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Fourier ptychographic microscopy 
with sparse representation
Yongbing Zhang1, Pengming Song1, Jian Zhang2 & Qionghai Dai1,3

Fourier ptychographic microscopy (FPM) is a novel computational microscopy technique that provides 
intensity images with both wide field-of-view and high-resolution. By combining ideas from synthetic 
aperture and phase retrieval, FPM iteratively stitches together a number of variably illuminated, low-
resolution intensity images in Fourier space to reconstruct a high-resolution complex sample image. 
Although FPM is able to bypass the space-bandwidth product (SBP) limit of the optical system, it is 
vulnerable to the various capturing noises and the reconstruction is easy to trap into the local optimum. 
To efficiently depress the noise and improve the performance of reconstructed high-resolution image, 
a FPM with sparse representation is proposed in this paper. The cost function of the reconstruction 
is formulated as a regularized optimization problem, where the data fidelity is constructed based on 
a maximum likelihood theory, and the regulation term is expressed as a small number of nonzero 
elements over an appropriate basis for both amplitude and phase of the reconstructed image. The Nash 
equilibrium is employed to obtain the approximated solution. We validate the proposed method with 
both simulated and real experimental data. The results show that the proposed method achieves state-
of-the-art performance in comparison with other approaches.

Fourier ptychographic microscopy1 (FPM) is a novel computational imaging method which is capable of pro-
viding a scalable space-bandwidth product (SBP) for most existing microscopes. In this method, illumination 
angles are scanned sequentially with a programmable LED array source, while taking a low-resolution (LR) image 
at each angle. Assuming that illuminating a thin sample by an oblique plane wave is equivalent to shifting the 
center of the sample’s spectrum in the Fourier domain, each off-axis LED shifts different amounts of high spatial 
frequency information, diffracted from the sample, into the acceptance angle of an objective lens2. By capturing 
a stack of LR images that cover a wide region of Fourier domain and stitching them together coherently, one can 
achieve spatial resolution beyond the objective’s diffraction limit, corresponding to the sum of illumination and 
objective numerical aperture (NA)3.

In practice, however, the reconstruction of FPM is sensitive to the input noise. Recently, multiple algo-
rithms have been proposed to address the noise. Generally, these algorithms utilize maximum likelihood theory 
which provides a flexible framework for formulating the FPM optimization problem with various noise models. 
If the measured images suffer only from white Gaussian noise, the negative log-likelihood function would be 
reduced to least squares formulation3. In the case of Poisson shot noise, Bian et al.4 proposed a FPM recon-
struction method termed as truncated Poisson Wirtinger Fourier ptychographic (TPWFP) reconstruction. 
This method incorporated Poisson maximum likelihood objective function and truncated Wirtinger gradient5 
together into a gradient-descent optimization framework. Based on the cost functions of existing FPM algo-
rithms, Yeh et al.3 tested amplitude-based algorithms and intensity-based algorithms. The results demonstrated 
that amplitude-based Newton’s method gives a better reconstruction but needs much more running time for the 
reconstruction. Recently, Zhang et al.6 proposed a generalized Anscombe transform based approximation model 
(GATFP) for FPM reconstruction, which could efficiently reduce the noises. However, all the mentioned methods 
neglect the sparse priority of the reconstructed image, and the performance is not as good as expected.

Based on the GATFP, we propose a FPM reconstruction method termed Fourier ptychographic with sparse 
representation (FPSR), which brings together sparse representation7, 8 and Nash equilibrium9 to improve the 
performance of FPM reconstruction. Sparse representation is based on the approximation that one image could 
be expressed as a combination of few atomic functions taken from a certain dictionary. However, to successfully 
employ sparse representation, we typically have to address the additional problem of how to correctly choose the 
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dictionary. Clearly, a proper dictionary should be an overcomplete system with a number of elements essentially 
larger than the dimensionality of the approximated images. Numerous pioneering works have been proposed 
to address the overcomplete dictionary. Christensen10 presented the general theory for frames and Riesz bases, 
where frames are generalization of the concept of basis to the case when the atomic functions are linearly depend-
ent and form an overcomplete system. Recently, Danielyan et al.11 constructed analysis and synthesis frames, 
formalizing the Block Matching 3-D (BM3D)12 image modeling and used these frames to develop novel iterative 
deblurring algorithms. The other important technique incorporated in the proposed FPSR is Nash equilibrium9, 13 
presented by Nash. This technique was originally developed for game theory, aiming at solving multiple objective 
optimization problems originating from game theory. In Nash’s work13, Non-Cooperative Games were defined 
as mixed strategy Nash equilibrium for any game with a finite set of actions and it was proved that at least one 
(mixed strategy) Nash equilibrium must exist in such a game. The Nash equilibrium is a solution concept of a 
game involving two or more players, in which each player is assumed to know the equilibrium strategies of the 
other players, and no player has anything to gain by changing only his own strategy unilaterally14, 15. If each player 
has chosen a strategy and no player can benefit by changing his or her strategy while the other players keep theirs 
unchanged, then the current set of strategy choices and the corresponding payoffs constitute a Nash equilib-
rium15. This strategy is very closely related to the nature of the proposed FPSR model where multiple objective 
functions should be considered.

In this paper, we assume that the intensity capturing process is subject to various signal-dependent errors, 
and the detected photons follow mixed Poisson-Gaussian noise. We also introduce the sparsity hypothesis16, 17  
for both the amplitude and phase as the constraint in the reconstruction to improve the accuracy of recon-
struction. To illustrate the effectiveness of the proposed method, we compare our method with three 
state-of-the-art algorithms, including Newton method, TPWFP, GATFP on both simulated and real data. 
Besides, we also compare the method incorporating sparse representation in the Newton method, termed as 
NSR for short. In NSR, the Newton method does not involve the background subtraction step. Our results 
show that the proposed method reconstructs more accurate results compared with other state-of-the-art 
algorithms.

Methods
As detailed described in ref. 1, a typical FPM consists of an LED array, a light microscope with a low NA 
objective lens, and a monochromatic CCD camera. By sequentially turning on the LED elements on the array, 
the sample is illuminated from different angles, which correspond to a shift proportional to the angle of the 
illumination in Fourier space. Consequently, the estimated intensity In at the detector imaging plane can be 
generated as:

 P SI k k k{ ( ) ( )} , (1)n n
1 2= −−

where  1−  is the 2D inverse Fourier transform, kn is the spatial frequency corresponding to the nth LED, P(·) 
represents the pupil function of the system and S(·) represents the Fourier spectrum of the object. For multivariate 
problems such as Eq. (1), it is convenient to reformulate the problem using linear algebra. Similar to ref. 18, the 
relation between the high-resolution (HR) reconstruction and the LR observations corresponds to two sequential 
linear operation:

•	 down-sampling caused by the object aperture
•	 inverse Fourier transform to the LR spectrum bands caused by the microscope imaging system

We treat these two operations as a whole and use A to represent this combinational sampling process. The 
image formation model (1) can be finally vectorized as:

= − = .− P S SI k k k A{ ( ) ( )} (2)n n n
1 2 2

Many methods have been developed to obtain the optimal S(·) utilizing the following optimization function:
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where r = (x, y) is the real-space coordinate vector. Apparently, most of these methods neglect the sparse priority 
of reconstructed images. Motivated by this, a FPM with sparse representation was proposed in this paper. We 
formulate the reconstruction as the following minimization problem:
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where S( )  is the data-fidelity term, Ra and Rϕ are the regulation terms, sa represents the amplitude of s, sϕ repre-
sents the phase angle of s, 0, 0aτ τ> >ϕ  are the regulation parameters, respectively. To efficiently depress the 
noise and obtain better performance, we provide a data-fidelity based on noisy observation modelling and a reg-
ulation term based on sparse representation, which will be described in the following.
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Data-fidelity based on noisy observation modelling.  Amongst the existing noise models for the FPM 
reconstruction, almost all of the methods are based on the Gaussian or Poisson noise. However, the capturing 
process of many imaging devices is subject to various signal-dependent errors, and a standard way to model 
these errors is to consider them as Poisson-Gaussian noise19. Recently, a mixed Poisson-Gaussian model6 was 
proposed for FPM reconstruction and obtained a satisfactory performance under different types of noise. This 
paper describes an extension of the mixed model to properly handle different types of noises and improve the 
robustness of the reconstruction. Now we express a brief overview of the mixed Poisson-Gaussian model and 
introduce the data-fidelity term. Given a noisy image yn with the form

= + = …˜ n Ny I w , 1, , , (5)n n n

where subscript n is the nth image, In is the true image, Ĩn represents the image related to In and ∼˜ PoissonI I( )n n . 
wn is independent identically distributed zero-mean Gaussin noise component with variance σ2,  σ∼w (0, )n

2 . 
Specifically, we could easily obtain the likelihhood function as ref. 20:

∏ ∑
πσ

| =










= =

+∞ − − −
σp e

j
ey I I( ) [ ]

! 2
,

(6)
n n

i

m

j

n i
j y jI

1 1

[ ] ([ ] )

2

n i n i
2 1

2 2
2

where, for every i ∈ 1, …, m2, [In]i and [yn]i denote each pixel in In and yn. However, it is not appropriate to use this 
function directly as the noise model, since the infinite Gaussian mixture distribution in Eq. (6) makes it difficult 
to obtain the gradient of the function. Furthermore, the complicated gradient will inevitably increase the process-
ing time. Fortunately, based on the inspiration of variance stabilizing transform, the Generalized Anscombe 
Transform (GAT)21, 22 is proposed to approximate the exact likelihood. Using the GAT approximation, the likeli-
hood of yn  with components y y2n n

3
8

2
 σ= + +  is approximately given by refs 6 and 23:
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The negative log-likelihood function, assuming that the measurements are independent from each other, is a 
function of the parameters S, given the observed data yn:
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The first two terms are constant offsets that can be either ignored or computed prior to the reconstruction. 
Thus we can obtain the data-fidelity for the proposed reconstruction as6:
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Regulation term based on sparse representation.  To efficiently express the sparse coding for complex 
value24, we employ the separate sparse real-valued representations for amplitude and absolute phase image. The 
sparse representation is formulated as the following matrix operation:

s abs s s angle s( ) , ( ) , (10)a a a= = Ψ Θ = = Ψ Θφ ϕ ϕ

Θ = Φ ⋅ = Φ ⋅ Θ = Φ ⋅ = Φ ⋅φ ϕ ϕ ϕabs s s angle s s( ) , ( ) , (11)a a a a

where Θa and Θφ are vectors of the amplitude and phase spectra. The modulus and angle operations applied to 
vetors in Eqs (10) and (11) are elementwise. Thus sa and sϕ are the vectors of amplitude and phase values. In (10), 
the amplitude sa and phase sϕ are synthesized from the amplitude and phase spectra Θa and Θφ. On the other 
hand, the analysis in Eq. (11) gives the spectra for amplitude and phase of the sample s. In Eqs (10–11) the syn-
thesis and analysis matrices are denoted as Ψa, Ψϕ and Φa, Φϕ, respectively. Following the sparsity rationale we 
assume that amplitude and phase spectra, Θa and Θϕ, respectively, are sparse; i.e., most elements thereof are zero. 
In order to quantify the level of sparsity of Θa and Θϕ, i.e., their number of non-zero (active) elements, we use 
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the pesudo l0-norm ||·||0 defined as the number of non-zero elememts of the vector-argument. Therefore, we will 
design estimation criteria promoting low values of ||Θa||0 and ||Θϕ||0

17.
Two principally different variational formulations classified as the analysis and synthesis approaches can be 

viewed for sparse modelling. In the synthesis approach, the relation between the signal and spectrum variables 
are given by the synthesis in Eq. (10), while in the analysis approach these relations are given by the analysis in 
Eq. (11)17.

Based on Eq. (4), the variational setup in the synthesis approach is of form
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The first summand in Eq. (12) is the negative log-likelihood function corresponding to the approximated 
version of mixed Poisson-Gaussian distribution in Eq. (7). The pseudo l0-norms with the coefficients τa and 
τϕ are included in order to enable the sparsity of the amplitude and phase17. It is clear that the synthesis setup 
leads to quite complex optimization problem. Correspondingly, in the analysis approach the variational setup 
has similar form and the same problem exists. Similar to ref. 17, a different Nash equilibrium approach is 
used to tackle this problem. The constrained optimization with a single criterion function, as in Eq. (12), is 
replaced by a search for the Nash equilibrium balancing two criteria. Demonstrations of this approach for 
the synthesis-analysis sparse inverse imaging can be seen in ref. 11, where it is devised for linear real-valued 
observation modeling. According to the above analysis, we introduce two criteria for formalization of the 
algorithm design:
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where S s( )=  and ||·||2 stands for the Euclidean norm. The criterion (13) is identical to (9). The sparsity is ena-
bled by the criterion (14).

Minimization of  S( )1  requires the calculation of gradient. Inspired by previous works4, 5, 25, we can obtain the 
gradient of  S( )1  as:
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where [An]H denotes the conjugate transpose of [An].
In addition, the hard and soft thresholding operators26 are employed, and the solutions of Θ Θϕ ϕs s( , , , )a a2  

with respect to Θa and Θϕ are expressed as

ˆ
 τΘ = Φ ⋅ Φ ⋅ ≥s s1( ) [ 2 ], (16)a a a a a a

s s1( ) 2 , (17)
ˆ τΘ = Φ ⋅ 


|Φ ⋅ | ≥ 

φ ϕ ϕ ϕ ϕ ϕ

where τ2 a  and τϕ2  are the thresholds for the amplitude and phase, respectively. In this paper, τ = .2 1 4a ; 
2 1 4τ = .ϕ . Here, 1[u] is an elementwise vector function, 1[u] = 1 if u ≥ 0 and 1[u] = 0 if u < 0. The value of Θa 

and Θϕ, which are smaller than the corresponding thresholds, are set to zero.



www.nature.com/scientificreports/

5ScieNTific RePortS | 7: 8664  | DOI:10.1038/s41598-017-09090-8

According to the idea of the Nash equilibrium balancing multiple penalty function, the proposed algorithm is 
composed of alternating optimization steps performed for 1 and 2 17, 27. The alternating optimizaiton steps could 
be:

S arg Smin ( ), (18)
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To enable sparse approximations, the dictionary should be rich enough to grasp all variety of images. In our 
algorithm, we use BM3D frames for the analysis and synthesis operations. The frame is a generalization of the 
concept of basis to the case when the dictionary forms an overcomplete system. The BM3D filter can be split into 
three steps11.

•	 Analysis. Similar image blocks are collected in groups in order to obtain highly correlated data. Blocks in each 
group are stacked together to form a 3-D data array, which is decorrelated using an invertible 3-D transform.

•	 Processing. Obtained 3-D group, which are filtered by hard-thresholding.
•	 Synthesis. The filtered spectra are inverted, providing estimates for each block in the group. These blockwise 

estimates are returned to their original position, and the final image reconstruction is calculated as a weighted 
average of all of the obtained blockwise estimates.

It follows from Eq. (20) that the steps Eqs (19) and (20) including the Analysis step defining the analysis Θ 
and synthesis Ψ frames can be combined in a single algorithm. In the remainder of the manuscript, we use the 
notation BM3D for this algorithm. Note the standard BM3D algorithm12 is composed of two successive steps: 
thresholding and Wiener filtering. However, in this paper, BM3D consists of only the first thresholding step. 
Using the BM3D algorithm for implementation of the Eqs (19) and (20) we obtain:

ˆ ˆ τ=+s BM D s3 ( , 2 ), (22)a
t

a a
t

a
1

ˆ ˆ( )s BM D s3 , 2 (23)
t t1 τ= .ϕ ϕ ϕ ϕ
+

Combining the solutions for Eq.(18) and Eqs (22–23), we obtain the FPSR algorithm shown in Algorithm 1. yc 
in Algorithm 1 represents the image captured with central LED.

Results
In this section, we conduct a series of experiments on both simulated and real captured data.

Algorithm 1.  Fourier ptychographic microscopy with sparse representation.
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Quantitative metric and parameter settings.  Besides the visual results, we also introduce the relative 
error (RE)4–6 to quantify the recovery performance of different methods, defined as:

=
|| −

ϕ π

ϕ

∈

−

RE
min e S S

S
,

(24)

j
t

t

[0,2 )

2

2

where St is the true sample spectrum, and S denotes the reconstructed spectrum.
In the simulation experiments, we model a microscope setup realistically with its parameters as follows: the 

wavelength of incident light is 630 nm; CCD pixel size is 1.845 μm; the NA of the objective lens is 0.1. We use a 
15 × 15 LED matrix as the light source to provide angle-varied illuminations. The distance between adjacent 
LED elements is 4 mm, and the distance between the sample and LED matrix is 90.88 mm. Besides, we use the 
‘cameraman’ from ‘standard’ test images28 as the HR amplitude, and the ‘Aerial’ image (512 × 512 pixels) from the 
USC-SIPI image database29 is used as phase image. Using the Fourier ptychographic imaging formation, we sim-
ulated the ideal data with three sequential operations: (1) select different sub-regions of the HR Fourier domain 
caused by different incident angles, (2) inverse Fourier transform to the sub-region and get the LR plural image, 
(3) only retain the intensity of LR plural to obtain the ideal data. In addition, we also consider three different types 
of noises explicitly as follows:

Figure 1.  Reconstruction results with three types of noises (Poisson noise, Gaussian noise and mixed Poisson-
Gaussian noise), using different algorithms (Newton method, TPWFP, GATFP, NSR and FPSR). This figure 
is not covered by the CC BY licence. Credits to copyright-holder of "cameraman" image: the Massachusetts 
Institute of Technology. All rights reserved, used with permission.
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•	 Gaussian noise: we added Gaussian white noise to the ideal data.
•	 Poisson noise: the ideal data is corrupted by Poisson-distributed noise at each pixel.
•	 Mixed Poisson-Gaussian noise: First, we simulated the data with Poisson noise. Then we added Gaussian 

white noise to the data corrupted with Poisson noise.

For Gaussian noise and the Gaussian component of the mixed Poisson-Gaussian, the standard deviation is 
the ratio between actual standard deviation and the maximum of the ideal data. Then we compared FPSR with 
three state-of-the-art methods, i.e., Newton method, TPWFP and GATFP. Besides, we also provide the result 
generated by NSR to show whether the benefit of the proposed method come form the noisy observing modeling 
or the sparse representation. The code of Newton method is adapted according to the code samples from http://
sites.bu.edu/tianlab/open-source/. The code of TPWFP could be obtained at http://www.sites.google.com/site/
lihengbian. In TPWFP, αh is set to 25, since it works well for the FPM reconstruction as stated in ref. 4. Another 
important parameter for all the algorithms is the iteration number. For TPWFP, GATFP, NSR and FPSR, 300 
iterations are enough. We set 500 iterations for Newton method.

Simulation results.  First, we compare FPSR with the above mentioned three state-of-the-art methods and 
NSR to show their pros and cons. We apply each algorithm on the simulated data with Poisson noise, Gaussian 
noise and Poisson-Gaussian noise, respectively. The Poisson noise is used to describe the statistics of the incoming 
photons at each pixel, which is a discrete probability distribution3. The Gaussian noise is mostly caused in the 
capturing chain, such as thermal noise. Thermal noise is associated with the rapid and random motion of elec-
trons within a conductor due to thermal agitation. Because the number of electrons in a conductor is very large, 
and their random motions are statistically independent, the central limit theorem indicates that thermal noise is 
Gaussian distributed with zero mean. A more realistic way to model the noise is a mixed Poisson-Gaussian dis-
tribution. Note that the standard deviation (std) for the Poisson-Gaussian noise denotes the level of the Gaussian 
component. The std of the Gaussian noise (Gaussian component of the mixed Poisson-Gaussian noise) is set to 
2e − 3. And the ground truth noise variance is used in the synthetic experiment.

From the results (in Fig. 1), we can see that TPWFP performs well under Poisson noise, which benefits from its 
accurate Poisson signal model. Instead, Newton method and NSR minimizes the square of the difference between 
the actual and estimated measurements, which is the equivalent form of Gaussian likelihood function when the 
constant term is ignored3. Although NSR also incorporates the sparse representation, the performance of NSR is 
not as good as excepted. GATFP and FPSR can achieve a successful reconstruction without affecting the recon-
struction quality. For Gaussian noise, GATFP and FPSR outperform the other three methods. This is because we 
also consider the Gaussian noise of the measurement explicitly as Eq. (5) in the noisy observation model. FPSR 
is advantageous than GATFP, since the sparse representaion could effectively reduce the noise by omitting the 
measurement under the certain threshold. TPWFP could recognize the most of Gaussian noise and remove them 
using the truncated Wirtinger gradient. However, for situations with high noise level, TPWFP may not be an 
effective reconstruction approach. Instead, Newton method estimates the background for each image and sub-
tracts it to produce the corrected intensity image30. Obviously, NSR outperforms TPWFP and Newton method 
when the standard variance is large, however the advantage is not obvious under the case of smaller standard 
variance. For mixed Poisson-Gaussin noise, NSR achieves better performance than TPWFP and Newton method 
when standard variance is larger, but it suffers a significant degree of crosstalk in the phase image and generates 
some white spots in the amplitude image. GATFP obtains successful reconstruction. This is greatly attributed to 
its Poisson-Gaussian assumption. FPSR performs better than all the competing methods. This is mainly attributed 
to the sparse representation and mixed Poisson-Gaussian assumption. To conclude, we can see that the type of 
noise strongly influences the quality of reconstructed image, while FPSR is more robust under different types of 
noise. This behavior is well explained by the fact that our model can be treated as a generalized model of these 
types of noise.

All the five algorithms are implemented using MATLAB R2014a and the computer with the processor Intel(R) 
Core(TM) i5-3470@ 3.20GHz and 64bit Windows10 system. The complexity of the algorithms is characterized 
by the running time of 100 iterations, which is provided in Table 1. Since both NSR and FPSR employ the sparse 
representation, which involves the operations of BM3D frames for both amplitude and phase images, the running 
time of NSR and FPSR is much higher than the other three methods. Although the computational complexity 
is higher, the proposed FPSR achieves much better quality than other competing methods (Newton method, 
TPWFP, GATFP and NSR) for almost all the reconstructed results under different types of noises. With the 
emerging of more and more powerful computers, the running time of FPSR can be reduced significantly. Further 
studies on reducing the computational complexity of the proposed FPSR are also needed.

Experimental results.  In this sub-section, we demonstrate the performance of our method with experimen-
tal results. The parameters of the real FPM imaging system are the same as those in the simulation. We obtain the 
estimated standard deviation of noise based on Median of Absolute Deviation (MAD) technique. However, the 

Newton method TPWFP GATFP NSR FPSR

Running 
time (s) 193 83 40 630 658

Table 1.  Comparison of running time between state-of-the-arts methods and the proposed FPSR.

http://sites.bu.edu/tianlab/open-source/
http://sites.bu.edu/tianlab/open-source/
http://www.sites.google.com/site/lihengbian
http://www.sites.google.com/site/lihengbian
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standard deviation for the Gaussian component of mixed Poisson-Gaussian noise might not be exact since the 
noise also contains the Poisson component. So we adjust the standard deviation based on the value obtained by 
MAD. In the experiment, we employ the blood smear and USAF target as samples, and capture a sequence of 225 
images for both samples.

Figure 2.  Reconstruction results over USAF target using different algorithms (Newton method, TPWFP, 
GATFP, NSR and FPSR).

Figure 3.  Reconstruction results over Blood smear using different algorithms (Newton method, TPWFP, 
GATFP, NSR and FPSR).
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The reconstruction results over USAF target are shown in Fig. 2. In the result of Newton method, though 
most of the noise is removed due to the background subtraction step, many image details are subtracted as well 
(see the group 8 element 6). In the results generated by TPWFP, we can easily observe that TPWFP suffers noise 
corruption. The resluts of NSR suffer a significant degree of blurring (see the group 9 element 1). In addition, 
GATFP achieves good reconstruction with more details. Compared with GATFP, the reconstruction results using 
FPSR suffer from less noise in both amplitude and phase (see the part of zoom-in). The reconstruction results of 
blood smear are shown in Fig. 3. We can see that TPWFP and the Newton method produce fluctuations in the 
object phase over blood smear. GATFP, NSR and FPSR are able to remove the fluctuations in the object phase and 
achieve superior performance than the other competing methods. In addition, the reconstruction of the proposed 
FPSR has stronger contrast and contains less noises compared with GATFP and NSR. This is consistent with the 
simulation experiment. In all, FPSR offers a novel way for FPM to reconstruct highly accurate results suffered 
from noise-deteriorated inputs.

Discussion
In this paper, we develop and test a novel reconstruction method for FPM termed as FPSR. By fully exploring 
the sparse priority of captured images, the proposed FPSR is formulated as a regularized optimization problem, 
which is solved by the Nash equilibrium algorithm. In FPSR, the data fidelity is constructed as a maximum like-
lihood problem, and the regulation term is expressed as a small number of nonzero elements over an appropriate 
basis for both amplitude and phase image. We compare the reconstruction quality of the proposed method and 
the competing methods under different types of noises. Both simulation and experimental results demonstrate 
the validity of our method.

One extension of FPSR is to handle much more complex noise by modeling data noise as a mixture of 
Gaussians. The mixture of Gaussian is a universal approximator to distributions and is able to fit a wide range 
of noises. In addition, we can also introduce more accurate approach for the estimation of standard deviation to 
improve the convergence speed and effectiveness of the algorithm.

The limitation of our method is the case that the model is non-convex, which might converge to incorrect local 
minima. In addition, GAT is able to stabilize the noise variance, yet the tails of variance stabilized coefficients 
distribution are empirically longer than normality as evidenced in ref. 31. Besides, when the noise is samll, FPSR 
may remove some useful information. Therefore, incorporating a convex program on FPSR to obtain a solution 
with minimum cost will be a research emphasis in the near future.
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