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Discovering Condition-Specific 
Gene Co-Expression Patterns Using 
Gaussian Mixture Models: A Cancer 
Case Study
Stephen P. Ficklin   1, Leland J. Dunwoodie2, William L. Poehlman2, Christopher Watson3, 
Kimberly E. Roche2 & F. Alex Feltus2

A gene co-expression network (GCN) describes associations between genes and points to genetic 
coordination of biochemical pathways. However, genetic correlations in a GCN are only detectable if 
they are present in the sampled conditions. With the increasing quantity of gene expression samples 
available in public repositories, there is greater potential for discovery of genetic correlations from 
a variety of biologically interesting conditions. However, even if gene correlations are present, their 
discovery can be masked by noise. Noise is introduced from natural variation (intrinsic and extrinsic), 
systematic variation (caused by sample measurement protocols and instruments), and algorithmic 
and statistical variation created by selection of data processing tools. A variety of published studies, 
approaches and methods attempt to address each of these contributions of variation to reduce noise. 
Here we describe an approach using Gaussian Mixture Models (GMMs) to address natural extrinsic 
(condition-specific) variation during network construction from mixed input conditions. To demonstrate 
utility, we build and analyze a condition-annotated GCN from a compendium of 2,016 mixed gene 
expression data sets from five tumor subtypes obtained from The Cancer Genome Atlas. Our results 
show that GMMs help discover tumor subtype specific gene co-expression patterns (modules) that are 
significantly enriched for clinical attributes.

Gene co-expression networks GCN (also known as relevance networks1) are mathematical graphs that are 
increasingly used to model the co-expression relationships between genes. Within a GCN, genes (or gene prod-
ucts) serve as nodes and edges exist between two genes when their expression profiles are correlated across a 
set of expression-measurement samples (e.g. microarray or RNA-seq). GCNs typically exhibit common graph 
theory principles such as scale-free, modular, and hierarchical behavior2. Highly connected groups of genes are 
often referred to as modules or clusters, and it has been shown that their member genes tend to be involved in 
similar biological functions3. Thus, the principle of guilt-by-association4 is a powerful method to predict novel 
contributor genes from GCNs. A form of GCN was first reported by Eisen et al.5 and GCNs have since been used 
for a variety of species-specific analyses, including cancer studies6–9. Additionally, GCN’s can be used in a systems 
genetics10 approach by integrating genetics data (e.g. Quantitative Trait Loci (QTLs)11, 12 or SNPs from Genome 
Wide Association Studies (GWAS)13–15) to associate modules to traits of interest16–19.

Despite the increased use of GCNs, the accuracy of the modules within a GCN are negatively affected by 
“noise”. The sources of noise that can affect a GCN are diverse and are introduced at various stages of the network 
construction workflow. First, gene expression itself is known to be noisy due to intrinsic natural variation amongst 
cells even in the same environment20–22. Second, noise can be introduced due to natural extrinsic variation such 
as changes in environmental conditions, or differences due to genotype, developmental stage, tissue type, etc. 
Third, systematic noise is introduced from techniques used to measure gene expression23. Individual labs, sample 
preparation protocols, and instruments, all generate bias within the collected dataset. This is a known problem in 
both microarray and RNA-seq data collections. Fourth, software used to convert output from the instrument into 

1Department of Horticulture, Washington State University, Pullman, WA, 99164, USA. 2Department of Genetics & 
Biochemistry, Clemson University, Clemson, SC, 29631, USA. 3Molecular Plant Sciences Program, Washington State 
University, Pullman, WA, 99164, USA. Correspondence and requests for materials should be addressed to S.P.F. 
(email: stephen.ficklin@wsu.edu) or F.A.F. (email: ffeltus@clemson.edu)

Received: 12 April 2017

Accepted: 21 July 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0001-9138-6292
mailto:stephen.ficklin@wsu.edu
mailto:ffeltus@clemson.edu


www.nature.com/scientificreports/

2Scientific REPortS | 7: 8617  | DOI:10.1038/s41598-017-09094-4

gene expression levels often attempt to correct for systematic bias. For microarrays, some methods include Robust 
Multichip Average (RMA)24, Affymetrix Microarray Suite MAS525, and Factor Analysis for Robust Microarray 
Summarization (FARMS)26 to name a few. For RNA-seq, some examples include Reads Per Kilobase per Million 
mapped reads (RPKM)27, Remove Unwanted Variation (RUV)28, and approaches provided by software for differ-
ential gene expression analysis such as DESeq29. However, these methods can introduce bias and studies compar-
ing the efficacy of these various methods are available30–32. Fifth, Pearson and Spearman correlation and Mutual 
Information (MI) are popular methods for identifying co-expression among genes. However, due to statistical 
bias, each method can yield different networks from the same input data. Srihari and Ragan sought to resolve 
these differences by accounting for multiple correlation methods in their final network construction scheme7 
and Kumari et al. provide recommendation as to which methods work best at identifying co-expressed genes 
in molecular pathways versus regulation33. Song et al. provide a comparison of popular correlation methods34. 
Lindlöf and Lubovac showed no significant improvement in the quality of networks constructed using Pearson 
versus MI35, but, Song et al. showed that “MI is often inferior to correlation based approaches in terms of elucidat-
ing gene pairwise relationships and identifying co-expression modules”. A variety of software tools exists for GCN 
construction with each employing different approaches for identifying co-expression. These include tools such 
as, WGCNA36, CLR37, MRNET38, RMTGeneNet39, petal40 and FastGCN41. WGCNA is the most popular network 
construction tool in terms of citations.

Some studies use hundreds to thousands of samples to create a GCN42–45. The use of hundreds of samples for 
GCN construction is increasingly possible when samples are obtained and combined from repositories including 
NCBI’s Short Read Archive (SRA)46, NCBI’s Gene Expression Omnibus (GEO)47, the European Bioinformatics 
Institute’s ArrayExpress database48, and The Cancer Genome Atlas49 to name a few. However, the number of sam-
ples collected and the experimental designs used to create those samples will produce a dataset with increased 
effects from both extrinsic and systematic noise. Freytag et al. report that systematic noise can be accounted for 
using their RUV23 method, but, the effect of extrinsic noise, as demonstrated by early work from Reverter and 
Chen50, remains a problem. Some effort has been made to address extrinsic noise by subdividing large sets of 
samples into groups prior to network construction either automatically51 or manually52, and building separate 
networks for each group.

To further address the problem of extrinsic noise, we report here on the use of Gaussian Mixture Models 
(GMMs) to discover sample modes prior to each pairwise gene correlation test. To demonstrate the benefit for 
GMMs, we show that commonly used correlation methods such as Spearman or Pearson are not appropriate in 
the presence of extrinsic noise. For example, a gene pair may have two modes of expression (a high mode and 
low mode) which appear as two separated clusters on a scatterplot. If the distance between those “modes” is large 
enough, Pearson and Spearman will report correlation which may result in a co-modality edge being introduced 
into the co-expression network. GMMs, however, can be used to identify the “modes” within a pairwise gene 
comparison (see the Methods section for an explanation of GMMs).

Use of mixture models with gene expression data is not new. Recently, a Poisson mixture model has been 
applied to pre-clustering of the input Gene Expression Matrix (GEM) (an n x m data set with n rows of transcripts 
and m columns of samples) into mixture components of genes with similar expression patterns53. A novel visual-
ization using these clusters was proposed that shows the proportion of reads attributed to each condition within 
the clusters identified. Thus, clusters of genes with high or low association with specific traits can be visualized 
without construction of a network. In contrast, this work applies GMMS during network construction, prior to 
each pair-wise correlation calculation to identify the modes at the gene pairwise comparison.

Our hypothesis, and the motivation behind this work, is that the presence of modes of a pairwise gene com-
parison can be representative of condition-specific gene co-expression and these modes can be identified using 
GMMs. While challenges related to intrinsic, systematic and statistical noise still exist, the focus of this work is 
to address extrinsic noise that is exacerbated in large collections of mixed condition input samples. The GMM 
approach could be incorporated into any existing tool, but in this study we add support for GMMs into the 
open-source Knowledge Independent Network Construction (KINC) software package. KINC is freely available 
at http://www.github.com/SystemsGenetics/KINC and is the successor of the RMTGeneNet package54.

Results
The Effects of Extrinsic Noise on Pairwise Expression Comparison.  As mentioned previously, dis-
tinct modes of expression can be observed in some gene pairwise expression comparisons. If these modes are 
properly separated they can lead to the introduction of false edges due to co-modality rather than co-expression. 
The source of these erroneous edges become apparent when observed within scatterplots. Figure 1 provides var-
ious examples where patterns of modality yield various combinations of high, medium and low Pearson corre-
lation coefficients (PCC) and Spearman correlation coefficients (SCC). The examples shown were selected at 
random from high, medium, and low ranges of difference between PCC and SCC. In the top-left panel, outliers 
are the cause of high negative PCC. In the top middle plot, two modes of high density points yield a high PCC and 
moderate SCC. If this comparison were used in a PCC-based network an erroneous edge is introduced. However, 
each mode, when considered separately, appears uncorrelated. Again, in the top right plot there are two distinct 
modes. Both Pearson and Spearman result in high correlation, although the lower expressed mode does not 
appear correlated on its own. The lower right plot appears linear but a thinning in the middle may indicate two 
different modes of expression. Again, we hypothesis that the distinct modes evident in these plots may be due to 
condition-specific expression.

The GMM Gene Co-Expression Network.  To isolate modes in pairwise comparisons, GMM was 
employed during network construction. To construct the GMM-based network, a total of 2016 tumor 
RNA-seq datasets from The Cancer Genome Atlas (TCGA) were obtained that included all normalized isoform 
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datasets involving lower grade glioma (LGG), thyroid cancer (THCA), glioblastoma (GBM), ovarian cancer 
(OV), and bladder cancer (BLCA). The global gene expression profiles of these datasets are shown in the heat 
map of Supplemental Figure S1. A significance threshold at a Spearman correlation of 0.8601, using Random 
Matrix Theory55, was identified for the GMM network resulting in 7230 transcripts connected by 14908 edges 
(Supplemental Table S1). The GMM network is presented in Fig. 2. The network demonstrates modular, hierar-
chal and scale-free properties as demonstrated by the linear relationship between the node distribution plot in 
Fig. 2B (scale-free) and the average clustering coefficient plot in Fig. 2C (modular and hierarchical).

When GMMs are applied to pairwise correlation, distinct modes can be identified. Briefly, the GMM approach 
attempts to model the pair-wise relationship via a mixture of Gaussian density distributions that can conceptually 
be visualized as a collection of 3-dimenisonal Gaussian distributions overlaying a 2D scatterplot. Peaks of each 
distribution form where points are most dense, and the shaped of the distribution conforms to nearby points. 
The GMM method is Bayesian and the maximum likelihood for distribution parameters (e.g. mean and variance 
matrices) are updated using a series of successive steps. Unlike many clustering algorithms, only the maximum 
expected number of clusters need be provided. Through a method known as the Integrated Completed Likelihood 
(ICL), a prediction is made as to the number of clusters found. Therefore, no a priori number of clusters need 
be provided and the best number of clusters for the data are predicted. This is well suited for a large number of 
unsupervised pairwise comparisons. Once completed, every sample receives a “label” using the membership 
probabilities, indicating the distribution to which it most likely belongs.

Some results of the pairwise application of GMMs can be seen in Fig. 3—the same comparisons from Fig. 1 
are provided. Samples are colored according to the distinct modes detected using GMM. These unique modes 
form “clusters” of samples, and correlation analysis is employed on each cluster individually. Therefore, in the 
top right plot of Fig. 3, two clusters are identified (a green and red cluster), and each undergo correlation analysis 
separately. Then, only if a cluster shows correlation will an edge be added to the network. Thus, if multiple clusters 
were to show high correlation the gene pair could have multiple edges between them in the network. In the case 
of the top right panel, the green cluster will be more highly correlated whereas the lower red cluster will be lowly 
correlated. In the case of the middle top plot, neither of the clusters are correlated and no edge will be present in 
the network for that gene comparison. Next, each edge in the network is annotated with the set of samples that 
produced it. For example, in Fig. 3, the green cluster in the top right panel will yield an edge in the network. That 
edge will be annotated such that each of the samples colored green will be associated with that edge. The bottom 
right panel seems to indicate that both the red and blue clusters could be two separate edges in the network (as 
each appear correlated). Despite that the two edges would occur between the same two transcripts, each would be 
annotated separately. In practice, the annotation is made using a string of digits where 1 indicates presence of the 
sample in the cluster and 0 indicates absence. Samples that had no expression measurements are assigned a 9 and 
outliers are assigned a 6 or 8 depending on the outlier removal step. Each edge, therefore, has a “sample string” 
consisting of 2016 digits (see example sample strings in Supplemental Table S1).

After the GMM network was constructed, modules were identified using the Link Communities method 
(LCM)56, 57. The LCM method was selected because it allows a gene to be present in multiple modules which 
supports the understanding that some genes are pleiotropic. A total of 356 modules were identified in the GMM 
network (Supplemental Table S2). Samples that are present in 95% of the edges in a module were used to test for 

Figure 1.  High, Medium, and Low Differences in Gene Expression Dependency. These scatterplots provide 
examples of high, medium and low differences in correlation between the Spearman and Pearson correlation 
methods. The x and y-axes represent log2 transformed gene expression levels for each gene respectively. The 
two plots on the left (top and bottom) represent pairwise correlation between transcripts with high differences 
between correlation where either Pearson correlation coefficient (PCC) is high and Spearman correlation 
coefficient (SCC) is low or vice versa. There are fewer samples when compared to other plots because of missing 
values. The middle two plots represent high correlation in one method and mid-range in the other. The right 
two plots are examples where both PCC and SCC are high. The title of each scatterplot indicates the PCC and 
SCC values for each comparison.
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significant enrichment of cancer subtype (LGG, THCA, GBM, OV, and BLCA) as well as other clinical annota-
tions provided by TCGA including gender, cancer stage, and ethnicity. The full results of this enrichment analysis 
are provided in Supplemental Table S3. Table 1 provides a summary of the number of modules with significant 
annotations (Fisher’s Test p < 0.001). Additionally, functional enrichment analysis was performed for each mod-
ule and provided in Supplemental Table S6. A selection of interesting modules with enriched clinical and molec-
ular annotation is explored in the Discussion section. It is important to note that some modules in Table 1 may be 
enriched for multiple types of cancer, and these relationships can be seen in Supplemental Table S3.

Condition Specific Sub Networks.  To visualize condition-specific edges in the GMM network, a heatmap 
can be generated using the sample strings for each edge. To this end, sample strings are converted to a numeric 
matrix. In practice, any digit other than a one is converted to a zero, then the matrix undergoes hierarchical 
clustering and finally plotted as a heatmap. Thus, edges that are most similar in terms of sample composition are 
re-ordered near each other. Figure 4 shows a heat map with 1’s displayed in green and 0’s displayed in red. Each 
column of the heat map represents a single edge in the network (i.e.14908 columns). Each row represents a sample 
(i.e. 2016 rows). Samples are grouped by cancer type in the ordering of the rows and differentiated using black 
horizontal lines.

Upon inspection, the rightmost portion of the figure shows the components of the network that consists of 
relationships common across all cancers. This is indicated with near solid green across all cancer lanes. Moving 
from the far right to the left, the edges begin to show cancer-specific co-expression. For example, both brain 
cancers (GBM and LGG) show many vertical streaks of green when other cancer types show red. These edges 
therefore demonstrate co-expression specific to brain cancer only. Other cancers such as bladder, ovarian and 
thyroid have much smaller representation in the network. Edges that are uniquely part of these tumor subtype are 
evident by the smaller stripes of green at the far-left side of the heatmap. Interestingly, there is a red vertical strip 
in the ovarian cancer lane (OV) near the right of the figure. Other cancer types show green within those edges. 
This indicates co-expression that is not present in ovarian tumors yet is present in other tumors. Additionally, 
many edges in the network have no relationship with a cancer type. These are indicated by the large section of 
primarily red samples in the left side of the heat map.

Figure 2.  The Tumor GMM Gene Co-expression Network. (A) The graph representation of the network. Points 
represent nodes (i.e. transcripts) and edges represent co-expression of transcripts. Modules are identified using 
the link communities method and uniquely colored. Not all nodes were circumscribed into a module. (B) The 
node degree distribution plot demonstrating scale-free behavior of the network. (C) The average clustering 
coefficient plot demonstrating a hierarchical network.
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Figure 3.  GMM Pairwise Gene Expression Scatterplots. The Gaussian Mixture Model (GMM) algorithm 
is applied to the same random examples shown in Fig. 3. Each cluster (mode) of samples is identified with a 
different color. The position and orientation of the Gaussian variance of each cluster is indicated with a black 
circle and the cluster centers are indicated at the intersection of the variance axis.

Cancer Types

BLCA OV LGG THCA GBM

13 15 32 9 18

Gender

Female Male

11 22

Cancer Stage

Stage I Stage II Stage III Stage IV Stage IVA Stage IVC

10 3 0 10 5 0

Ethnicity*

NHL HL W AA A NHPI AIAN

2 3 22 0 6 0 0

Table 1.  GMM Network Modules with Enriched Clinical Annotations. Each value indicates the number of 
modules in the GMM network enriched for the specified annotation with a p-value < 0.001. BLCA (bladder 
cancer), OV (ovarian cancer), LGG (lower grade glioma), THCA (thyroid cancer), GBM (glioblastoma), NHL 
(not Hispanic or Latino), HL (Hispanic or Latino), W (White), AA (African American), A (Asian), NHPI 
(Native Hawaiian or Pacific Islander), AIAN (American Indian, Alaska Native).

Figure 4.  Network Sample Composition Heat map. Each edge in the network is annotated with a string of 1’s 
and 0’s, referred to as a sample string. For the human cancer network, each string consists of 2016 1’s and 0’s 
with a 1 indicating that the sample is present within the cluster that formed the edge, and a 0 indicating it is 
not included. Hierarchical clustering using the heat map function of the R statistical package was used to order 
edges by similarity of their sample strings and generate this figure. Here, red indicates the presence of a 0 in the 
sample string and green indicates the presence of a 1. Each column of the heat map represents an individual 
edge in the network. Samples represent rows in the heat map and are grouped according to cancer types (i.e. 
BLCA, GBM, LGG, OV and THCA). An artificial black line was added to distinguish between “lanes” of each 
cancer type.
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Comparison of GMM versus Non-GMM Networks.  As mentioned previously, correlation methods can 
erroneously introduce edges into the network due to co-modality rather than co-expression. This occurs because 
multi-modality in a comparison breaks the assumptions of Pearson—the sample variation is not homoscedastic. 
Spearman correlation does not require homoscedasticity but it cannot distinguish when modes are present. Use 
of GMMs, however, allow correlation methods to be applied more appropriately because each mode underlies 
a set of samples following a Gaussian distribution which is inherently more appropriate for the assumptions of 
Pearson and allows Spearman to focus on each mode separately. Spearman and Pearson often exhibit a range in 
coefficients from the same set of comparisons. For example, Pearson and Spearman-based network were created 
without GMMs using the same cancer dataset. In summary, 3532 edges and 2369 transcripts are in common 
between the Pearson and Spearman networks (Pearson contains 20183 edges and 3662 transcripts; Spearman 
contains 14774 edges and 5025 nodes). Thus, a change in correlation statistic can yield a widely different network 
from the same input data set. Of note, in comparison with the GMM network 1528 edges and 1786 transcripts are 
in common with the Pearson network and 6014 edges and 3233 transcripts are in common with the Spearman 
network. Figure 5 indicates that less variation exists between PCC and SCC values after GMMs are employed. 
Non-GMM Pearson and Spearman networks are available as Supplemental Tables S4 and S4 respectively.

To demonstrate the functional connectivity, or performance, of non-GMM and GMM networks, we used 
the Extending ‘Guilt-by-Association’ by Degree (EGAD)58 software package. The EGAD software calculates 
functional properties of networks using the guilt-by-association property by measuring how well known genes 
are grouped together. The average area under the receiver operator characteristic curve (AUROC) using the 
neighbor-voting algorithm was 0.604 for the GMM network, 0.630 for the Pearson and 0.679 for the Spearman 
network. An AUROC score of 0.5 is considered random, 0.7 is considered good, 0.9 is considered high per-
formance. To compare these three networks with other published networks we obtained a published bladder 
(InCaNet BLCA) and ovarian cancer (InCaNet OV) co-expression networks59 as well as a protein-protein inter-
action network that accompanies EGAD (BioGrid network). These networks yield AUROC scores of 0.566, 0.559 
and 0.671 respectively. Thus, these performance scores seem to indicate similar functional performance for our 
non-GMM and GMM networks, but with functional performance better that other published cancer networks 
(see Supplemental Table S6 for full results).

Discussion
Some pairwise gene expression relationships exhibit modality. Our hypothesis is that these multi-modal compar-
isons represent condition-specific gene expression and therefore each mode should be accounted for separately 
during network construction. GMMs offer a straight-forward approach to identify these modes. The hypothesis 
is supported in that samples in some groups of edges in the network are clearly differentiated by cancer type 
(Fig. 4). A natural follow-up question is to ask if these condition-specific edges are connected within the network? 
As shown in Table 1 and Supplemental Table S3, enrichment of sample annotations was performed on modules 
detected in the network. Some modules do show strongly significant enrichment for clinical traits. Because mod-
ules tend to be more highly connected internally than externally it indicates that some of these co-expressed 
condition-specific edges can be used for guilt-by-association inferences.

In comparison to the two non-GMM networks (using traditional Pearson and Spearman), it is interesting 
that the GMM network shares fewer nodes and edges than the two non-GMM networks share with each other. 
Comparisons that meet the assumptions of the Pearson test (linear, no strong outliers, and homoscedastic across 
all samples) with high correlation would certainly be captured by the Spearman test and would always be suita-
ble for GMMs—as the samples in a GMM cluster will always meet Pearson’s assumptions after outlier removal. 
Therefore, the fact that we see so few shared edges between the Pearson and GMM networks indicates that a 
clear majority of comparisons do not meet Pearson assumptions. In fact, removal of all edges not shared with 
the GMM network yields a Pearson network (of 1786 nodes and 3084 edges) which is scale free and hierarchical 
and therefore consists of only linear co-expression relationships. We suggest that Pearson’s should not be used for 

Figure 5.  Non-GMM vs GMM PCC and SCC values. (A) The scatterplot of Pearson vs Spearman correlation 
from the edges of a cancer network constructed using the same input dataset, but created without usage of 
GMMs. (B) A similar plot but from the GMM network. The number of points in both panels (corresponding to 
edges in the network) is indicated by the variable n. Contour lines have been added to indicate point density.
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network construction unless assumptions are checked at each comparison and then only if linear relationships 
are desired. The GMM network used Spearman for correlation analysis. But, the non-GMM Spearman network 
is different from the GMM network. The GMM network contains 2205 more transcripts but a similar number of 
edges with 40% shared edges and 64% shared nodes in the Spearman network. We expect that the discrepancies 
between these two networks are therefore due to multi-modal comparisons that are inappropriately added in the 
non-GMM Spearman network, and bias in the GMM approach that yields false edges. The quantity and type of 
bias created by GMMs is not yet known and requires further investigation. Despite any noise from the GMM 
approach, condition-specific edges can be identified in the network despite extrinsic noise that accumulates in 
large disparate data sets.

To demonstrate the potential value of modules identified from the GMM tumor network we examined two 
GMM modules: M0057 and M0282. The module M0057 demonstrates GMM’s ability to find modules specific for 
a single tumor subtype as M0057 is enriched for thyroid tumors (p = 6.95 × 10−152) but is not enriched for other 
tumor groups (p = 1.00). The six unique transcripts of M0057 are thyroid genes that are annotated for different 
types of thyroid peroxidase (TPO), an enzyme expressed primarily in the thyroid. TPO oxidizes anionic iodide 
into iodine atoms. Tyrosine residues on thyroglobulin are thereafter iodinated during thyroid hormone synthe-
sis60. M0057 is also enriched for “female” (p = 2.81 × 10−6), Stage I cancer (p = 1.07 × 10–21) and the vital status 
“alive” (p = 7.07 × 10–36). Thus, the transcripts in this module may be more relevant to early stage thyroid cancer 
and possibly more relevant to female patients.

The second module, M0282, is enriched for a broader set of more aggressive tumor subtypes and contains 
genes involved in cell proliferation. M0282 includes 82 unique transcripts, 839 unique edges, and 1426 of 
the 2016 samples in the network. This module is enriched for bladder cancer (p = 1.89 × 10–30), ovarian can-
cer (p = 1.81 × 10–27), and glioblastoma (p = 2.26 × 10–11), but not thyroid cancer (p = 1.00) or lower grade 
glioma (p = 1.00). M0282 is also enriched for Stage IV cancer (p = 1.20 × 10–15) and the vital status “dead” 
(p = 1.51 × 10–47), indicating that this module may be relevant to more advanced tumors than M0057. M0282 is 
enriched for 82 Gene Ontology (GO)61, 48 Reactome62, 14 Interpro63, 10 PFAM64, five KEGG65, and four MIM66 
annotations. Together, these annotations represent a broad spectrum of cell cycle-related activities. For exam-
ple, the most highly-enriched KEGG and Reactome annotations are “cell cycle” (hsa04110, R-HSA-1640170), 
and the second-most enriched Reactome annotation is “cell cycle, mitotic” (R-HSA-69278). Furthermore, the 26 
most-enriched GO terms mention either “cell cycle,” “mitosis,” “cytokinesis,” “microtubules,” “kinetochore,” “kine-
sin,” and/or a specific phase of the cell cycle. Indeed, 52 of the 82 GO terms mention these phrases and nearly all 
the other terms are readily tied to the cell cycle. Also of interest are the Reactome annotations because each phase 
of the cell cycle is enriched for this module. M phase (R-HSA-68886) is the most-enriched of any phase, but three 
of the top-18 most-enriched Reactome annotations (R-HSA-453279, R-HSA-69206, R-HSA-69205) mention the 
G1/S checkpoint, the cell cycle’s point of no return. Fitting with the G1/S checkpoint, p53 signaling (hsa04115) is 
also enriched for this module. These and other tumor-specific modules detected with the GMM-GCN approach 
are worthy of further investigation.

While use of GMMs shows promise for identifying condition-specific co-expression, there are challenges. 
First, the time required to compute a GMM network is greater than constructing a network in a traditional 
manner. This increase in computational complexity is due to calculating GMMs at each pairwise calculation. 
The tumor network reported here required one calendar month to complete using the Open Science Grid67. 
Second, the mixture model software library (mixmod)68 integrated into KINC uses a random initialization strat-
egy. Therefore, it is possible to identify different clusters depending on the random initialization point. For clearly 
defined clusters this seems to be a rare problem, but it can result in some clusters being indistinguishable when 
they are less distinct (i.e. very close and overlapping). Third, GMMs may not be appropriate for every relationship 
between pairs of genes. For example, imagine a non-linear relationship with low variance that spans from the 
bottom left to the top right of a scatterplot. In this case, multiple modes along the length of the plot are identified. 
The resulting clusters are near each other, often have no distinguishable gap between them and hence could be 
merged into a larger non-linear cluster. Strategies exist for merging GMM clusters69 but these are not yet incor-
porated into KINC.

In summary, we show that modes within pairwise gene expression comparisons can be the result of 
condition-specific variation (extrinsic noise). GMMs are a practical approach to reduce this noise via segregating 
datasets into modes prior to pairwise correlation analysis. Thus, a GCN can be constructed from mixed condi-
tion sample sets where conditions are parsed in a knowledge independent manner. Since samples in a mode are 
captured as strings and included as edge annotations, one can associate sample meta data (e.g. tumor sub-type, 
clinical traits) and molecular information (e.g. pathways) to individual edges and edge communities (modules) 
to reveal higher order associations between gene output and traits.

Methods
Implementation of Gaussian Mixture Models.  The Knowledge Independent Network Construction 
(KINC) open-source package is the successor to RMTGeneNet39, 54. RMTGeneNet was rebranded to convey the 
idea that the employed methods used for network construction proceed in a knowledge independent fashion. 
Stated differently, no a priori knowledge about the structure of the network is used to bias construction. KINC 
provides knowledge independent construction through use of correlation analysis (Spearman, Pearson and MI), 
network thresholding using Random Matrix Theory (RMT)55, and the newly added support for GMMs which 
identify subpopulations of samples for each pairwise gene comparison. Support for clustering using GMMs was 
integrated into KINC v1.0 using the C +  + library mixmodLib68, 70. The mixmodLib package supports several cri-
teria for model selection including Bayesian Information Criterion (BIC), the Integrated Completed Likelihood 
(ICL), the Normalized Entropy Criterion (NEC) and a few others. ICL performed best for correlation of pairwise 
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gene expression and was used for all clustering. The mixmodLib package also supports a variety of Gaussian mod-
els that vary in volume, shape and orientation. KINC currently supports the default model family as provided by 
the mixmodLib package.

Overview of Gaussian Mixture Models.  Finite mixture models are probabilistic models, or a mixture 
distribution, used for density estimation, identification of subpopulations and discriminant analysis. For this 
work, we use Gaussian mixture models for identification of subpopulation (i.e. modes). Here we provide a brief 
introduction to GMMs but more in-depth descriptions can be found within a large collection of literature.

Let x = {x1, …, xn} be the set of data vectors to be considered. For this study n = 2 because we compare two 
genes at each comparison and each vector is an expression profile of a gene. Each xi arises from a probability dis-
tribution estimated by the function.

∑θ λ| = |
=

f x p h x( ) ( )i
k

K

k i k
1

where K is the number of components (i.e. subpopulations), h(·| λk) is a d-dimensional density distribution func-
tion parametrized by λk (in this case d = 2 because we are comparing two genes), where λ = (μ, Σ) and μ is the 
mean of the distribution with covariance matrix Σ. Because d = 2 for this study the variance matrix is a 2 × 2 
matrix. The parameter, pk is the mixing proportion for each respective component and varies 0 > pk < 1. Finally, 
θ = (p1, …, pk, λ1, …, λk) and represents the set of mixing proportions together with the K density distributions 
modeled by their means, (μ1, …, μk), and covariance matrices, (Σ1, …, Σk), that are to be estimated.

To estimate θ the expectation-maximization (EM) algorithm71 is used. It is an iterative method that finds the 
maximum likelihood for the parameters. To begin, a randomization initialization step is performed. At this step, 
the mixing proportions pk is initialized to 1/n (where n = 2), and θ0 is initialized such that each mean, is randomly 
assigned an existing sample coordinate. The mixmodLib package supports a variety of Gaussian families that 
supports spherical or elliptical distributions with variation in volume, orientation and shape. For this study, the 
default family was used (called the Gaussian_pk_Lk_C family and described as an “Ellipsoidal Gaussian model 
with free proportions”). The EM algorithm then consists of two repeating steps: an E-Step and a M-Step. The 
E-step calculates the current conditional probabilities that any point, xi belongs to a distribution k using the 
current θ values. For brevity, formulas for the E and M steps are not shown—readers are referred to available 
literature for further details. The M-Step then updates pk and θ by calculating the maximum likelihood using the 
conditional probabilities. The EM algorithm continues for m number of trials, where m is set by the user, with the 
updated pk and θ used in subsequent steps. Additionally, the mixmod package provides alternatives to the EM 
algorithm including a stochastic EM method, SEM, and a method that includes a classification step between the 
E and M steps knows as CEM. For this study we used the default EM approach.

A major advantage of the mixmodLib package is that it can select a model and the number K such that users 
need not provide K a priori. User’s simply provide an upper limit for K. There are several model selection algo-
rithms provided by the mixmodLib package including the Bayesian Information Criterion (BIC), the Integrated 
Completed Likelihood (ICL) and the Normalized Entropy Criterion (NEC). Each performs best under different 
applications. BIC is best suited for density estimation applications, ICL and NEC are best for subpopulation 
identification but NEC is meant simply for choosing K rather than K and θ. Therefore, for this study we used the 
ICL method to determine the number of subpopulations at each pairwise comparison. Readers are referred to 
the literature for more in-depth descriptions of these model-selection techniques. More in-depth mathematic 
descriptions for these methods are provided in the statistical documentation on the mixmod website.

TCGA GEM Construction.  All normalized isoform datasets for lower grade glioma (LGG), thyroid cancer 
(THCA), glioblastoma (GBM), ovarian cancer (OV), and bladder cancer (BLCA) were downloaded from The 
Cancer Genome Atlas49 on April 1 2016. In total, 2016 Level-3 RNA-Seq datasets (RPKM units) were downloaded 
that comprised of 534 LGG, 572 THCA, 174 GBM, 309 OV, and 427 BLCA samples. These expression values 
were created with TCGA’s RNASeqV2 workflow72, 73, which uses MapSplice to map reads and RSEM to quantify 
mapped reads. All 2016 expression vectors containing 73599 transcript (UCSC kg5 identifiers) quantifications 
were combined into a single Gene Expression Matrix (GEM). In this GEM, all missing values were replaced with 
the word, ‘NA’, as is usually indicative of missing values in the R statistical package. A log2 transformation of the 
expression values was performed, followed by a Kolmogorov-Smirnov test using the preprocessCore74 R library to 
test for samples demonstrating abnormal density distributions (DN > 0.15). No significant outliers were detected. 
Finally, quantile normalization was performed, also using the preprocessCore library, to ensure suitable compar-
ison between samples.

GMM Network Construction.  Due to the high amount of computational time required for pairwise GMM 
(2.9 billion comparisons = (n x (n − 1))/2, where n = 76300 and is the number of transcripts in the TCGA GEM), 
the Pegasus Workflow Management System75 was utilized to direct the execution of 75,000 jobs on the Open 
Science Grid (OSG). Spearman correlation was used for each cluster identified by the GMM method. Only clus-
ters with 30 or more TCGA samples underwent Spearman correlation. Thirty samples were identified as the min-
imum number using a Pearson’s power analysis to ensure a false positive rate at α = 0.05, a false negative at β = 0.2 
and an effect size of 0.5. Once completed, the resulting files that represent the correlation matrix were transferred 
to either Clemson University’s Palmetto Cluster using Globus76 or Washington State University’s Kamiak cluster 
for identification of a correlation threshold using Random Matrix Thresholding (RMT). During thresholding, 
clusters with fewer than 30 samples or those with extremely low range of expression (less than 0.1) were ignored. 
KINC v1.0 outputs the correlation matrix as a set of correlation files. Entries from the result files with perfect 
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correlation (ρ = 1.0) were removed as there were approximately 360000 of these relationships. These perfect cor-
relations appear to be the result of low range of expression. KINC generates a network file containing edges and 
metadata that represent the network.

Non-GMM Network Construction.  Two additional networks were constructed using KINC v1.0 with this 
same 2016 × 73599 TCGA GEM but without use of GMMs. Rather, traditional use of both Spearman and Pearson 
correlation was employed. These networks were constructed using a single CPU each on Clemson’s Palmetto 
cluster.

Module Detection and Analysis.  Subgraphs of highly interconnected nodes (i.e. modules) were identified 
in the GMM-based cancer network using the linkcomm R package56, 57. The linkcomm package employs the 
Link Communities approach for module detection and clusters “links”, or edges, rather than nodes. This allows 
nodes (i.e. gene transcripts) to be present in multiple modules. This method was selected for clustering under the 
assumption that some genes are pleiotropic and hence present in more than one biological function. Functional 
enrichment of these modules was performed using an in-house Perl script modeled after the online DAVID tool77 
but is fully command-line integrated and supports any number of functional input files. Functional lists used for 
functional enrichment include human transcripts mapped to terms from InterPro63, PFAM64, the Gene Ontology 
(GO)61, the Kyoto Encyclopedia of Genes and Genomes (KEGG)65, Reactome62 and MIM66. Terms that were pres-
ent in a module more often than in the genomic background were considered enriched (Fisher’s test; p < 0.001). 
Results from this functional enrichment analysis are found in Supplemental Table S7 and include p-value cor-
rected for multiple tests using both Bonferroni and Benjamini.

Module Enrichment of Clinical Annotation.  In addition to edge lists, KINC v1.0 output includes meta-
data such as sample list strings that were used to identify each significant edge. These samples, in this case tumors, 
represent the GMM cluster and the presence of the edge indicates correlation of gene expression across these 
samples. Additionally, each sample obtained from TGCA has a variety of clinical annotations including cancer 
type, ethnicity, and gender. To test if a module was enriched with a particular annotation, a Fisher’s Exact Test was 
performed to identify any cancer annotations that are significantly more present than would be expected from a 
random selection of samples (p < 0.001). For stringency, only samples that are present in 95% of the edges of the 
module are counted. Not all of the samples had values for all of the annotation types, therefore, we selected those 
that were annotated across a broad set of samples. These include cancer type, gender, cancer stage, and ethnicity.

Functional Performance Analysis.  The guilt-by-association performance of the GMM network was com-
pared to the non-GMM Pearson and Spearman networks using the Extending ‘Guilt-By-Association’ by Degree 
(EGAD) software58. Two public cancer lnCaNet co-expression networks that were constructed using TCGA 
data (‘lncanet_BLCA_Cancer’ and ‘lncanet_OV_Cancer’), were downloaded for comparison59. In addition, 
protein-protein interaction data from BioGrid that is included in the EGAD R package was also used. Gene 
Ontology (GO) terms mapped to TCGA transcript ID’s were used as the annotation vector for the GMM, and 
non-GMM Pearson and Spearman networks. For the lnCaNet networks and the BioGrid data, the GO term anno-
tation vector provided in the EGAD R package was used to extract the appropriate labels (common gene name or 
Entrez ID) mapped to GO term IDs. All input gene sets were treated as sparse, binary networks.

Data Availability.  All data is provided as Supplemental Figures, Tables are made available with this article.
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