
ARTICLE

CD206+ M2-like macrophages regulate systemic
glucose metabolism by inhibiting proliferation of
adipocyte progenitors
Allah Nawaz1, Aminuddin Aminuddin 1,2, Tomonobu Kado1, Akiko Takikawa1, Seiji Yamamoto3,

Koichi Tsuneyama4,5, Yoshiko Igarashi6, Masashi Ikutani7, Yasuhiro Nishida1, Yoshinori Nagai8,9,

Kiyoshi Takatsu8,10, Johji Imura4, Masakiyo Sasahara3, Yukiko Okazaki11, Kohjiro Ueki11,12, Tadashi Okamura13,14,

Kumpei Tokuyama15, Akira Ando15, Michihiro Matsumoto16, Hisashi Mori17, Takashi Nakagawa18,

Norihiko Kobayashi19, Kumiko Saeki19, Isao Usui1, Shiho Fujisaka1 & Kazuyuki Tobe1

Adipose tissue resident macrophages have important roles in the maintenance of tissue

homeostasis and regulate insulin sensitivity for example by secreting pro-inflammatory or anti-

inflammatory cytokines. Here, we show that M2-like macrophages in adipose tissue regulate

systemic glucose homeostasis by inhibiting adipocyte progenitor proliferation via the CD206/

TGFβ signaling pathway. We show that adipose tissue CD206+ cells are primarily M2-like

macrophages, and ablation of CD206+ M2-like macrophages improves systemic insulin sensi-

tivity, which was associated with an increased number of smaller adipocytes. Mice genetically

engineered to have reduced numbers of CD206+ M2-like macrophages show a down-regulation

of TGFβ signaling in adipose tissue, together with up-regulated proliferation and differentiation

of adipocyte progenitors. Our findings indicate that CD206+ M2-like macrophages in adipose

tissues create a microenvironment that inhibits growth and differentiation of adipocyte

progenitors and, thereby, control adiposity and systemic insulin sensitivity.
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White adipose tissue (WAT) markedly adapts to
nutrient excess through adipocyte hypertrophy and
hyperplasia1–3. The WAT expansion greatly affects the

pathogenesis of obesity through different cellular mechanisms4.
Adipocyte size is inversely related to insulin resistance5, whereas the
number of adipocytes is related to the pool size of adipocyte
progenitors (APs). However, the cellular and molecular mechan-
isms regulating adipocyte size and number in vivo are largely
unknown. Several groups, including our laboratory, have reported
that M1-like inflammatory macrophages regulate the expression of
angiogenic genes in preadipocytes3, 6, suggesting interactions
between macrophages and APs. It is still unknown how the
proliferation and differentiation of APs are regulated by M2-like
macrophages within WAT, thus controlling the insulin sensitivity.

Obesity is associated with a phenotypic transformation of
macrophages, from anti-inflammatory M2 to pro-inflammatory
M1 macrophages, thereby causing insulin resistance1, 7, 8. M2
macrophages are required for maintenance of homeostasis, tissue
remodeling, and metabolic adaptation under nutrient surplus
conditions9, 10, but it is largely unknown how macrophages
participate in progenitor activation and adipogenesis.

TGFβ and related factors control the development, growth and
function of diverse cell types. TGFβ is often secreted by niche
cells, thereby inducing hibernation of tissue stem cells such as
hematopoietic and melanocyte stem cells11, 12. WAT-derived
TGFβ1 reportedly contributes to insulin sensitivity, while block-
ade of TGFβ/smad 3 signaling induces browning to protect
against obesity and diabetes13. Adipose tissues of obese mice and
humans showed higher TGFβ1 expression14–16. We hypothesized
that M2-like macrophages might be involved in the regulation of
remodeling of WAT via TGFβ signaling.

In the current study, we have successfully performed partial but
specific depletion of CD206+ M2-like macrophages without
affecting either the number or functions of M1 macrophages, and
without affecting body weights or overall adiposity. We show that
CD206+ M2-like macrophages have pivotal roles in WAT
remodeling by modulating APs proliferation and differentiation
into adipocytes through TGFβ signaling, providing a niche for
APs. We further determin the specific involvement of CD206+

M2-like macrophages in terms of insulin sensitivity and adipose
tissue remodeling both under normal chow (NC) and high-fat
diet (HFD)-fed conditions. Thus, CD206/TGFβ signaling is
pivotal players in modulating APs proliferation and differentia-
tion to adjust adiposity and systemic insulin sensitivity.

Results
CD206 is a specific marker for M2-like ATMs. To investigate
the involvement of M2-like ATMs in the regulation of adipose
tissue dynamics during metabolism-associated remodeling/
repairing, we looked for a specific marker for M2-like ATMs.
We have previously shown that the vast majority of ATMs are
CD206+ M2-like macrophages, but the ratio of CD206+ M2-like
macrophages in F4/80-positive macrophage and F4/80-negative
non-macrophage populations was not evaluated. To address these
issues, we collected stromal vascular fractions (SVF) populations
from epididymal WAT (eWAT) and subjected them to flow
cytometric analysis. Cells were gated on CD45-positive cells and
expression of CD206 and F4/80 on these cells were analyzed.
Flow cytometry analysis showed that the almost all CD206-
positive populations are F4/80-positive (Fig. 1a and Supplemen-
tary Fig. 1), indicating that CD206+ cells in adipose tissues are
macrophages, but not cells of other lineages. Consistently, F4/80
messengerRNA (mRNA) expression levels in F4/80+CD206+

populations compared with those in total SVF populations
(Fig. 1b, black/blue ratios) were equivalent to the relative levels of

the well-characterized M2-like macrophage markers CD163, and
MgL2. We determined that the F4/80+CD206− population
expressed higher level of CD11c, TNFα, IL-6, Zbtb46 mRNA
(Fig. 1b, red) than the F4/80+CD206+ population, indicating that
the former includes substantial amounts of M1-like macrophages
and dendritic cells. In any event, CD206+ populations, which
comprise the major population in ATMs, are exclusively M2-like
macrophages and not M1-like macrophages or non-macrophage
populations. Thus, CD206 provides an ideal marker to target M2-
like macrophages in adipose tissue.

CD206+ M2-like ATMs depletion promote adipose tissue
metabolism. We recently reported that CD206+ M2-like
macrophages were selectively depleted in CD206DTR mice, in
which a human diphtheria toxin receptor (DTR) expression unit
was knocked in at the CD206 promoter locus17 (Fig. 1c left,
Supplementary Fig. 2a–d). The CD206DTR and wild-type (WT)
mice showed similar body weights during the observation period
from 6–14 weeks of age in the absence of diphtheria toxin (DT)
(Supplementary Fig. 1e).

We administered DT three times every other day and found
that injection of DT with dose 3ng/gBW (Fig. 1c, right)
specifically reduces the number of CD206+ M2-like macrophages
without affecting body weight (Fig. 1d), the weight of eWAT or
inguinal WAT (iWAT) (Fig. 1e) or even food intake (Fig. 1f). DT
administration did not affect the number of M1-like macrophages
and expression levels of M1-like markers in the eWAT (Fig. 1g
and h and Supplementary Fig. 3), although minor alterations in
the expression of natural killer cells and eosinophils were
observed in the eWAT of CD206+ M2-like macrophages-reduced
mice (Supplementary Fig. 4a). In addition, we found that the
expression of fibrosis related marker genes such as Col1a1 and
Acta2, were downregulated in CD206+ M2-like macrophages-
reduced mice (Supplementary Fig. 4b). However, immunohisto-
chemical analysis revealed that CD206+ M2-like amcrophages
depletion did not alter adipose tissue fibrosis (Supplementary
Fig. 4c). The expression of CD206 and other M2-like macrophage
markers were also downregualted in iWAT of DT-treated
CD206DTR mice (Supplementary Fig. 4d). Decline of CD206+

M2-like macrophages were also observed in bone marrow (BM),
the liver and skeletal muscle of CD206+ M2-like macrophages-
reduced mice (Supplementary Fig. 4e–g). Flow cytometric
analysis of the peritoneal cavity macrophages revealed that
CD206+ M2-like macrophages were also depleted (Supplemen-
tary Fig. 5a). In addition, gene expression and flow cytometric
analysis of BM shows that the number of eosinophils, natural
killers cells, and granulocytes was unaffected (Supplementary
Fig. 5b–d). Thus, the current protocol provides an effective
approach for systemic reduction of CD206+ M2-like macro-
phages without affecting the numbers of other lineage cells, body
weight, adiposity, or food intake (Fig. 1d–h).

We evaluated the physiology of the adipose tissues
by examining the size and number of adipocytes. In CD206+

M2-like macrophages-reduced mice, the size of adipocytes was
significantly reduced (Fig. 2a), while the numbers of adipocytes
(Fig. 2b) and SVF populations (Fig. 2c) were increased in eWAT.
Flow cytometric analysis revealed that BrdU-uptake was
increased in the CD45− SVF cells of CD206+ M2-like macro-
phages-reduced mice (Fig. 2d and Supplementary Fig. 5d),
suggesting that the depletion of CD206+ M2-like macrophages
resulted in the proliferation of CD45− cells. In agreement
with this, expression of cell cycle indicators, such as cyclins
and Ki-67, was also increased in the eWAT of CD206+ M2-like
macrophages-reduced mice (Fig. 2e). We also found an increased
number of Ki-67- and BrdU-positive cells in CD206+ M2-like
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macrophages-reduced mice (Fig. 2f). Taken together, these data
suggested CD206+ M2-like macrophages depletion triggered the
proliferation of CD45− SVF.

CD206+ M2-like ATMs regulate adipocyte progenitor’s pro-
liferation. We examined which type of CD45− cells in the eWAT
were proliferating after CD206+ M2-like macrophages depletion.
As macrophages are reportedly involved in the regulation of

progenitor activity or stem cell niche activity3, 6, 18–20, we
investigated the possible involvement of CD206+ M2-like
macrophages in the control of APs proliferation. As shown in
Fig. 3a, expression of a series of AP markers including PDGFRa,
CD24, Sca-1, and Pref-121−24, and mesenchymal stem cell (MSC)
markers including CD105 and CD9025, 26 were up-regulated in
eWAT of the CD206+ M2-like macrophages-reduced mice. These
data indicated that proliferating cells might be APs. To directly
assess the proliferation state of APs, the CD45-CD31−Sca-1+
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non-endothelial fraction was purified using magnetic activated
cell sorting (MACS) (Supplementary Fig. 6a). Sca-1+ fractions
showed even larger increments in the expression of cell
cycling indicator genes under CD206+ M2-like macrophages
reduction than did Sca-1− fractions (Fig. 3b), indicating that
the proliferation state of APs was indeed activated in CD206+

M2-like macrophages-reduced mice. In agreement with this, flow
cytometry analysis revealed that the number of Sca-1/PDGFRα
double positive populations23, 27 was increased (Fig. 3c and
Supplementary Fig. 6b) and cyclin gene expression levels in APs
fraction (Fig. 3d) were up-regulated. For further confirmation, the
fate of proliferating cells was studied by injecting the mice with
EdU; this was specifically incorporated into S-phase cells, which
were traced over time. After 2 h of EdU injection, EdU+ cells
and PDGFRα+ cells were detected with higher frequency in
CD206+ M2-like macrophages-reduced mice than in WT mice
(Fig. 3e). After 96 h following injection, EdU+ nuclei were
detected in cells that were positive for perilipin, a lipid droplet-
coating protein (Fig. 3f). Thus, proliferating APs in CD206+ M2-

like macrophages-reduced mice were indeed differentiated
into mature perilipin-positive adipocytes. When stained by
CellMask™ Green Plasma Membrane Stain, we found that
some EdU+ nuclei were not separated from the lipid droplets
by a plasma membrane (Fig. 3g), a characteristic of terminally
maturated adipocytes with high lipid-storing capacities28. Thus,
CD206+ M2-like macrophages reduction promotes the
proliferation of APs, which are subsequently differentiated into
mature adipocytes.

TGFβ signaling in CD206+ M2-like ATMs-based APs pro-
liferation. M2 macrophages express fairly large amounts
of TGFβ29–31 and TGFβ is reportedly involved in inhibiting
proliferation/differentiation of various cell types including
preadipocytes, melanocyte- and hematopoietic-stem cells11, 12, 32.
Enhanced TGFβ signaling is also reportedly associated with
obesity13–16, 33. We therefore examined the possible involvement
of TGFβ signaling in the up-regulated APs proliferation in
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CD206+ M2-like macrophages-reduced mice. Among the genes
involved in TGFβ signaling, TGFβ1 was abundantly expressed in
CD206+ M2-like macrophages (Fig. 4a). Confocal imaging studies
demonstrated co-localization of CD206+ M2-like ATMs with
TGFβ immunostaining in eWAT (Fig. 4b). Furthermore, we also
found that the number of cells that co-express CD206 and TGFβ1

was reduced in CD206+ M2-like macrophages-depleted mice
(Fig. 4c). CD206+ M2-like macrophages were located in close
proximity to PDGFRα+ APs, as shown in Pdgfrα-CreERT2-eGFP
(PRa) mice and WT mice (Supplementary Fig. 6c, d), consistent
with a previous report3. Co-localization of APs with p27Kip1, a
downstream factor of TGFβ signaling for cell growth inhibition,
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was also confirmed in PRa mice (Fig. 4d). Expression of other
TGFβ signaling downstream factors including p21, p15, p16, p27,
and p57 were down-regulated in eWAT in CD206+ M2-like
macrophages-reduced animals (Fig. 4e). In addition, phospho-
smad2/3 (P-Smad2/3) and p27Kip1 protein expression was
reduced by CD206+ M2-like macrophages reduction in eWAT
(Fig. 4f), suggesting that CD206+ M2-like macrophages suppress
APs proliferation via the TGFβ signaling pathway. To validate
this hypothesis, we generated a genetically engineered mouse in
which TGFβ1 expression was specifically depleted in CD206+

M2-like macrophages (CD206−CreERT2/TGFβflox/flox mice)
(Supplementary Fig. 7a). Administration of tamoxifen
significantly reduced TGFβ1 expression by 20–30% in CD206+

M2-like macrophages in the CD206-CreERT2/TGFβflox/flox mice
(Supplementary Fig. 7b); the expression of cell cycle-associated
genes and APs marker genes (Supplementary Fig. 7c) and the
number of Sca-1/PDGFRα double positive populations in eWAT
were all up-regulated in these mice (Fig. 4g and Supplementary
Fig. 7d). Immunostaining analysis shows that fibrosis of eWAT
was decreased in tamoxifen treated CD206-CreERT2/TGFβ1flox/
flox mice compared with tamoxifen treated TGFβ1flox/flox control
mice (Supplementary Fig. 8). Moreover, the eWAT of WT mice

injected with an anti-TGFβ1,2,3 neutralizing monoclonal anti-
body showed increments in the expression of cell cycle-related
genes, with reciprocal decrements in TGFβ downstream gene
expression (Fig. 4h). To further confirm the impact of TGFβ
signaling, we performed inhibitor analysis in vitro. Adipose
tissue-derived stem cells (ASCs) collected from the iWAT of WT
mice were co-cultured with CD206+TGFβ1+ M2-like macro-
phages, which were produced from bone marrow-derived mac-
rophages (BMDM) by treating with IL-4 and PGE2. We also
found that BMDM supplemented with IL-4 and PGE2 could be
differentiated into M2-like macrophage, which highly expresses
CD206 and TGFβ1 (Supplementary Fig. 9a–c). The presence of
LY2109761 (a TGFβRI/II inhibitor) abrogated the inhibitory
effect of BMDM on adipogenesis of ASCs (Fig. 5a, b) although
LY2109761 per se, or anti-TGFβ1,2,3 enhanced PDGFRα+ cell
proliferation (Fig. 6a, b). Thus, CD206/TGFβ signaling regulate
the APs proliferation and subsequent adipogenesis.

CD206+ M2-Like ATMs depletion improve glucose metabolism
in lean mice. We have previously showed that the majority of
macrophages were M2-type in non-obese states, whereas the
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majority of macrophages were M1 type in obese states34. As M2
ATMs are considered to be metabolically ‘favorable’ ATMs35, 36

compared with M1 pro-inflammatory macrophages, it
was expected that decline of CD206/TGFβ might impair
glucose metabolism despite enhanced APs proliferation.
Surprisingly, glucose tolerance and insulin sensitivity were
improved in CD206+ M2-like macrophages-reduced mice
(Fig. 7a–c). This unexpected finding was indeed a specific
outcome of CD206+ M2-like macrophages reduction, as a glucose
tolerance test without DT administration did not reveal any
difference between WT and CD206DTR mice (Supplementary
Fig. 10a). In CD206+ M2-like macrophages-reduced mice, the
levels of Akt phosphorylation were up-regulated in eWAT,
liver and skeletal muscle after insulin injection (Fig. 7d–f and
Supplementary Fig. 10b). Moreover, expression levels of the
genes associated with metabolically favorable states were also
up-regulated in eWAT and skeletal muscle, while
gluconeogenesis-related gene expressions were down-regulated in
the liver (Fig. 7g–i). In addition, gene expression analysis revealed
that expressions of markers for smaller adipocytes were
consistently up-regulated in the eWAT, reflecting the increment
in smaller adipocytes. Expression levels of adipogenesis-related
transcription factors including C/EBP-δ and C/EBP-α were
also markedly up-regulated in the eWAT (Fig. 7g). Thus, decline
in CD206/TGFβ signaling promoted adipogenesis to provide
an increment in smaller adipocytes in the WAT,
thereby improving insulin sensitivity. In genetically engineered
CD206-CreERT2/TGFβflox/flox mice, the number of smaller
adipocytes was also increased after tamoxifen treatment
(Supplementary Fig. 10c), supporting our hypothesis about the
involvement of CD206/TGFβ signaling in glucose metabolism.
Thus, decline of CD206/TGFβ signaling improves glucose meta-
bolism in lean mice.

CD206+ M2-like ATMs depletion improve glucose metabolism
in obese mice. Next, we examined the impact of CD206+ M2-like

macrophages reduction on glucose metabolism under HFD-fed
conditions. WT and CD206DTR mice were subjected to HFD
challenge for 16 weeks, with subsequent DT administration. Both
WT and CD206DTR mice showed no difference in food intake
(Supplementary Fig. 11a) or body weight gain (Supplementary
Fig. 11b) during the 16 weeks of HFD-fed periods, but
decreased weight gain was observed in CD206+ M2-like
macrophages-reduced mice compared with WT after DT
administration (Supplementary Fig. 11c). Notably, CD206+

M2-like macrophages-reduced mice showed improved glucose
tolerance and insulin sensitivity even during HFD-fed periods
(Fig. 8a and b). Consistent with this, they showed an
increased number of smaller adipocytes with a reduced
number of crown-like structures (CLS) compared with the
WT control group (Fig. 8c–e). To determine the tissues
responsible for amelioration of insulin resistance, we performed
hyperinsulinemic-euglycemic clamp studies in DT-treated
CD206DTR and WT mice (Fig. 8f). We determined that these
mice showed significant increments in glucose infusion rate (GIR)
and rate of whole-body glucose disappearance (Rd) than WT
control mice without any significant suppressions in
hepatic glucose production (HGP) (Fig. 8f), indicating that
skeletal muscle/adipose tissues are responsible for metabolic
improvement. Flow cytometric analysis further confirmed the
reduced macrophage infiltration in response to HFD challenge
(Fig. 9a and Supplementary Fig. 12a). The eWAT of CD206+

M2-like macrophages-reduced mice showed up-regulated
expressions of adipogenesis-related transcription factor genes
(e.g., C/EBP-α, C/EBP-δ, PPARγ), genes that are associated
with metabolically favorable states (e.g., PGC-1α, PGC-1β, Glut4),
APs and MSC marker genes (e.g., Sca-1, PGDFRα, CD105) and
cell cycle-related genes (e.g., Ki-67, Cyclin A2, Cyclin B1), along
with down-regulation of pro-inflammatory M1 macrophage
markers (e.g., CD11c, MCP1, NOS2, IL-6, and TNFα (Fig. 9b–d).
Thus, CD206+ M2-like macrophages play crucial roles in
regulating glucose metabolism in HFD-fed obese mice, as well as
NC-fed lean mice.
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Depletion of CD206+ M2-like ATMs promote browning of
white adipocytes. Finally, we addressed whether depletion
of CD206+ M2-like macrophages affect beige progenitors. DT-
treated CD206DTR and WT mice after cold exposure for 7 days
resulted in markedly increased expressions of UCP1, as well as
other browning marker genes in the iWAT22, 37–39 (Fig. 10a).
Immunofluoresence analysis also revealed increased UCP1 in
CD206DTR mice upon cold exposure (Fig. 10b). Consistent with
this, the beige progenitor marker genes were also upregulated
(Fig. 10a). Interestingly, flow cytometry analysis revealed an
increase in the PDGFRα/Sca-1 double positive cells after cold
exposure in the iWAT of the CD206DTR mice compared with

WT control (Fig. 10c and Supplementary Fig. 12b). These data
suggested that CD206+ M2-like macrophages might be involved
in regulating the browning of iWAT under cold stimulation.
Further studies are required to investigate the role M2-like ATMs
ablation in regulating the biological properties of beige progeni-
tors and how they interact with each other to form niche will
significantly enrich our knowledge.

Discussion
Several lines of evidence have suggested that ATMs are involved
in maintaining insulin sensitivity in adipocytes through their
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anti-inflammatory actions, in collaboration with other leukocyte
lineages including Treg cells, eosinophils, and invariant natural
killer cells1, 2, 4, 22, 35. In the current study, we determined
that CD206 is an ideal marker to target M2-like macrophages
in adipose tissues. Thus, we are able to specifically deplete
M2-polarized macrophages in adipose tissue of DT-treated
CD206DTR mice. So far, congenital deficiency of M2-like
ATMs reportedly causes lipodystrophy-like pathophysiology

accompanied by accelerated lipolysis40. As insulin resistance
and obesity related disorders progresses with advanced age, and
M2-like macrophages are up-regulated in the early phases of
obesity34, it is important to deplete M2-like macrophages at a
specific time point to examine the developmentally time sensitive
role of M2-like macrophages. Thus, conditional and partial
depletion have advantages over congenital or genetic ablation of
M2-like macrophages. There are a number of reports
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demonstrating that partial and conditional depletion of specific
cell lineages can bring about particular biological events without
affecting the functions of other cells lineages41–45. In this study,
we have successfully shown that partial but specific depletion of
CD206+ M2-like macrophages in adult mice improved glucose
metabolism without affecting body weight, food intake, and the
numbers and functions of other cell lineages, including M1
macrophages. It has been reported that cold stimulation promotes
the differentiation of beige precursors into beige/brite adipocytes
within one week of exposure38, 46. Recently, Chawla’s group
reported that eosinophil or M2 macrophages-derived type 2
cytokines, IL-4/IL-13, mediates cold stimulation-induced
biogenesis of beige fat2. There are several reports indicating
that M2 macrophages polarization regulates thermogenesis and
browning of iWAT by increasing the expression of UCP1, PGC-
1α, and other browning genes 2, 47, 48. Previous studies indicated

that PDGFRα+ progenitors were recruited in WAT upon
ADRB3 stimulation26 and these APs were also involved in
different compensatory mechanism involving cellular restoration
and repair in WAT and other tissues3, 49. It is well documented
that type 2 cytokines and ATMs were involved in regulation
of APs remodeling3, 22, 39, 48. However, it is unknown how decline
of CD206+ M2-like macrophages affect WAT upon cold stimu-
lation. Here, we report that decline of CD206+ M2-like macro-
phages promoted browning of iWAT. Our findings suggest that
CD206/TGFβ signaling play a critical role in maintaining APs
in a quiescent state in an analogous manner to that of the
non-myelinating Schwann cell-based niche, where hematopoietic
stem cells (HSCs) are maintained in hibernation via TGFβ-
dependent pathways11. As we have previously reported, M2-like
macrophages expand, albeit mildly compared with M1-like
macrophages, during the course of obesity progression34.
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Therefore, it may be possible that the mild expansion of M2-like
macrophages during the progression of obesity hampers APs
proliferation and subsequent adipogenesis. Thus, the limited
adipogenesis due to expanded M2-like ATMs may increase the
lipid burden of the existing fat cells, inducing hypertrophy rather
than hyperplasia of adipose tissues, thus impairing insulin resis-
tance. A series of these events may create a vicious cycle, accel-
erating the progression of obesity-associated metabolic disorders.
In this regard, it is expected that CD206+ M2-like macrophage-
targeting drugs may exert effective therapeutic effects by breaking
the vicious cycle between M2-like macrophages and APs.
As reduction of CD206+ M2-like macrophages did not affect
systemic adiposity, CD206+ M2-like ATMs-targeting drugs would
not promote obesity, as is observed in the case of PPARγ acti-
vators (e.g. thiazolidinedione).

In HFD-fed mice, both CD11c+CD206- and CD11c+CD206+

ATMs are markedly increased; DT-treatment depleted not

only CD206+CD11c− but also CD206+CD11c+ ATMs.
Although it seems that CD206+ M2-like ATMs plays a major role
in the insulin-sensitive phenotype associated with reduced
inflammation, the possibility that depletion of CD206+CD11c+

ATMs contributes to this phenotype cannot be completely
excluded.

In conclusion, the current study demonstrates a new role for
CD206+ M2-like macrophages in constituting a microenviron-
ment for APs, in a TGFβ-dependent manner, to retain systemic
insulin sensitivity by tuning the quiescence/proliferation balance
of APs to adapt to changes in nutritional status. Our findings
suggest a new strategy for the development of drug discovery for
the treatment of insulin resistance and type 2 diabetes.

Methods
Materials. Diphtheria toxin (Sigma, cat# D0564,) and collagenase (Sigma, cat#
C6885) were purchased from Sigma-Aldrich (St. Louis, MO). Anti-human
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Fig. 10 Depletion of CD206+ M2-like macrophages promote browning of iWAT. a Relative mRNA expression of UCP1, PGC-1α. CPT-1β and CD137 levels in
iWAT after CD206+ cells depletion under cold exposure (n= 3–5 mice per group). b Immunostaining of paraffin section of eWAT stained with anti-UCP1
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diphtheria toxin receptor (anti-HB-EGF) was obtained from Cosmo Bio, cat#
71–503 (Tokyo, Japan), purified mouse anti β-catenin (Cat# 610154) from BD
Bisocience, anti-rabbit Akt (Cat# 9272 S) and anti-rabbit p-Akt (S473) (Cat# 9271
S) were purchased from Cell Signaling for western blot analysis. The horseradish
peroxidase linked anti-mouse, cat# NA931V and anit-rabbit, cat# NA934V sec-
ondary antibody was obtained from Amersham Bioscience (Buckinghamshire,
UK). The ECLTM western blot detection reagent was obtained from GE Healthcare,
cat# RPN2232 (Buckinghamshire, UK). Tamoxifen was purchased from Sigma,
cat# T5648 and bromodeoxyuridine (BrdU) was purchased from BD Biosciences,
cat# 550891. D-Glucose-6,6-d2 was purchased from the Santa Cruz Biotechnology,
cat# sc-257287A.

The PCR primers that were used with the TaqMan method were purchased
from Applied Biosystems (Foster City, CA), and those used with the SYBR Green
method were purchased from InvitrogenTM Life Technologies, Japan (Tokyo,
Japan). The SYBR Green primer sequence is given in Supplementary Table 1.

For the flow cytometry analysis, hamster CD11c conjugated with PE (Cat#
553802), PE rat anti-mouse SiglecF (Cat# 562068), purified rat anti-mouse CD16/
CD32 (Cat# 553141), 7-amino-actinomycin D [7AAD] (Cat# 559925), PE ArHam
IgG1 λ2 isotype control (Cat# 553954), FITC BrdU flow kit (Cat# 559619), APC rat
anti-mouse TER-119/erythroid cell antibody (Cat# 557909) anitbodies were
obtained from BD Biosciences. PE hamster rat polyclonal isotype control (Cat#
ab32662-100) was purchased from Abcam. The rat anti-mouse CD206 conjugated
alexa fluor 647 antibody (Cat# MCA2235A647) and the rat IgG2a alexa fluor 647
isotype antibody (Cat# 1212A647) were obtained from AbD Serotec (Oxford, UK).
The APC anti-mouse CD206 (MMR) antibody (Cat# 141707) and the APC rat
IgG2a, κ isotype control antibody (Cat# 400511), FITC anti-mouse Ly6G/Ly-6C
(Gr-1) (Cat# 108406), FITC conjugate rat IgG2a isotype control, FITC anti-mouse
CD3/Gr-1/CD11b/CD45R(B220)/Ter-119 (FITC lineage cocktail) (Cat# 78022),
FITC Arm Hamster IgG/rat IgG2b/rab IgG2a isotype control (Cat# 78023), APC
anti-mouse CD140a (Cat# 135908), PE anti-mouse CD140a (Cat# 135905), PE rat
IgG1, κ isotype control (Cat# 553925) and APC/Cy7 anti-mouse Ly-6A/E (Sca-1)
(Cat# 108125), the APC/Cy7 rat IgG2a, κ isotype control (Cat# 400523), rat anti-
mouse F4/80 conjugated APC/Cy7 (Cat# 123117) antibodies were purchased from
BioLegend. Anti-mouse CD45 PE-Cy7 (Cat# 25−0451), PE-Cy7 rat IgG2a, κ
isotype control (Cat# 25−4321-81) and anti-mouse CD31 PE-Cy7 (Cat# 25−0311),
APC-eFluor 780 anti-mouse CD11b (47-0112-82) antibodies were purchased from
eBioscience.

For the immunohistochemistry experiments, the anti-human diphtheria toxin
receptor (anti-HB-EGF) antibody was obtained from Antibodies—online (Cat#
ABIN701052); the biotin anti-BrdU (Cat# 339809) and FITC anti-mouse F4/80
(Cat# 123107), APC/Cy7 anti-mouse F4/80 (Cat# 123107), the anti-TGFβ1
(Cat# sc-146), monoclonal anti-CD206 (Cat# sc-58987), and anti-rabbit perilipin
(Cat# sc-67164) antibodies were obtained from Santa Cruz Biotechnology
(Dallas, Texas); the anti-rabbit Phospho Smad2/3 (Cat# 8828) primary anitbody,
anti-rabbit p27 (Cat# 3698) primary anibody, goat anti-rabbit IgG (H + L),
alexa fluor® 555 conjugate (Cat# 4413), anti-rabbit alexa fluor 488 (Cat# 4413), and
goat anti-rat IgG (H + L) alexa fluor® 488 conjugate (Cat# 4413) secondary
antibodies were obtained from Cell Signaling Technology (Denvers, MA); and
goat anti-guinea pig IgG (H + L) alexa aluor® 488 conjugate (Cat# A11073),
donkey anti-rabbit IgG (H + L) alexa fluor® 488 conjugate (Cat# A21206)
secondary antibodies and and Click-iT® EdU alexa fluor® 647 Imaging Kit
(Cat# 10340) were obtained from Life technologies. Anti-rabbit Ki-67 antibody was
obtained from Abcam (Cat# ab15580) (Cambridge, UK). The anti-goat PDGFRα
antibody (Cat# GT15150) was purchased from Neuromics. Anti-GFP (guinea pig)
(Cat# GFP-GP-AF1180) were purchased from Frontier Institute Co.,Ltd. Cell
mask green plasma membrane stains were purchased from molecular probes by
Life Technologies, cat# C37608.

For the in vitro experiments, the Dulbecco’s modified Eagle’s medium was
purchased from GibcoTM Life Technologies, Japan (Tokyo, Japan); the MesenCult
MSC basal medium (Mouse), MSC proliferation supplement (mouse), and the
adipogenic stimulatory supplement (mouse) were purchased from STEMCELL
(Vancouver, Canada); the recombinant Interleukin-4 (IL-4) (Cat# 214-14) was
purchased from Peprotech (Rocky Hill, NJ); the prostaglandin E2 (PGE2)
(Cat# 363-244-6) was purchased from Caymen Chemical (Ann Arbor, Michigan);
the recombinant mouse TGFβ1 (Cat# 7666-MB-005), macrophage colony-
stimulating factor (M-CSF) (Cat# 416-ML-050), and the monoclonal mouse anti-
TGFβ1, 2, and 3 (Cat# MAB1835) were purchased from R&D Systems
(Minneapolis, MN); the TGFβRI/II inhibitor (LY2109761) (Cat# CS-0571) was
purchased from Chem Scene (Monmouth Junction, NJ).

Generation and maintenance of mice. To generate CD206DTR mice, we obtained
mouse BAC clone RP 24-377 D19 carrying a 152-kbp insert containing the exon
coding translational start Met and the upstream 133-kbp sequence of the CD206
gene from the BACPAC Resources Center CHORI (Oakland, CA). The plasmid
pTRECK6, which includes a noncoding exon and intron from rabbit β-globulin
gene, human HB-EGF (DTR) complementary DNA (cDNA), and rabbit β-globulin
and simian virus 40 polyadenylation signals, was kindly provided by Dr. Kenji
Kohno (Nara Institute of Science and Technology)50, 51. Using a Counter-selection
BAC modification kit (Cat# K002) (Gene Bridges, Dresden, Germany), we removed
6-bp nucleotides (5′-GTTATG-3′; ATG corresponding to translational start Met of

CD206) and inserted a 2.3-kbp fragment containing part of the noncoding exon
and intron of the rabbit β-globulin gene, DTR cDNA, and the polyadenylation
signals from pTRECK6 to yield the BAC vector pTg-CD206DTR. The purified
BAC DNA was microinjected into pronuclei of fertilized one-cell embryos from
C57BL/6 mice by UNITECH (Chiba, Japan). The transgenic founders were then
again backcrossed to C57BL/6 mice. The male F4 generations and beyond were
used for experiments to derive the data. Wild-type littermates were used as controls
in all the experiments.

To generate CD206-CreERT2 mice, we created the targeting construct.
The plasmid pCAG-CreERT2 was obtained from Addgene (# 14797). We replaced
the human DTR DNA fragment in the pTg-CD206-DT receptor BAC transgene17

with mutated estrogen receptor fused Cre recombinase (CreERT2) DNA
fragment in the pCAG-CreERT2 by using a Counter-selection BAC modification kit
(Gene Bridges, Dresden, Germany) to yield the pTg-CD206-CreERT2

(CD206-CreERT2)52. In one series of experiments, we crossed male CD206-
CreERT2 mice with female TGFβflox/flox to obtain CD206-CreERT2/ TGFβflox/flox.
Male CD206-CreERT2/ TGFβflox/flox and control littermate TGFβflox/flox were
administered tamoxifen (0.15 mg/gBW) for four consecutive days. Male Pdgfrα-
CreERT2-Egfp (PRa) mice were obtained from department of pathology,
University of Toyama53. Mice were maintained under standard 12 h light and dark
cycles. Male mice aged 8–12 weeks were used for all the experiments; the mice were
allowed ad libitum access to water and standard chow (Nosan Corporation,
Yokohama, Japan). For body weight and food intake measurements, the mice were
caged individually. All the animal studies were conducted at the animal facility
center of the University of Toyama. Animal care and procedures were approved by
the Animal Experiment Committee of the University of Toyama (Authorization
No. S2009 Med-41).

Genotyping. Whole genomic DNA was derived from the tail after lysing with
DirectPCR(Tail) lysing solution from Viagen (Los Angeles, CA), according to the
manufacturer’s instructions. This crude DNA was then used for PCR using the Tks
Gflex DNA Polymerase kit from TaKaRa (Shiga, Japan), according to the
manufacturer’s instructions and the following PCR conditions: one cycle of 95 °C
for 5 min, 35 cycles of 94 °C for 30 s, 60 °C for 30 s, and 72 °C for 30 s, and one
cycle of 72 °C for 7 min. The primers used for genotyping were purchased from
InvitrogenTM Life Technology (Tokyo, Japan) and had the following sequences:
primer 1, TGTATTCTTTGCCTTTCCCAGTCTC (CD206 primer); primer 2,
CCTCAA AACAGACTTACCCAATAGCTG (CD206 primer); primer 3,
AAGAGGAGACAATG GTTGTCAACAG (DTR specific primer). The PCR
products were subsequently separated using 1.5% agarose gel electrophoresis for
30 min. The DNA was visualized in the gel by the addition of ethidium bromide
(1:1000 dilution) to the gel solution. The expected sizes of the DNA fragments for
CD206 and CD206 DTR were 138 bp and 257 bp, respectively.

Realtime polymerase chain reaction (RT-PCR). Tissues for RT-PCR were
collected and preserved in RNA later solution from Ambion (Austin, Texas)
according to the manufacturer’s instructions. Tissue RNA was extracted using
an RNeasy kit, cat# 74106 (Qiagen, Hilden, Germany) and was reverse
transcribed using TaKaRa PrimeScript RNA Kit, cat# RR036A (Shiga, Japan),
according to the manufacturer’s instructions. Quantitative PCR of the genes
was performed using the TaqMan method (1 cycle of 50 °C for 2 min, 95 °C for
10 min, and 40 cycles of 95 °C for 15 s, 60 °C for 1 min) using premade primer sets.
The relative mRNA expression levels were calculated using the standard curve
method and were normalized to the mRNA levels of 18 S or TF2B. The SYBR
Green thermal cycling conditions were 1 cycle of 95 °C for 30 s, and 45 cycles of
95 °C for 10 s and 60 °C for 20 s. The relative mRNA expression levels were
calculated using the standard curve method and were normalized to the mRNA
levels of β-Actin or TF2B.

Diphtheria toxin injection. Diphtheria toxin was diluted with sterile PBS(−) to the
desired concentrations and was intraperitoneally injected at a dose of 3 ng/gram
body weight (low doses) 3–4 times every other day. The experiments and proce-
dures were performed 2 days after the last injection.

Western blot. Tissues for the western blot analysis were quickly frozen in liquid
nitrogen and preserved at −80 °C until utilization. The western blot analysis was
performed as described previously with a slight modification. Briefly, the tissues for
western blotting were homogenized in lysis buffer containing 25 mM Tris–HCl
(pH 7.4), 10 mM Na3VO4, 100 mM NaF, 50 mM Na4P2O7, 10 mM EDTA, 0.2%
leupeptin (5 mg/mL), 0.5% aprotinin (5 mg/mL), 2 mM phenylmethylsulfonyl
fluoride, and 1% Nonidet P-40 using a Multi-Beads ShockerTM cell disrupter. The
lysates were centrifuged to remove any insoluble materials. The lysates were mixed
with loading buffer before protein denaturation by boiling at 95°C for 3–5 min.The
protein lysates were run on 7.5% separating gels and transferred afterwards to
PVDF Immobilon-P transfer membranes (Millipore, Billerica MA). The mem-
branes were incubated overnight at 4°C for the primary antibody (1:1000 dilution)
and for 1 h at room temperature for the second antibody (1:2000 dilution) before
being subjected to a western blot detection reagent immediately before image
development.
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Immunohistochemistry. Paraffin-embedded tissues were cut 5-μm thick and
mounted on slides. Slide staining with the first and second antibodies was
performed according to the manufacturer’s instructions. A specific cell count was
performed for at least three randomly chosen 200 × magnification fields.
The average adipocyte size was measured by dividing the surface area of a
100 ×magnification field by the number of adipocytes. For BrdU staining, the mice
were injected with 2 mg of BrdU 2 h later, the mice were sacrificed and the tissues
were collected for immunohistochemistry.

In vitro immunohistochemistry was performed by growing the cells on an
18-mm round cover glass in 6-well dishes. The cover glasses were thin-coated with
rat tail Collagen I from GibcoTM Life Technologies Japan (Tokyo, Japan) before cell
culture. A cell specific count was performed in a 100 ×magnification field.

For frozen section, eWAT from mice collected in 4% PFA after systemic
perfusion. The tissues were kept at room temperature for 2–3 h. After that tissues
were incubated in PBS(−) for one overnight and 30% sucrose one overnight in
shaker at 4 °C. At the end the tissues were placed in block by adding OCT
compound and immediately kept block at −80 °C for at least 24 h to solidify it.
Then the frozen tissues were cut into 15–20 μm thickness by using cryostat. EdU
injection (20 nM/mice) was injected 2 and 96 h before sacrifice the mice. After
making the frozen block, immunofluoresence staining was performed by using
EdU Alexa 647 vs. anti-goat PDGFRa, 1:50 dilution (Neuromics) and anti-perilipin
1:50 dilution, ant-rat CD206, 1;50 dilution and anti-rabbit TGFβ, 1:50 dilution
followed by relevant secondary antibodies (1:250 dilution). All micrographs were
taken with Keyence BZ-8000, Olympus BX6, or TCS SP5 Leica confocal
microscopes (Oil 63×), and image processing was performed with the BZ-Analyzer
software.

Flow cytometry analysis. Isolation and separation of the SVF and subsequent
flow cytometry were performed as previously described34, 54, 55. Cells in the SVF
of eWAT, after exclusion of dead cells by gating with 7AAD, live cells were
selected for further analysis. M1-or M2-like macrophages were identified as
CD45-positive/ F4/80-positive/ CD11c-positive/ CD206-negative or CD45 positive/
F4/80-positive/ CD11c-negative/ CD206-positive cells, respectively (1:50 dilution).
The flow cytometry detection of the APs was performed similarly to a previous
method3, 56. First, negative selection of CD31+ (endothelial) (1:100), FITC-lineage
cocktail cells (1:100) were selected followed by positive selection of PDGFRα+
(1:50) and Sca-1+ cells (1:50). These experiments were performed with a FACSDiva
Version 6.1.2 automated cell analyzer (Becton Dickinson FACSCanto II) and cell
sorting was performed by an automatic cell sorting analyzer (Becton Dickinson
FACSAria SORP). Flow cytometry analysis for detection of BrdU intake was
performed after the mice were injected with BrdU (10 mg/kg body weight) 3–4
times every other day at the same time as the DT injections. The SVF preparation
and BrdU detection were performed using an FITC BrdU flow kit (BD
PharmingenTM; BD Bioscience, San Diego, CA) according to the manufacturer’s
instructions. Live cells were gated for CD45+ and CD45- population. Then
BrdU was analyzed in both fraction including CD45+BrdU+ and CD45−BrdU+

population. Data analyses were performed “offline” using FlowJo software.
Unstained specimen and isotype negative control were used for all relevant
samples to justify gating strategy. Fluorescence minus one (FMO) controls was
used wherever needed.

Magnetic activated cell sorting study. eWAT was dissociated into SVF to isolate
APs as previously described22, 54. The SVF were processed for magnetic sorting
with anti-CD31, anti-CD45 and anti-Sca-1 microbeads. MicroBead Kit mouse were
purchased from Miltenyi Biotech. First, negative selection with anti-CD31
microbeads (Cat# 130-097-418) and anti-CD45 microbeads (Cat# 130-052-301)
was conducted. This negative fraction was then incubated with an anti-Sca-1
microbead kit (FITC) (Cat# 130-092-529). The purified cells were subjected to
RNA extraction and qPCR analysis of cell proliferation markers. All incubations
and dilution were performed at 4°C for 10- 20 min according to the manufacturers’
instructions. The enriched (positive) fraction was then centrifuged and subjected to
RNA extraction and qPCR analysis.

In vitro co-culture. The BMDM and SVF were isolated as previously described10.
BMDMs were cultured in DMEM with the addition of M-CSF (100 ng/mL) for one
week and were induced with IL-4 (10 ng/mL) and PGE2 (50 ng/mL) 24 h before co-
culture with ASCs. The ASCs were derived from an iWAT SVF cultured with
complete MesenCult proliferation medium that was prepared and used according
to the manufacturer’s instructions (Stemcell Technologies, Cat# 05501). Briefly, for
the adipose stem cell proliferation, the SVF, after the red blood cell lysis, were
cultured with complete Mesencult proliferation medium, a combination of
Mesencult MSC basal medium and MSC stimulatory supplement (Stemcell
Technologies, Cat# 05502) in a 1:4 volume ratio, in a 10-mL dish with 1–2 million
cells per dish. 1 day after seeding, the old medium was changed to new medium to
remove the non-attached cells. The attached cells were grown to 60–70%
confluence before co-culturing with ASCs or for further re-seeding. To assess the
inhibitory effect of the BMDMs on ASC proliferation, a low number of BMDMs
and ASCs (15,000–30,000 cells) were seeded together in 6-well dishes to avoid cell
growth arrest because of early confluence. After 1–2 days of co-culture, the cells

were collected for PCR or used for immunohistochemistry. A TGFβRI/II inhibitor
and anti-TGFβ antibodies were added to the medium at final concentrations of 5
ng/mL, and 0.5 μg/mL, respectively, on the same day the ASCs and BMDMs were
seeded.

To assess the inhibitory effect of the BMDMs on adipogenesis, the ASCs and
BMDMs were cultured in equal numbers (100,000 cells) in 6-well dishes. ASCs
alone and ASCs with the addition of recombinant mouse TGFβ1 (5 ng/mL, final
concentration) were used as controls. Recombinant mouse TGFβ1 and a TGFβRI/II
inhibitor were added on the first day of co-culture in Mesencult complete MSC
stimulatory medium. After 2 days of confluence, the medium was changed to
Mesencult complete adipogenic stimulatory medium, which was a combination of
Mesencult MSC basal medium and Mesencult adipogenic stimulatory supplement
with a 1:4 volume ratio. Every 4–5 days, the medium was changed with new
complete stimulatory medium with the addition of new reagents (Recombinant
Mouse TGFβ1, TGFβRI/II inhibitor, and M-CSF). After 12 days of adipogenesis
induction, the cells were collected for PCR and Oil Red O staining (Thermo
Scientific, SC 00011) for adipocyte visualization.

Glucose tolerance test and insulin tolerance test. In the intraperitoneal
glucose tolerance test (IP-GTT), 6 h fasted DT-treated CD206DTR and
littermate were injected with glucose (1 mg/g BW) intraperitoneally. In the
intraperitoneal insulin tolerance test (IP-ITT), 2 h fasted mice were injected
intraperitoneally with human insulin 0.8 units/kg BW for NC-fed and 1.2 units/kg
BW for HFD-fed mice. Blood samples were then collected 0,15, 30, 45, 60, 90
and 120 min from the tail vein. The blood glucose levels were measured using the
STAT STRIP Express 900 (Nova Biomedical, Waltham MA). The serum insulin
levels were determined using the Mouse Insulin ELISA KIT (ARKIN-031,
Shibayagi, Shibukawa, Japan).

Hyperinsulinemic-euglycemic clamp study. Clamp studies were performed
on 16 weeks HFD-fed DT-treated CD206DTR and WT littemate under
conscious and unstressed condition after 6 h fasting as described previously57, 58.
A primed-continuous infusion of insulin (Humulin R; Lilly) was given
10.0 milliunits/kg/min for HFD-fed mice, and the blood glucose concentration,
monitored every 5 min, was maintained at ~120 mg/dl by administration of
glucose (50% glucose enriched to ~20% with 50% D2-glucose (Sigma) (4:1) ratio
for 120 min. Blood sample collected at 0, 90, 105, and 120 min for determination
of the rate of glucose disappearance (Rd), and hepatic glucose production (HGP)
was calculated as the difference between Rd and exogenous glucose infusion
rates (GIR)57.

Statistical analysis. Statistical analyses were performed using unpaired Student’s
t-tests or ANOVAs with the post Tukey–Kramer test and Bonferroni correction.
Differences were considered statistically significant at *P< 0.05, **P< 0.01. The
results are presented as the means ± SEM.

Data availability. The data supporting the findinds of the study are included in the
Figures and Supplementary Information or can be obtained from the authors upon
reasonable request.
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