Skip to main content
. 2017 Aug 17;7:8552. doi: 10.1038/s41598-017-08892-0

Table 3.

The performance of the deep learning prediction model on training and test sets.

Data set Total samples RMSE log loss MCE AUC Gini Accuracy Sensitivity Specitivity TPV TNV
White rice 2014 (Training set) 60 0.45 0.55 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
White rice 2015 (A) (Test set 1) 40 0.54 0.83 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
White rice 2015 (B) (Test set 2) 26 0.46 0.59 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RMSE: Root mean squared error.

LogLoss: Logarithmic loss.

MCE: Mean per-class error.

AUC: Area under the ROC curve.

Gini: Gini coefficient.

TPR: True positive rate.

TNR: True negative rate.