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Intravoxel incoherent motion 
diffusion-weighted imaging for 
discriminating the pathological 
response to neoadjuvant 
chemoradiotherapy in locally 
advanced rectal cancer
Wen Lu1, Hou Jing1, Zhou Ju-Mei2, Nie Shao-Lin3, Cao Fang4, Yu Xiao-Ping1, Lu Qiang1, Zeng 
Biao2, Zhu Su-Yu2 & Hu Ying2

To investigate the usefulness of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in 
discriminating the pathological complete response (pCR) to neoadjuvant chemoradiotherapy (nCRT) in 
locally advanced rectal cancer (LARC), 42 patients underwent preoperative IVIM-DWI before (pre-nCRT) 
and after nCRT (post-nCRT). The values of pre-nCRT and post-nCRT IVIM-DWI parameters (ADC, D, D* 
and f), together with the percentage changes (∆% parametric value) induced by nCRT, were compared 
between the pCR (tumour regression grade [TRG] 4) and non-pCR (TRG 0, 1, 2 or 3) groups and between 
the GR (TRG 3 or 4) and PR (TRG 0, 1 or 2) groups based on the Dworak TRG system. After nCRT, the 
ADC and D values for LARC increased significantly (all P < 0.05). The TRG score revealed a positive 
correlation with pref (r = 0.357, P = 0.020), postD (r = 0.551, P < 0.001) and Δ%D (r = 0.605, P < 0.001). 
The pCR group (n = 10) had higher preD*, pref, postD, ∆%ADC and ∆%D values than the non-pCR group 
(n = 32) (all P < 0.05). The GR group (n = 15) exhibited higher postD, ∆%ADC and ∆%D values than the 
PR group (n = 27) (all P < 0.05). Based on ROC analysis, ∆%D had a higher area under the curve value 
than ∆%ADC (P = 0.009) in discriminating the pCR from non-pCR groups. In conclusion, IVIM-DWI may 
be helpful in identifying the pCR to nCRT for LARC and is more accurate than traditional DWI.

Neoadjuvant chemoradiotherapy (nCRT) followed by total mesorectal excision (TME) has become a standard 
treatment in patients with locally advanced rectal cancer (LARC)1, which could decrease the loco-regional recur-
rence rate and even increase overall survival. After nCRT, approximately 15%–27% of LARC patients achieved a 
pathologic complete response (pCR)2, 3. These patients have a favourable long-term outcome with excellent local 
control and disease-free survival. Moreover, Maas and Intven M found that patients with a pCR have an excellent 
long-term outcome regardless of surgical resection2, 3. Therefore, some investigators have suggested that surgery 
can be omitted in patients achieving a pCR to nCRT. On the other hand, patients achieving a pathologic poor 
response (PR) may benefit less from nCRT but suffer its toxicity compared with those with a good response (GR). 
Thus, accurately identifying a pathologic response before or at the early stage of nCRT would have great signifi-
cance for personalized treatment.
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Currently, magnetic resonance imaging (MRI) has become an important approach for assessing the response 
to nCRT for LARC, for which MRI-based tumour volume measurement and T-downstaging analysis are widely 
used2, 4. Nevertheless, MRI volumetric evaluation and T-downstaging analysis have obvious limitations in iden-
tifying the tumour response to nCRT, owing to similar morphological appearances4. Moreover, changes in 
tumour morphology on MRI often develop later than those in microenvironmental function as a therapeutic 
effect due to nCRT. In recent years, diffusion-weighted imaging (DWI), with its ability to quantify the diffusion 
motion of water molecules, has proven to be potentially helpful in predicting the response to nCRT in LARC5–10. 
However, the potency of the apparent diffusion coefficient (ADC) derived from traditional DWI on the basis of 
a mono-exponential decay model was inconsistent across different studies6, 7, 11, 12. In fact, the motion of water 
molecules in viable tissues is influenced by both thermally driven motion (pure diffusion) and microcirculation 
blood perfusion.

Dynamic contrast-enhanced MRI (DCE-MRI) provides information regarding the microcirculation perfu-
sion of tissues. Previous studies have described the potential of DCE-MRI for predicting the treatment response 
of rectal cancer3, 13. However, DCE-MRI requires the administration of exogenous gadolinium-containing con-
trast agent, which is costly and associated with some medical risks, including allergy and nephrogenic systemic 
fibrosis, limiting the clinical application of DCE-MRI.

Based on the bi-exponential model14, intravoxel incoherent motion DWI (IVIM-DWI) can separately quan-
titate the pure diffusion motion and perfusion- related motion of water molecules without using an exogenous 
contrast agent. Theoretically, IVIM-DWI may characterize the microenvironmental information of tissues more 
accurately than conventional DWI. Recently, several studies have demonstrated that IVIM-DWI has an advantage 
over conventional DWI in monitoring the treatment response for various tumours, such as nasopharyngeal carci-
noma15 and breast cancer liver metastases16. However, to the best of our knowledge, the feasibility of IVIM-DWI 
in identifying the tumour pathological response of LARC to nCRT has not been well determined, especially dis-
criminating pCR from non-pCR, although a recent study investigated the utility of IVIM-DWI in separating PR 
from GR. Therefore, the purpose of the present study was to evaluate the utility of IVIM-DWI in discriminating 
the pathological response to nCRT for LARC.

Materials and Methods
Patient Selection.  This prospective single-centre study was performed in accordance with the Declaration 
of Helsinki. The protocol for this study was approved by the Medical Ethics Committee of our institution (IRB 
Protocol Number: 2015-03). Written informed consent was obtained from all patients. The inclusion criteria were 
(1) newly diagnosed rectal non-mucinous adenocarcinoma confirmed by endoscopic biopsy, (2) being scheduled 
for nCRT before surgical resection, (3) clinical stage of II to III (cT3-4M0 and/or regional lymph node positive), 
and (4) age more than 18 years. The exclusion criteria were (1) prior anti-tumour therapy, (2) absence of a signed 
informed consent form, or (3) any contraindication for MRI or nCRT. From June 2015 to September 2015, 45 
LARC patients were initially enrolled into the present study. The management for all LARC patients was based on 
the National Comprehensive Cancer Network (NCCN) Guidelines Version 3.2014.

Conventional MRI Protocol.  All patients received conventional MRI examinations at baseline (1–3 days 
before nCRT) and 8 weeks after the end of nCRT (i.e., 2–5 days before surgical resection). All MRI examina-
tions were performed using a 1.5-Tesla MRI scanner (Optima® MR 360; GE Medical System, Milwaukee, WI) 
using a phased-array body coil. The conventional MRI protocol included the following: (1) axial T1-weighted fast 
spin-echo (FSE) images [time of repetition (TR), 4694 ms; time of echo (TE): 102 ms; slice thickness: 5 mm; inter-
section space: 1 mm; field of view (FOV): 380 mm; acquisition matrix: 320 × 224; number of excitations (NEX): 2];  
(2) axial T2-weighted FSE images [TR: 4435 ms; TE: 102 MS; slice thickness: 5 mm; intersection space: 1 mm; 
FOV: 380 mm; acquisition matrix: 320 × 224; NEX: 2]; (3) high-resolution T2-weighted FSE images perpendic-
ular to the longitudinal axis of the rectal tumour [TR: 4500 ms; TE: 102 ms; slice thickness: 3 mm; intersection 
space: 0.5 mm; FOV: 256 mm; matrix: 200 × 200; NEX: 4]; (4) sagittal high-resolution T2-weighted FSE images 
[TR: 4500 ms; TE: 102 ms; slice thickness: 3 mm; intersection space: 0.5 mm; FOV: 256 mm; matrix: 200 × 200, 
NEX: 4].

IVIM-DWI Protocol.  IVIM-DWI was performed after the conventional MRI examinations. A total 
of 12 b values (0, 10, 20, 30, 50, 80,100, 150, 200, 400, 600 and 800 s/mm2) were applied with a single-shot 
diffusion-weighted spin-echo echo-planar (ssSE-DW-EPI) sequence. The lookup table of gradient direction was 
modified to allow multiple b value measurements in one series. Parallel imaging was used with an acceleration 
factor of 2. In total, 20 axial slices covering the pelvic area were obtained with a 38 × 30-cm FOV, a 3-mm slice 
thickness, a 0.5-mm slice gap, a 4500-ms TR, a 97-ms TE, a matrix of 128 × 130, and an NEX of 4.

IVIM-DWI Analysis.  All IVIM-DWI data were transferred to an Advantage Workstation with Functool soft-
ware (version ADW 4.6; GE Medical Systems) for post-processing. IVIM-DWI analysis was performed using the 
MADC kit, a software package for multiple ADC measurements in the Functool software package, and was fitted 
on a pixel-by-pixel basis according to the Levenberg-Marquardt algorithm17. Briefly, the major procedures of the 
IVIM analysis were as follows:

According to the IVIM theory described by Le Bihan18, the signal intensities and b values are related as follows:

= − − + − ∗f fS /S (1 )exp( bD) exp( bD ) (1)b 0

where Sb is the signal intensity with diffusion gradient b; S0 is the signal intensity for b = 0 s/mm²; D is the true 
diffusion coefficient indicating the pure diffusion of water molecules caused by Brownian movement; f is the 
microvascular volume fraction, representing the fraction of diffusion related to microcirculation perfusion; and 
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D* is the pseudo-diffusion coefficient due to microcirculation perfusion. Because D* is approximately one order 
of magnitude greater than D18, −bD* would be less than −3 at a high b value (>200 s/mm²), and the term f exp(−
bD*) would be less than 0.05 f. In this case, the contribution of D* to the signal ratio Sb/S0 can be neglected, and 
Eq. (1) was simplified to Eq. (2) for the estimation of D:

= − − .fS /S (1 )exp( bD) (2)b 0

Thus, for IVIM-DWI data at high b values (400, 600 and 800 s/mm2), Sb was first fitted to Eq. (2) using a linear 
model, and D was calculated. Second, fixing D at the value estimated above and considering measurements from 
all b values, D* and f were determined from Eq. (1) using a nonlinear Levenberg-Marquardt method17. Finally, 
the ADC was calculated from the traditional ADC equation, Eq. (3), using IVIM-DWI data at b values of 0, 200, 
400, 600 and 800 s/mm².

= −S /S exp( bADC) (3)b 0

IVIM-DWI analysis was independently and double blindly performed by two observers (W.L. and H.J., with 
10 and 8 years of experience in abdomen radiology, respectively) who were blinded to the results of the treat-
ment response. Next, 3 regions of interest (ROIs) were manually drawn by each observer for each tumour on 
DWI images (b = 800 s/mm²) at its widest section plus adjacent up and down sections, avoiding visually large 
cystic and necrotic areas, and were then subsequently co-registered to IVIM-DWI maps for further analysis. 
Each IVIM-DWI metric value was acquired by each observer, and correspondingly, two initial data points were 
generated, each of which was the average of the values obtained from the 3 ROIs by one observer. The eventual 
metric value for each tumour was the mean value of the two initial data points. Additionally, the two initial data 
points were used to evaluate the inter-observer reproducibility.

nCRT Treatment.  Intensity-modulated radiation therapy (IMRT) was performed on all patients for 5 weeks, 
accompanied by concurrent chemotherapy with oral capecitabine (1,650 mg/m² body-surface area) daily. All 
patients were simulated on a computed tomography (CT) simulator. Two physicists (Z.J. and H.Y.) who spe-
cialized in clinical oncology and radiotherapy, together with one radiologist (Y.X.), participated in the target 
area delineation. The gross tumour volume (GTV) was defined using all information from clinical examination, 
colonoscopy, pelvic MRI and CT, plus FDG-PET, if available. The GTV covered rectal lesions and any suspicious 
metastatic lymph nodes. The CTV encompassed the GTV as well as the peri-rectal, pre-sacral and internal iliac 
lymph node regions. External iliac nodal regions were also included in the CTV for T4 tumours involving ante-
rior structures. For low rectal tumours, the CTV also included the sciatic rectal fossa to encompass the pudendal 
and inferior rectal nodes. Next, the planning target volume (PTV) was defined as an additional 1.0 cm beyond 
the scope of the CTV to allow for internal organ motion and setup error. The radiotherapy scheme was produced 
by one physicist (Z.B.) per the prescribed dose and was approved by 2 radiotherapy experts in rectal cancer (Z.S. 
and H.Y.). The prescription dose for the PTV was 45 Gy/25 fractions (1.8 Gy/fraction, 1 fraction/day, 5 fractions/
week); for the GTV, it was 50 Gy/25 fractions (2.0 Gy/fraction, 1 fraction/day, 5 fractions/week). The limitations 
of the organs-at-risk were as follows: bladder V50 ≤ 50%; small intestinal V20 ≤ 50%; Dmax ≤ 50 Gy; and bilateral 
femoral heads V50 ≤ 5%. IMRT was performed on a 6-MV X-ray linear accelerator (Elekta Synergy®, Stockholm, 
Sweden).

Pathological Response Evaluation.  TME was performed after post-nCRT MRI examinations. After 
TME, the fresh specimens were fixed in formalin for 48 hours. Tissue sections stained with haematoxylin-eosin 
were evaluated by one pathologist (C.F., with 10 years of experience in colorectal pathology). Postoperative 
tumour staging was performed according to the American Joint Committee on Cancer (AJCC) TNM system19. 
The pathologic response induced by nCRT was categorized according to the Dworak tumour regression grade 
(TRG) system as follows20: TRG 4, absence of residual cancer, only a fibrotic mass (complete response); TRG 3, 
presence of rare residual cancer cells scattered through the fibrosis; TRG 2, increased number of residual cancer 
cells, but still predominating fibrosis; TRG 1, residual cancer outgrowing fibrosis; TRG 0, absence of regression 
changes (no response). In this study, the patients with TRG 4 were categorized as the pathological complete 
responder (pCR) group, whereas the non-pathological responder (non-pCR) group consisted of those with other 
TRG scores. We also classified the patients into the GR (TRG 3 or 4) and PR (TRG 0, 1 or 2) groups.

Statistical Analysis.  The intra-class correlation coefficients were calculated to evaluate inter-observer var-
iability. The percentage changes in the IVIM-DWI parametric values were calculated by dividing the mathemat-
ical difference in the corresponding parametric values before and after nCRT by the parametric value before 
nCRT—for example, ∆%D = (postD − preD)/preD × 100%. The differences in the IVIM-DWI parametric values 
before and after nCRT for all patients were explored by the Wilcoxson signed-rank test. The Mann-Whitney U 
test was used to investigate the differences in the IVIM-DWI parametric values before and after nCRT, together 
with their changes (∆%parameter), between different patient groups (pCR versus non-pCR, and GR versus PR). 
Spearman’s rank correlation test was performed to reveal the possible relationship between the TRG score and 
IVIM-DWI parametric values. The diagnostic performance for the IVIM-DWI parametric values in discriminat-
ing the pathologic response to nCRT was assessed using receiver-operating characteristic (ROC) curve analyses. 
The optimal cut-off value, sensitivity and specificity were determined per the Youden index. All data were ana-
lysed using SPSS version 19.0 (SPSS Inc., Chicago, IL) or MedCalc version 15.0 (MedCalc Software bvba, Ostend, 
Belgium) software. A P value < 0.05 was considered statistically significant before multiple comparison correc-
tion. The Benjamini-Hochberg false discovery rate (FDR) controlling the procedure was performed with q = 0.05 
for multiple comparison correction. Therefore, adjusted P values < 0.0250 (2*0.05/4), 0.0083 (2*0.05/12), and 
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0.0083 (2*0.05/12) were regarded as statistically significant for the comparisons of IVIM-DWI parametric values 
(pre- versus post-nCRT, pCR versus non-pCR, and GR versus PR, respectively)21.

Results
Of the 45 patients who were initially enrolled, 3 were excluded because of a lack of TME operation after nCRT 
(n = 2) or poor IVIM-DWI imaging quality (n = 1). The present study finally enrolled 42 patients with a mean age 
of 53 years (range, 26–73 years). The clinical and pathological characteristics of the 42 patients are summarized 
in Table 1.

The intra-class correlation coefficients (95% CI) of inter-observer reproducibility for the measurements of 
preADC, preD, preD*, pref, postADC, postD, postD* and postf were 0.915 (0.841 to 0.954), 0.912 (0.835 to 
0.952), 0.754 (0.542 to 0.868), 0.856 (0.732 to 0.922), 0.872 (0.761 to 0.931), 0.870 (0.759 to 0.930), 0.701 (0.445 to 
0.840) and 0.839(0.701 to 0.914), respectively, demonstrating good inter-observer reproducibility and consistency.

For the ultimately included 42 patients, the ADC, D, D* and f values of rectal cancers before nCRT were 
(1.23 ± 0.14) × 10−3 mm2/s, (0.91 ± 0.11) × 10−3 mm2/s, (45.24 ± 34.97) × 10−3 mm2/s and 0.18 ± 0.04, respec-
tively. After nCRT, the ADC, D, D* and f values were (1.86 ± 0.36) × 10−3 mm2/s, (1.43 ± 0.27) × 10−3 mm2/s, 
(50.57 ± 35.00) × 10−3 mm2/s and 0.21 ± 0.10, respectively. Between pre-nCRT and post-nCRT, there were signif-
icant differences in the ADC and D values (all P < 0.001), whereas no significant differences were found in the D* 
and f values (P = 0.464 and 0.069, respectively).

The TRG score revealed a positive correlation with pref (r = 0.357, P = 0.020), postD (r = 0.551, P < 0.001) 
and ∆%D (r = 0.605, P < 0.001) but no significant correlation with other IVIM-DWI parametric values (Table 2). 
The IVIM-DWI parametric values for the pCR (n = 10), non-pCR (n = 32), GR (n = 15) and PR (n = 27) groups 
are summarized in Table 3. The preD*, pref, postD, ∆%ADC and ∆%D values demonstrated significant differ-
ences between the pCR and non-pCR groups, whereas the postD, ∆%ADC and ∆%D values showed obvious 
differences between the GR and PR groups (Table 3). Figures 1 and 2 show representative images of LARC from 
different pathological response groups.

Based on ROC curve analysis, the diagnostic performance of the IVIM-DWI parameters in identifying 
pathological responses are shown in Tables 4 and 5. To discriminate pCR from non-pCR, ∆%D had the highest 
area under the curve (AUC) (0.881), sensitivity (90.0%) and positive predictive value (95.9%) among the five 
IVIM-DWI parameters (preD*, pref, postD, ∆%ADC and ∆%D), which could benefit the identification of pCR 
to nCRT. The AUC value of ∆%D was significantly higher than that of ∆%ADC in discriminating the pCR from 
non-pCR groups (P = 0.009). Among the three IVIM-DWI parameters (postD, ∆%ADC and ∆%D), which were 
helpful in distinguishing the good from poor responders. postD had the highest specificity (100%) and positive 
predictive value (100%) with an AUC of 0.790, whereas ∆%D had the highest sensitivity (93.3%) and negative 
predictive value (94.1%) with an AUC of 0.807.

Variable Number of Patients

Sex

    Male 34

    Female 8

Degree of pathological differentiation

    High differentiation 5

    Middle differentiation 29

    poorly differentiated 8

Post-nCRT pathologic T (ypT) classification

    ypT0 10

    ypT1 0

    ypT2 9

    ypT3 15

    ypT4 8

Post-nCRT pathologic N (ypN) classification

    ypN0 21

    ypN1 13

    ypN2 8

Pathological response to nCRT

    TRG 4 10

    TRG 3 5

    TRG 2 16

    TRG 1 11

    TRG 0 0

Table 1.  Clinical and pathological characteristics of the enrolled 42 patients. nCRT, neoadjuvant 
chemoradiotherapy; TRG, tumor regression grade.
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Discussion
This study focused on the feasibility of IVIM-DWI in discriminating the pathological response to nCRT in 
patients with LARC. Our data found that the pre-nCRT perfusion parametric value (pref) and post-nCRT 
pure diffusion values (postD and ∆%D) exhibit significant correlations with the pathological response (TRG 
score) for LARC. Moreover, not only the perfusion-related values at baseline but also the diffusion-related val-
ues after nCRT, together with their percentage changes, might benefit the evaluation of the response of LARC 
to nCRT. Furthermore, one impetus of our study was the finding that IVIM-based D has an advantage over 
mono-exponential DWI-based ADC in predicting the pathological response of LARC receiving nCRT.

Whether a LARC patient achieves a pCR response to nCRT is an important clinical issue associated with 
individual treatment. Regarding distinguishing pCR from non-pCR to nCRT for LARC, the present study 
demonstrated that the baseline diffusion-related parameters (i.e., preADC and preD) may have little potency. 
Our observations were contrary to previous studies in which rectal cancer with pCR to nCRT exhibited lower 
baseline ADC values6, 7. These contradictory results may suggest the unstable ability of baseline diffusion-related 
parameters to accurately identify the pathological response of rectal cancer to nCRT.

In the present study, an nCRT-induced evident increase of ADC and D values for all LARC patients was 
observed. This finding agrees with previous reports on rectal cancer after radiotherapy/chemotherapy5, 6, 22, 23. 
This increase may reflect the cellularity reduction and structural damage of tumour cells as a treatment effect of 
nCRT24. The TRG score can semi-quantitate residual tumour cells after nCRT, and, therefore, directly represents 
the nCRT-induced anti-tumour effect at the histological level. In this study, the TRG score demonstrated obvi-
ously positive correlations with the post-nCRT diffusion-related parametric value (postD and ∆%D), suggesting 

Parameter r P

preADC −0.090 0.571

preD −0.005 0.977

preD* 0.172 0.275

pref 0.357 0.020

postADC 0.204 0.194

postD 0.551 <0.001

postD* 0.112 0.481

postf 0.043 0.785

∆%ADC 0.252 0.107

∆%D 0.605 <0.001

∆%D* 0.017 0.914

∆%f −0.046 0.774

Table 2.  Correlation between TRG score and the IVIM-DWI parametric values. TRG,tumor regression grade; 
IVIM-DWI, intravoxel incoherent motion diffusion-weighted imaging; ADC, apparent diffusion coefficient; D, 
pure diffusion coefficient; D*, pseudo-diffusion coefficient; f, perfusion fraction.

Parameter pCR (n = 10) non-pCR (n = 32) P GR (n = 15) PR (n = 27) P

preADC 
(x10−3 mm2/s) 1.20 ± 0.18 1.25 ± 0.13 0.406 1.21 ± 0.16 1.25 ± 0.13 0.503

preD (×10−3 mm2/s) 0.88 ± 0.13 0.91 ± 0.11 0.154 0.92 ± 0.15 0.90 ± 0.09 0.937

preD* (×10−3 mm2/s) 74.64 ± 38.72 47.87 ± 31.71 0.020* 60.54 ± 40.47 50.74 ± 31.79 0.431

pref 0.21 ± 0.04 0.18 ± 0.04 0.045* 0.20 ± 0.04 0.18 ± 0.04 0.059

postADC 
(×10−3 mm2/s) 1.94 ± 0.32 1.83 ± 0.37 0.423 1.93 ± 0.29 1.82 ± 0.40 0.282

postD (×10−3 mm2/s) 1.64 ± 0.25 1.36 ± 0.24 0.004*# 1.61 ± 0.26 1.32 ± 0.22 0.002*#

postD* 
(×10−3 mm2/s) 62.63 ± 42.50 46.79 ± 32.16 0.192 60.72 ± 38.22 44.92 ± 32.45 0.112

postf 0.23 ± 0.15 0.21 ± 0.07 0.805 0.22 ± 0.12 0.21 ± 0.07 0.470

∆%ADC (%) 63.19 ± 24.36 47.96 ± 32.79 0.042* 60.34 ± 25.05 46.72 ± 33.89 0.032*

∆%D (%) 88.51 ± 24.54 48.82 ± 22.25  < 0.001*# 77.08 ± 27.85 47.83 ± 22.91 0.001*#

∆%D* (%) −4.98 ± 54.85 60.24 ± 228.51 0.738 57.91 ± 187.87 37.38 ± 208.09 0.181

Table 3.  Differences in the IVIM-DWI parametric values between the pCR and non-pCR groups and between 
the GR and PR groups. *Significance before multiple comparison correction; #significance after multiple 
comparison correction (P[2] = 0.004 < i*q/m = 2*0.05/12 = 0.0083 for the comparisons between the pCR and 
non-pCR groups, and P[2] = 0.002 < i*q/m = 2*0.05/12 = 0.0083 for the comparisons between the GR and 
PR groups) according to the Benjamini- Hochberg procedure21; IVIM-DWI,intravoxel incoherent motion 
diffusion-weighted imaging; pCR, pathological complete response; non-pCR, non-pathological complete 
response; GR, good response; PR, poor response; ADC, apparent diffusion coefficient; D, pure diffusion 
coefficient; D*, pseudo-diffusion coefficient; f, perfusion fraction.
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that the diffusion-related microenvironment in LARC after nCRT has significant relevance to the status of the 
residual tumour. This suggestion was also supported by our observation that there were obviously higher postD, 
∆%ADC and ∆%D values for the pCR (versus non-pCR) groups. Prior studies on rectal cancer also revealed a 
significant addition of postD and/or ∆%ADC values for LARC after nCRT5–7, 9, 12. These findings indicate that the 
pure diffusion parametric values after nCRT may play an important and reliable role in noninvasively identifying 
a pCR response for LARC preoperatively.

In this study, the pCR group exhibited significantly higher preD* and pref values than the non-pCR group. 
Additionally, the TRG score revealed a positive correlation with pref. These findings indicate that higher micro-
circulatory perfusion at baseline might result in better sensitivity to nCRT for LARC. Several previous studies25–27 
using DCE-MRI also demonstrated that rectal cancer with higher pre-nCRT perfusion will respond favourably 

Figure 1.  A LARC patient from the pCR and GR groups (TRG 4). Images in the row A and B are T2WI, 
IVIM-DWI parametric and pathological maps before and after nCRT, respectively. The ADC, D, D* and f 
values before nCRT were 1.07 × 10−3 mm2/s, 0.785 × 10−3 mm2/s, 47.7 × 10−3 mm2/s and 0.206, respectively. 
The ADC, D, D*, and f values after nCRT were 2.28 × 10−3 mm2/s, 1.81 × 10−3 mm2/s, 55.5 × 10−3 mm2/s and 
0.248, respectively. The pathological map (haematoxylin-eosin staining, original magnification x40) after nCRT 
indicates the absence of residual cancer (TRG 4). LARC, locally advanced rectal cancer; pCR, pathological 
complete response; GR, good response; TRG, tumour regression grade; T2WI, T2-weighted imaging; IVIM-
DWI, intravoxel incoherent motion diffusion-weighted imaging; nCRT, neoadjuvant chemoradiotherapy; 
ADC, apparent diffusion coefficient; D, pure diffusion coefficient; D*, pseudo-diffusion coefficient; f, perfusion 
fraction.

Figure 2.  A LARC patient from the non-pCR and PR groups (TRG 2). Images in row A and B are T2WI, IVIM-
DWI parametric and pathological maps before and after nCRT, respectively. The ADC, D, D* and f values before 
nCRT were 1.1 × 10−3 mm2/s, 0.925 × 10−3 mm2/s, 40.3 × 10−3 mm2/s and 0.165, respectively. The ADC, D, D*, 
and f values after nCRT were 1.69 × 10−3 mm2/s, 1.61 × 10−3 mm2/s, 37.1 × 10−3 mm2/s and 0.118, respectively. 
The pathology map (haematoxylin-eosin staining, original magnification x40) after nCRT indicates an increased 
number of residual cancer cells with predominating fibrosis (TRG 2). LARC, locally advanced rectal cancer; 
non-pCR, non-pathological complete response; PR, poor response; TRG, tumour regression grade; T2WI, T2-
weighted imaging; IVIM-DWI, intravoxel incoherent motion diffusion-weighted imaging; nCRT, neoadjuvant 
chemoradiotherapy; ADC, apparent diffusion coefficient; D, pure diffusion coefficient; D*, pseudo-diffusion 
coefficient; f, perfusion fraction.
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to nCRT with a correspondingly longer survival. Higher preD* and pref values represent higher vascularization, 
perfusion and oxygenation levels in tissues, leading to a better therapeutic response to radiotherapy/chemother-
apy. Additionally, higher vascularization and perfusion can result in the better delivery of chemotherapeutics to 
tumour tissue28.

After nCRT, neither the perfusion-related IVIM-DWI parametric values (postD* and postf) nor their percent-
age changes (∆%D* and ∆%f) differed significantly between the pCR and non-pCR groups. Moreover, there were 
no significant correlations between the TRG score and these perfusion-related parametric values. These results 
suggest that the nCRT-induced change in the IVIM-DWI parametric value involved in perfusion might fail to 
assess the pathological response for LARC. This failure might result from the complex pattern of nCRT-induced 
changes in microcirculation perfusion25, 29, 30 and poor reproducibility of D* value measurements31–33.

Apart from recognizing pCR, the differentiation between GR and PR also has important clinical significance 
for individualized therapy. A recently published retrospective study investigated the utility of IVIM-DWI in sepa-
rating GR from PR23. Our observations are similar to those of the above study in the post-nCRT perfusion-related 
parametric values (i.e., postf, postD*, ∆%f and ∆%D*), but they were different from those before nCRT (i.e., pref 
and preD*)23. Regarding the diffusion-related parameters, our data further confirmed previous findings based 
on IVIM-DWI or mono-exponential DWI23, 34–41; that is, the post-nCRT parametric values (postADC, postD, 
∆%ADC and/or ∆%D) rather than baseline values (preADC and/or preD) benefit the differentiation between 
GR and PR.

Of note, with respect to discriminating tumour pathologic regression defined as pCR versus non-pCR, ∆%D 
had significantly higher AUC values in ROC curve analysis than ∆%ADC. Previous findings demonstrated that 
ADC based on traditional DWI is less powerful than the IVIM-based parameter D in monitoring the treatment 
response of numerous malignancies, including nasopharyngeal carcinoma15 and breast cancer liver metastases16. 
Additionally, postD can differentiate both pCR (versus non-pCR) and GR (versus PR) in this study, whereas post-
ADC cannot. Taken together, our study and prior reports might reveal the advantage of D over ADC in predicting 
the pathological response to nCRT for LARC because D has more time points suitable for this prediction and a 
higher differentiation performance than ADC.

There are some limitations in our preliminary study. First, our study enrolled a relatively small study popula-
tion, which probably resulted in statistical bias.Second, the diversity of the TNM stage and differentiation degree 
was not considered because of the small sample size. It is believed that the treatment response may depend on the 
TNM stage and degree of differentiation of the tumour. Thus, further studies are needed to perform an analysis of 
patients with different subgroups stratified by TNM stage and/or degree of differentiation. Third, single-section 
ROI instead of volumetric evaluation was adopted in the present study. Considering that both analyses produce 
similar results regarding changes in diffusion measures after CRT and discrimination between good versus poor 
responders to CRT according to a prior report on rectal cancer23, we performed the former that is simpler and 
more practical. However, whole-tumour volume analysis may minimize sampling bias and generate more repro-
ducible IVIM-DWI data than single-section ROI analysis, which may characterize the tumour heterogeneity 
more accurately23. Furthermore, our study investigated the utility of IVIM-DWI only at 2 time points (baseline 
and 8 weeks after the end of nCRT). Until now, it is unknown which is the best time point for IVIM-DWI in 

Parameter AUC (95% CI) Cut-off value Sensitivity Specificity PPV NPV P

preD* 0.744(0.574–0.913) 72.20 × 10−3 mm2/s 60.0% 84.4% 54.5% 87.1% 0.804a, 0.674b

pref 0.713(0.529–0.896) 0.20 80.0% 71.9% 47.1% 92.0% 0.977c, 0.069d

postD 0.797(0.626–0.968) 1.67 × 10−3 mm2/s 60.0% 96.9% 85.7% 88.6% 0.281e, 0.273f

∆%ADC 0.716(0.556–0.875) 47.6% 80.0% 65.6% 42.1% 91.3% 0.009g#, 0.801h

∆%D 0.881(0.776–0.986) 65.8% 90.0% 75.0% 52.9% 95.9% 0.125i, 0.394j

Table 4.  Diagnostic efficacy of the IVIM-DWI parametric values in the differentiation between the pCR and 
non-pCR groups. #Significance before multiple comparison correction, but not significant after correction; 
IVIM-DWI, intravoxel incoherent motion diffusion-weighted imaging; pCR, pathological complete response; 
non-pCR, non-pathological complete response; ADC, apparent diffusion coefficient; D, pure diffusion 
coefficient; D*, pseudo-diffusion coefficient; f, perfusion fraction; AUC, area under the curve; CI, confidence 
interval; PPV, positive predictive value; NPV, negative predictive value; apreD* vs pref, bpreD* vs postD, cpref 
vs ∆%ADC, dpref vs ∆%D, epref vs postD, fpostD vs ∆%D, g∆%ADC vs ∆%D, hpreD* vs ∆%ADC, ipreD* vs 
∆%D, jpostD vs ∆%ADC.

Parameter AUC (95% CI) Cut-off value Sensitivity Specificity PPV NPV P

postD 0.790(0.642–0.939) 1.64 × 10−3 mm2/s 53.3% 100% 100% 79.4% 0.325a

∆%ADC 0.701(0.541–0.861) 47.6% 73.3% 70.4% 57.9% 82.6% 0.113b

∆%D 0.807(0.674–0.941) 41.8% 93.3% 59.3% 56.0% 94.1% 0.811c

Table 5.  Diagnostic efficacy of the IVIM-DWI parametric values in the differentiation between the GR and 
PR groups. IVIM-DWI, intravoxel incoherent motion diffusion-weighted imaging; GR, good response; PR, 
poor response; D, pure diffusion coefficient; ADC, apparent diffusion coefficient; AUC, area under the curve; 
CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; apostD vs ∆%ADC, 
b∆%ADC vs ∆%D, cpostD vs ∆%D.
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evaluating the treatment response to nCRT in LARC. In future studies, IVIM-DWI should be performed at more 
time points, such as during and at the end of nCRT, to optimize the IVIM-DWI follow-up scheme.

In conclusion, the present study demonstrates that IVIM-DWI is potentially useful in discriminating the 
pathological response to nCRT for LARC patients.
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