoted by red/blue respectively and sorted 

from easy to hard. (A) Cumulative distribution of the Spearman correlation coefficient when 

comparing each pair of groups (taking the maximum over all possible pairs of submissions) 

for their regions accuracy per prediction (log2FC, regulatory hit, log skew, emVar hit). (B) 

Left panel: heat-map of regions hardness for part I when using the predictions from all 

groups (yellow squares). The regions are sorted by their rank and denoted if they are 

regulatory hits (yellow/white). Right panel - heat-map of regions hardness when using the 

top 10 features as predictors (blue squares). (C) Left panel: heat-map of regions hardness for 

part II when using the predictions from all groups (yellow squares). The regions are sorted 

by their rank and denoted if they are emVar hits (yellow/white). Right panel - heat-map of 

regions hardness when using the top 2 features as predictors (blue squares).
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Figure 5. 
Features correlation with region hardness for regulatory hit regions in part I.

(A) The statistical tests used and features examined are similar to Figure 2. The features are 

sorted from the most predictive (blue/red) to the least predictive (white) to regions hardness, 

based on the mean rank across all methods across the three tests in part I. The positive class 

is defined as the top 100 hardest regions. Two additional features are included: noise 

(log(STD/Mean)) across replicates and log2FC. (B) Contribution of individual TFs to the 

prediction of hard and easy regions, measured by the minus log p-value of the ks-test for 

AUROC per factor. (C) Frequency of binding sites across the genome for TFs that are 

enriched in hard and easy regions. (D) The genomic loci of a specific regulatory hit region 

with high expression levels that is hard to predict across all submissions. Gene annotations, 

DHS, and transcription factor ChIP tracks from ENCODE are shown. The 150bp region is 

marked with a blue rectangular with a red mark in the middle indicating the SNP.
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Table 1

Summary of submissions. Methods and features used by each group for the two parts of the challenge. 

Features are divided into 4 classes: 1) experimentally measured epigenetic properties, 2) predicted epigenetic 

properties 3) other locus-specific properties 4) DNA k-mer frequencies. For the methods: R corresponds to the 

Regression tasks (predicting Log2FC in part I or LogSkew in part II); C corresponds to the classification tasks 

(predicting regulatory hits in part I or emVar hits in part II).

Group Features
(feature classes 1–4)

Methods (part I)
(R: regression; C: 
classification)

Methods (part II)
(R: regression; C: 
classification)

1 Histone modifications in K562 cells (Consortium, 2012) (class 1); 
Evolutionary conservation (Siepel, et al., 2005) (class 3); k-mer 
frequencies (class 4);

Regularized regression (e.g., 
elastic net (Hui Zou, 2005); R, 
C), random forest (R, C), SVR 
(R), SVM (C)

Same as part I

2 Histone modifications, DHS, and TFBS in LCL (Consortium, 2012) 
(class 1); Predictions of DHS in 164 cell lines (Kelley, et al., 2016) 
(class 2); Predictions of TFBS (Cowper-Sallari, et al., 2012) and 
LCL-specific histone modifications and DHS based on 
(Consortium, 2012) (class 2).

Ensemble of gradient boosting 
models (Fabian Pedregosa, 
2011). Each model trained on a 
different feature subset (R, C).

Same as part I

3 k-mers (class 4) Linear SVR (R) and SVM (C) Same as part I

4 Part I: Segmentation of genomic regions based on histone 
modifications in LCL (Consortium, 2012; Ernst and Kellis, 2012) 
(class 1); Predictions of TFBS, DHS, and histone marks (using 
(Alipanahi, et al., 2015; Zhou and Troyanskaya, 2015), with data 
from (Consortium, 2012; Romanoski, et al., 2015); class 2).
Part II: allele-specific activity level predicted by the models in part 
I

Ensemble of models, using 
LASSO or Random Forest, and 
trained on different feature 
subsets (R).
Ensemble of neural networks, 
trained different feature subsets 
(C)

Difference between 
predicted alleles’ scores 
(R)
Ensemble of classifiers 
(e.g., KNN; C)

5 Predictions of DHS (using (Ghandi, et al., 2014) with LCL data 
from (Consortium, 2012); class 2).

Predicted alleles’ DH scores are 
used directly (R,C)

Difference between 
DHS scores of the two 
alleles (Ghandi, et al., 
2014) (R, C)

6 Part I: Histone modifications, DHS, DNA-methylation, and TFBS 
in LCL (Consortium, 2012) (class 1); Predictions of TFBS, and 
protein binding sites in the transcribed RNA (using (Alipanahi, et 
al., 2015; Grant, et al., 2011; Hume, et al., 2015), with data from 
(Alipanahi, et al., 2015; Consortium, 2012); class 2).
Part II: all of features form part I, plus allele-specific activity levels 
predicted by the models in part I.

Random forest (R, C). The 
classifier used the results of the 
regression task as additional 
features.

Random forest (R, C)

7 Predictions of TFBS, DHS, and histone marks, using (Zhou and 
Troyanskaya, 2015) with data from (Consortium, 2012); class 2). 
0/1 Indicator of leading variant and eQTL p-value (class 3).

Random forest Same as part I
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