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benefit from foraging theory.

The explore/exploit trade-off is relatively new to psychiatry
but already has a rich history in behavioral ecology and
computational neuroscience research. All organisms that
search for food or other resources make explore/exploit
decisions; thus, explore/exploit paradigms are excellent tools
for translational research. There is also strong experimental
support for the underlying neurobiology and neuroanatomy
that regulates these decisions. In contrast to many psychiatry
measures that rely on overall task summations of risky or
impulsive behaviors, advantageous explore/exploit decision-
making relies on trial-by-trial updates of reward value
estimates and flexible, adaptive behavioral changes in
response to environmental uncertainties (Sutton and Barto,
1998). Furthermore, mathematical modeling of these
explore/exploit decisions provides quantitative assessment
of underlying behavioral mechanisms. For these reasons, we
believe foraging, in general, and the explore/exploit trade-off,
in particular, can provide a powerful new framework for
understanding how disrupted decision-making mechanisms
contribute to psychiatric disorders (for review, see Barack
and Platt, 2016; Pearson et al, 2014; Stephens et al, 2007;
Stephens and Krebs, 1986). In this review, we provide a
beginner’s guide to the explore/exploit trade-off in four parts.
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Foraging is a fundamental behavior, and many types of animals appear to have solved foraging problems using a shared set of mechanisms.
Perhaps the most common foraging problem is the choice between exploiting a familiar option for a known reward and exploring
unfamiliar options for unknown rewards—the so-called explore/exploit trade-off. This trade-off has been studied extensively in behavioral
ecology and computational neuroscience, but is relatively new to the field of psychiatry. Explore/exploit paradigms can offer psychiatry
research a new approach to studying motivation, outcome valuation, and effort-related processes, which are disrupted in many mental and
emotional disorders. In addition, the explore/exploit trade-off encompasses elements of risk-taking and impulsivity—common behaviors in
psychiatric disorders—and provides a novel framework for understanding these behaviors within an ecological context. Here we explain
relevant concepts and some common paradigms used to measure explore/exploit decisions in the laboratory, review clinically relevant
research on the neurobiology and neuroanatomy of explore/exploit decision making, and discuss how computational psychiatry can
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First, we explain the concepts behind the explore/exploit
trade-off. Second, we describe the paradigms and parameters
used to measure explore/exploit decisions. Third, we review
recent research on the neurobiology and neuroanatomy of
explore/exploit decision making, followed by a review of its
application in psychiatric research. Finally, we discuss future
directions and how computational psychiatry can benefit
from foraging theory.

WHAT IS THE EXPLORE/EXPLOIT TRADE-OFF?

Imagine lunch time has arrived and you must make a
decision about what to eat. You can go to the nearby deli and
order your usual sandwich, or you could try the new
restaurant that just opened next door. What should you do?

Foraging is easily understood as the search for food, but it
also encompasses a broad range of behaviors that support
survival. All mobile animals must forage for resources—such
as food, shelter, and mates—in the face of environmental
uncertainty and limited abundance. One important problem
faced in foraging is the explore/exploit trade-off, which is the
decision between choosing a familiar option with a known
reward value or choosing an unfamiliar option with an
unknown or uncertain reward value. This unfamiliar option
may be more or less valuable than your familiar option, but
either way there are time and energy costs that must be paid
for this information. Exploring a new restaurant means
spending time and money on food before you know how
much you like it. For other animals, exploring new territory
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means spending time and energy looking for food that might
not be found there.

This raises a fundamental question: when is the right time
to assume this risk and explore? Efficient performance (ie,
maximizing the rate of rewards obtained and minimizing the
costs—such as time, effort, or money—expended to obtain
them) is a careful and deliberate balance between exploration
and exploitation. Exploitation maximizes rewards in the
near-term, while the information obtained during explora-
tion can later be used to maximize rewards in the long-term
(Barack and Gold, 2016). In an uncertain and changing
environment, where values of all potential options are
unknown and/or the values of these options change over
time, one must adapt by flexibly alternating between
exploration and exploitation in order to maintain efficient
performance over time and to keep track of the state of the
environment.

This duality raises a question of whether explore/exploit
decisions are qualitatively different. Exploratory decisions
could be separate processes in which automatic, exploitative
decisions are actively suppressed in order to consider other
possibilities. Alternatively, explore/exploit decisions could be
better described as extreme ends of a continuous scale
(Berger-Tal et al, 2014; Cohen et al, 2007), too much
exploitation could promote habit formation (Beeler et al,
2014), and too much exploration may result in an individual
who is ack of all trades, but master of none’. When explore/
exploit decisions are balanced, the uncertainty of exploration
can be reduced by exploiting information or past experience
with similar options; for instance, patronizing a new
restaurant that serves a particular cuisine that you have
enjoyed in the past. There may be externally or internally
driven biases towards the exploratory or exploitative end of
the continuum. For instance, in the summer months when
food is abundant, a forager should spend more time
exploring potential food sources; this information will then
be exploited in the winter months when food is scarce. In
addition, for many species, adolescence is marked by a
period of increased risky, exploratory behavior (eg, Laviola
et al, 2003); knowledge gained from these formative
experiences will be exploited later in adulthood (also see
Mata et al, 2013). Personality traits may also bias an
individual’s decisions and may even influence their career
choice (eg, Laureiro-Martinez et al, 2014), and society
benefits from this diversity. Extreme biases in explore/exploit
decisions may be advantageous if these behaviors are
adaptations to the environment. Otherwise, extreme biases
are (most likely) disadvantageous, and may be a symptom of
an underlying psychiatric disorder, such as addiction. See
Figure 1.

The explore/exploit trade-off is a broad problem faced by
foragers, and this trade-off can be influenced by solutions to
more specific problems, such as prey selection, time horizon,
and patch leaving. For example, patch leaving refers to the
decision to leave one patch of food in search of another
patch, given that sources of food clump together in unevenly
distributed patches and the value of a patch decreases as the
forager consumes the food there (for review, see Stephens
and Krebs, 1986). Importantly, optimal solutions to these
foraging problems can be mathematically predicted, and
extensive research has shown that animals conform to these
predictions (with some exceptions, see Constantino and
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Figure I  Conceptual overview of the explore/exploit trade-off. Decisions

may vary along a continuum between exploration and exploitation with the
most advantageous behaviors occurring around a point of balance between
the two. Around this balance, there may be slight externally or internally
driven biases towards one decision vs the other. Extreme exploitative or
exploratory decisions that are not adaptations to the environment may be
disadvantageous, leading to either inefficiency and lack of expertise
(ie, overly exploratory) or habit formation and motivational deficiencies
(ie, overly exploitative).

Daw, 2015; Hayden et al, 2011; Charnov, 1976; Stephens and
Krebs, 1986; Stephens and Dunlap, 2011). Therefore, it is our
opinion that foraging models tap into a deep neurobehavior-
al decision-making schemata pertinent to the health and
fitness of an individual.

HOW ARE EXPLORE/EXPLOIT DECISIONS MEASURED
IN THE LAB?

There are three behavioral paradigms that have been widely
used in research on explore/exploit decisions. The most
common is the n-armed bandit task, based on the n-armed
bandit learning problem. The n-armed bandit is analogous to
a slot machine (ak.a. one-armed bandit) with »n levers
(Gittins and Jones, 1974). For instance, a 4-armed bandit task
(Daw et al, 2006), presents four options (ie, slot machines)
and the player is free to select any one of them. After an
option is selected, the reward value (ie, points) for that
option on that trial is shown briefly and the next trial begins.
Option values are non-stationary, that is, the values of each
option change gradually and independently of one another.
Players learn the current value of an option by selecting it,
and they must continually balance exploiting the option with
the highest expected value with exploring lesser-known
options in order to track their relative value and ensure
exploitation of the best option. Option values are pre-
determined by an algorithm in which they drift around a
specified mean using a fixed standard deviation for step size.
The underlying option values across the trials are pre-
determined and identical for each player. See Figure 2.

A variant of the bandit task is the 2-armed ‘leap frog’ task
(Knox et al, 2011). Here, there are two options, one option
always has higher rewards than the other, and the value of
each option is revealed after its selection. There is a fixed
probability on each trial that the option with the smaller
reward can increase in value, thereby becoming the better
option. Since the relative values of the two options change
over time, the player chooses between selecting the option
with the highest known reward and sampling the alternative
to see whether its value is now the greater of the two.
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Figure 2 Design of the 4-armed bandit task. (a) In each trial, four options (ie, slot machines) are presented. The player selects one option, then the rewards
(ie, points) paid off for that option on that trial are shown. (b) Example of the latent value structure of the options across trials. The value of each option
changes gradually and independently of the other options. Based on the decision rule described in Daw et al (2006), exploratory choices made by a player are
marked with closed circles and exploitative choices are marked with open squares.

A third task that has been used frequently is the clock task
(Moustafa et al, 2008). Here, players are shown a clock face
with a hand that makes a clockwise rotation over a 5s
window. In each trial, players must choose when to stop the
hand to obtain a reward of unknown value, which is revealed
after the choice has been made. The exploration of reward
values involves selecting different time points within the 5 s
rotation. Players are aware that the reward values available
for different time points are fixed across the 50 trials, but
they must learn experientially how reward probability and
magnitude vary as a function of time. However, unlike the
non-stationary option values of the bandit task, the option
values in the clock task are fixed across trials; thus, the clock
task cannot capture the transition from exploitative to
exploratory choices precipitated by trial-to-trial changes in
option value. One limitation of the clock task is that choices
are classified as exploratory or exploitative based on the
difference between previous trial and current trial response
times, with larger differences inferred as exploratory
decisions. Unfortunately, this means that exploratory deci-
sions may be more likely to arise from decision noise than in
other types of tasks.

These tasks and others used to measure explore/exploit
decisions (eg, Constantino and Daw, 2015; Costa et al, 2014;
Wilson et al, 2014; Glass et al, 2011) all share several
common features, including multiple options to choose
from, an a priori unknown reward structure, the opportunity
to select options other than that with highest immediate
value (ie, exploration), and the need for experiential learning
to make predictions about current and future reward values.
Importantly, for each option there is a trade-off between (1)
information gathering to reduce uncertainty and (2)
opportunity cost. Ultimately, the explore/exploit trade-off is
a problem of behavioral allocation—what to do right now—
with the intended goal of efficient performance in the long-
term. Analysis of data from explore/exploit paradigms relies
on mathematical modeling of trial-by-trial changes, and this
modeling is an important difference from other behavioral
tasks used in psychiatry research. For example, the Iowa
gambling task has four options to choose from, and each
option has a different overall value, which is similar to a

bandit task. However, the gambling task analysis averages the
number of selections for each option, without regard to the
changes in trial-by-trial values that affect the behavioral
schedule (Bechara et al, 1997). Conversely, explore/exploit
decisions are not necessarily identified with the selection of a
certain fixed option; rather, they require an ongoing
evaluation of reward values—meaning that an option
considered exploitative at one moment in time might
represent an exploratory option in the future. As a result,
models from the reinforcement learning (RL) literature are
used to fit players’ choice behavior (Sutton and Barto, 1998;
Rushworth and Behrens, 2008); the parameter values
inferred for these models then become measures of
individual differences.

A key parameter in these models is the ‘temperature’ or
‘softmax gain,” which controls the premium placed on the
option with the highest current value. Thus, higher ‘gain’
reflects a stronger tendency to choose the option with the
highest previously experienced payoff (ie, exploitation),
whereas lower ‘gain’ reflects a tendency to deviate from this
tendency (ie, exploration). Based on this decision rule, a trial
in which a player chooses the option with the highest
expected value can be classified as ‘exploitative’, all other
trials can be classified as ‘exploratory’ (Daw et al, 2006). A
second key parameter is the learning rate, which determines
how much prior beliefs determine choice, or the degree by
which expectations are updated by the prediction error (ie,
the difference between the expected and the actual outcome).
A subject’s learning rate should be balanced between two
extremes of too much influence of prior beliefs or none at all.
Each individual’s ‘gain’ and learning rate (among other
parameters) influences their explore/exploit tendencies.

WHAT DO WE KNOW ABOUT THE EXPLORE/EXPLOIT
TRADE-OFF?

The last general review of explore/exploit research was
conducted by Cohen et al in 2007, and many more studies
have been published in the past 10 years. Here, we present an
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update based on a select review of recent literature, with a
focus on clinical applications of the explore/exploit trade-off.

Temporal Stability of the Environment

Not all exploratory decisions are information seeking,
sometimes they are the result of random decision noise
leading to exploration by chance. A study by Wilson et al
quantified the contributions of these two strategies by
modeling decisions in both a short and a long time horizon
for decision making. After four forced-choice trials of a
2-armed bandit task, in which either equal or unequal
information was given about the two options, participants
made either one (short horizon) or six (long horizon) free-
choice trials. The authors reported that participants were
more information seeking and had higher decision noise
with the longer horizon, suggesting that humans use both
strategies to adapt their decision-making strategy to the
temporal statistics of the environment (Wilson et al, 2014).

This evidence implies that agents can adjust information-
seeking behavior according to the temporal stability of the
environment. Theoretically, environmental factors like
volatility can also affect the learning rate. In a stable
environment in which knowledge of the distant past is
relevant to the present, the learning rate should be small;
conversely, in a rapidly changing, volatile environment, the
learning rate should be larger. This hypothesis was tested by
manipulating the environmental stability in a 2-armed
bandit task (Behrens et al, 2007). In this version, the two
options had different probabilities of reward. Players first
experienced a stable environment in which one option
always had a higher probability, followed by a volatile
environment in which the options switched between high
and low probability every 30-40 trials. Players displayed
higher learning rates in more volatile environments (Behrens
et al, 2007). The stability/volatility of the environment, in
addition to how recently options have been sampled, also
affects the decision to explore or exploit. Actors should be
inclined to explore in volatile environments when options
have not been sampled recently. In support of this, Knox
et al reported that players in a leapfrog task made more
exploratory decisions as the environmental volatility in-
creased (Knox et al, 2011).

Conservation Across Species

One of the strengths of the explore/exploit trade-off is the
conservation of behavior across species, making translational
studies possible. Shared behavior across humans and
nonhuman animals is consistent with deep homology in
the underlying circuitry, making preclinical, translational
studies possible (Pearson et al, 2014). Two studies have
compared explore/exploit performance in humans and other
species. In the first study, Pearson et al administered a
4-armed bandit task to macaques and humans. The two
species performed the task comparably well, and both
humans and macaques made exploratory decisions about
25% of the time. However, human behavior was best fit by a
model suggesting they possessed more accurate estimates of
the task parameters. For instance, humans possessed a longer
memory window, which improved the value estimates of
options not chosen recently (Pearson et al, 2009). In the
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second study, Racey et al administered a stationary 8-armed
bandit task to pigeons and humans. In their version of the
task, rewards were administered at variable intervals and
reward values assigned to each option were fixed within a
session, but differed between sessions. Both humans and
pigeons were sensitive to the change in values within each
session and preferentially chose the option with the highest
value, although humans learned more quickly about changes
in value structure (Racey et al, 2011).

Neurobiology

There is extensive evidence that phasic midbrain dopamine
(DA) encodes reward prediction errors (Schultz and
Dickinson, 2000), which is a basic element of RL that can
guide explore/exploit decisions. There is also evidence that
tonic DA is involved in explore/exploit decisions in other
ways, such as the regulation of effort expenditure in food-
related foraging. Studies have shown that effort-based choice
behavior is regulated by DA in the nucleus accumbens
(Salamone et al, 2006, 2009). In particular, rats with DA
depletion in the accumbens were more sensitive to work-
related response costs and less likely to trade high levels of
work for food (Salamone et al, 2001). Conversely, DA
transporter knock-down mice, which have elevated extra-
cellular DA and increased tonic DA-firing activity, were
more exploratory and less sensitive to work-related response
costs, even though their increased effort did not increase the
likelihood of receiving food rewards (Beeler et al, 2010).
Based on this work, DA has been proposed to modulate
behavioral energy expenditure along two axes: (1) a
conserve-expend axis that regulates activity levels and (2)
an explore-exploit axes that regulates the coupling of activity
to reward (Beeler et al, 2012). Increased tonic DA function is
thought to promote energy expenditure and exploration
while decreased tonic DA function favors energy conserva-
tion and exploitation; thus, DA interfaces between the
internal and external environments and helps match
behavioral energy expenditure to the external environmental
energy economy (Beeler et al, 2012).

DA receptor subtypes in the prefrontal cortex (PFC) also
influence behavioral components of explore/exploit deci-
sions, such as working memory, risk preference, and
behavioral flexibility (for review, see Floresco, 2013). Both
too much and too little D1 receptor activity can impair
working memory, which could reduce the learning rate
component of explore/exploit decisions (ie, reduce the
influence of prior beliefs on choice), and increased D1 and
D2 receptor activity reduces perseverative errors and
improves behavioral flexibility, perhaps by strengthening
the signal indicating changes in reward contingencies
(Floresco, 2013). Furthermore, infusions of selective D1 or
D2 receptor antagonists in the medial PFC of rats have been
shown to have distinct effects on risk preference: D1
antagonists decreased preference for the large-magnitude/
high-risk option, perhaps due to increased sensitivity to
negative feedback. Conversely, D2 antagonists increased
preference for the large-magnitude/high-risk option (St.
Onge et al, 2011). This suggests that DA receptors in the
medial PFC help monitor changes in reward probabilities,
which supports the behavioral-flexibility component of
explore/exploit decisions.



Additional evidence for the role of DA in explore/exploit
decisions comes from human genotyping for COMT (Blanco
et al, 2015; Frank et al, 2009). The COMT (Catechol-O-
methyltransferase) gene modulates DA levels in the PFC,
with Met allele carriers having lower COMT enzyme activity
and higher DA levels compared to Val/Val homozygotes. An
early study found that individuals with lower COMT enzyme
activity associated with the Met/Met genotype had greater
exploration in the clock task than those with Met/Val or
Val/Val genotypes (Frank et al, 2009). Although a later study
did not replicate this result, it found that the COMT
inhibitor tolcapone increased exploratory choices in Met/
Met, but not Val/Val subjects (Kayser et al, 2015). A third
study found no difference in the rate of exploration between
Met/Met, Val/Met or Val/Val subjects in the leapfrog task,
although Met carriers were more likely to be best fit by the
Ideal Actor model (which reflexively updates beliefs and
plans ahead to maximize long-term rewards) and Val/Val
carriers were more likely to be best fit by Naive RL (which
values options based only on the rewards experienced so far)
(Blanco et al, 2015).

The locus coeruleus (LC) norepinephrine system has also
been proposed to regulate explore/exploit trade-off (Aston-
Jones and Cohen, 2005). The phasic LC mode (ie, activated
due to presynaptic activity) is thought to optimize perfor-
mance in the current task (ie, exploitation), while the tonic
mode (ie, steady action potential firing at a constant
frequency) is thought to facilitate the disengagement of
attention from the current course of action and redirect it to
processing of other actions (ie, exploration).

Under constant illumination, pupil diameter is correlated
with LC activity and may be an indirect measure of tonic LC
firing rate (for review, see Jepma and Nieuwenhuis, 2011).
One study showed that baseline pupil diameters preceding
exploratory choices in a 4-armed bandit task were larger than
those preceding exploitative choices, and individual differ-
ences in baseline pupil diameter predicted exploratory
choices (Jepma and Nieuwenhuis, 2011). However, the acute
administration of reboxetine (a selective norephinephrine
reuptake inhibitor) did not affect explore/exploit decisions
on the 4-armed bandit task (Jepma et al, 2010).

A recent study investigated the role of acetylcholinergic
(ACh) transmission on explore/exploit decisions using
nicotinic ACh receptor (nAChR) $2* knockout mice. The
p2 subunit influences DA activity in the ventral tegmental
area and is involved in value-based decisions. Using a spatial
version of a 3-armed bandit task and intra-cranial self-
stimulation as reward, the 2 knockout mice made fewer
exploratory choices than wild-type mice. This suggests a role
for f2*-nAChRs in translating expected uncertainty into
motivational value and exploratory decision making (Naude
et al, 2016).

Neuroanatomy

Functional neuroimaging studies have investigated the
neuroanatomy that subserves explore/exploit decision mak-
ing (Addicott et al, 2014; Boorman et al, 2009; Daw et al,
2006; Laureiro-Martinez et al, 2014). Compared to exploi-
tative choices, exploratory choices activate the frontopolar
cortex and the intraparietal sulcus (Addicott et al, 2014;
Boorman et al, 2009; Daw et al, 2006; Laureiro-Martinez
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et al, 2014). The frontopolar cortex is thought to subserve
switching between behavioral options while maintaining
other options in working memory (Boorman et al, 2009;
Koechlin and Hyafil, 2007). The intraparietal sulcus is
thought to subserve behavioral responses (ie, button-press
actions), interface between frontal areas and motor output
(Daw et al, 2006), support mental calculations (Dehaene
et al, 2003) and support decision-making during uncertainty
(Huettel et al, 2005). Two studies have also reported
activation in the brain stem, possibly the LC (Addicott
et al, 2014; Laureiro-Martinez et al, 2014). Given the spatial
limitations of functional neuroimaging, it is uncertain
whether this activation stems from the LC, but if it did,
this would support the idea that the LC helps regulate
exploratory decisions (Aston-Jones and Cohen, 2005).

Compared to exploratory choices, exploitative choices
activate a lesser extent of brain regions, and exploitative
activation has been inconsistent across studies. One study
reported activation in the bilateral temporal lobes, including
the middle and superior temporal gyri, planum temporale,
and left angular gyrus (Addicott et al, 2014); while another
study reported activation in the medial PFC, hippocampus,
and middle temporal gyri (among other regions) (Laureiro-
Martinez et al, 2014).

Given the significance of the frontopolar cortex to
exploratory decision making, Kovach et al administered a
4-armed bandit task to patients with frontopolar lesions and
to patients with control lesions. Unexpectedly, patients with
frontopolar lesions were not grossly impaired in overall task
performance or exploratory switching, although a model-
based analysis of learning revealed a selective deficit in
frontopolar lesion patients’ ability to use the most recent trial
outcomes to make decisions (Kovach et al, 2012). This
suggests that the frontopolar cortex subserves the extrapola-
tion of trends in reward value based on recent reward
history.

Evidence from a lesion study in monkeys suggests that the
frontopolar cortex is specialized for disengaging executive
control from the current task in order to explore new
opportunities (Mansouri et al, 2015). Another investigation
of the role of the frontopolar cortex used anodal and cathodal
transcranial direct current stimulation on this cortical region
during a modified 3-armed bandit task (Beharelle et al,
2015). Compared to baseline performance, anodal (excita-
tory) stimulation increased the number of exploratory
decisions and cathodal (inhibitory) stimulation decreased
the number of exploratory choices. Furthermore, the
estimated rewards of the highest-paying option became less
influential in driving the more exploratory anodal group’s
choices, but had a stronger effect on the choices of the more
exploitative cathodal group. The authors suggest that the
increased exploration in the anodal stimulation group
reflected an increased responsiveness to previous lower-
than-expected outcomes of exploitative choices, whereas the
increased exploitation in the cathodal group related to a
weaker influence of recent prediction errors and a stronger
focus on the current monetary reward of the highest-paying
option (Beharelle et al, 2015).

The frontopolar cortex shares a neuroanatomical link with
the posterior cingulate cortex (PCC), and these two regions
are often activated or deactivated together while subjects
perform tasks (reviewed in Mansouri et al, 2015). Likewise,
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the PCC is also implicated in altering behavior in response to
unexpected changes in reward. In an electrophysiological
study conducted in macaques performing a 4-armed bandit
task, firing rates of PCC neurons signaled single-trial reward
outcomes and also predicted the probability of shifting
between explore/exploit decisions. PCC neurons were also
sensitive to reward, risk, and switching options (Pearson
et al, 2009). This suggests that increased activity in the PCC
reflects a change in either environmental structure or
internal state and promotes flexibility, exploration, and
renewed learning (Pearson et al, 2011).

Psychiatry Research

There is a small yet growing literature investigating the
relationship between addiction and explore/exploit decisions.
One study administered a 6-armed bandit task to tobacco
smokers and nonsmokers. Smokers made fewer exploratory
choices in the first 300 trials and had a higher learning rate,
indicating that smokers were more sensitive to the most
recent value of each option (Addicott et al, 2012). A later
study revealed a relationship between smoking dependence
motives and brain activation while smokers performed the 6-
armed bandit task. After controlling for nicotine tolerance,
there was a relationship between automaticity (ie, habitual
smoking) and exploratory brain activation in the bilateral
postcentral and supramarginal gyri of the parietal cortices.
This suggests that as smoking becomes more automatic,
more cognitive effort is necessary for exploratory decision
making (Addicott et al, 2014). Harle et al administered a
2-armed bandit task with probabilistic rewards to
methamphetamine-dependent participants and healthy con-
trols (Harle et al, 2015). Although both groups showed
similar overall performance based on earned points,
methamphetamine-dependent participants were less likely
to use a learning-supported strategy (ie, using estimated
reward values) and instead simply paid attention to the
previous trial outcome. Although explore/exploit decisions
were not modeled, this result is consistent with research
suggesting that methamphetamine-dependent individuals
are impaired in learning and updating their knowledge of
the environment and generally have difficulties ‘seeing the
big picture’ (Harle et al, 2015). Most recently, Morris et al
(2016) administered the clock task to participants with
alcohol use disorder, binge-eating disorder, and healthy
controls. The participants with alcohol use disorder dis-
played more repetitive or exploitative decisions rather than
strategic exploratory decisions, but the participants with
binge-eating disorders did not differ from healthy controls
(Morris et al, 2016).

Addictive drugs produce reinforcing effects via rapid,
transient increases in DA that mimic phasic DA signals.
Chronic exposure to these drugs diminishes DA function
(Thiruchselvam et al, 2016) leading to changes in motivation,
and the subsequent hypodopaminergic state results in
decreased sensitivity to natural rewards and anhedonia.
Drug use is then perpetuated as a compensatory mechanism
(Volkow et al, 2010; Epstein and Silbersweig, 2015). The
hypothesis by Beeler et al (2012) suggests that the acute use
of a dopaminergic drug would promote exploration and
energy expenditure while chronic use would promote
exploitation and energy conservation. The findings of greater
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exploitation in drug dependent samples by Morris et al
(2016) and Addicott et al (2012) appear to support this
hypothesis.

Other studies have investigated the effects of specific
psychiatric symptoms on explore/exploit decisions, including
anhedonia, anxiety, and depression. Symptom scores for
anhedonia negatively correlated with the extent of explora-
tory choices made during a clock task among participants
with schizophrenia, suggesting a possible deficit in learning
to pursue actions with high reward probability or a
preference for maintaining the status quo (Strauss et al,
2011). High trait anxiety was associated with a reduced
ability to update outcome expectations between stable and
volatile environments in an aversive 2-armed bandit task,
suggesting a specific deficit in adjusting learning rate to
changes in environmental volatility (Browning et al, 2015).
Participants with depressive symptoms deviated from the
optimal strategy by exploring when they should have been
exploiting and exploring more frequently on exploit-optimal
trials on the leapfrog task, possibly due to reduced working
memory capacity or decreased sensitivity to changing reward
contingencies (Blanco et al, 2013). Finally, among individuals
with a tendency towards mood instability, a large unexpected
gain or loss influenced their subsequent preference for
familiar and unfamiliar options in a 3-armed bandit task,
suggesting a biased perception of the subjective value of
reward (Eldar and Niv, 2015). Although different paradigms
were used, these results demonstrate how explore/exploit
decisions and their component processes (eg, learning rate)
can be affected by emotional dysregulation.

CONCLUSION

The circuitry mediating explore/exploit decisions evolved to
help us survive in the natural world. These decisions
represent adaptive behavioral responses to changes in the
environment and can be quantified using mathematical
modeling. An important goal of computational psychiatry, e,
the application of computational neuroscience to the study of
mental disorders, is to identify component processes of
transdiagnostic behavioral endophenotypes (Wang and
Krystal, 2014; Friston et al, 2014; Adams et al, 2016). In
accordance with this goal, the explore/exploit trade-off
provides value to psychiatry research by measuring compo-
nent processes of the positive valence and cognitive systems
within the Research Domain Criteria (RDoC). The RDoC is
an initiative sponsored by the National Institutes of Mental
Health to understand dimensions of psychological function
rather than diagnoses of heterogeneous disorders (NIH,
2016). The explore/exploit trade-off encompasses the com-
ponent processes of cognitive control, working memory,
effort valuation, and action selection. Dysregulations in
action selection could lead to habitual behaviors, such as
drug addiction, which are pathological expressions of
processes than normally subserve adaptive goals. Addiction
research, in particular, could benefit from formal quantita-
tive measures of action selection, since addicts go to great
lengths to obtain their preferred drug, and overcome many
obstacles and constraints, both behavioral and economic, to
do so at the expense of other (perhaps less certain) non-drug
rewards (Salamone et al, 2006, 2007, 2009). Research on



explore/exploit decisions can also inform the neural basis for
anhedonia, motivational deficits, and apathy shown in
depression and other psychiatric disorders (Salamone et al,
2006, 2007, 2009). Furthermore, studying explore/exploit
decisions in the context of foraging behavior combines
computational psychiatry with evolutionary psychiatry,
which considers the evolutionary function of emotions and
behaviors (Nesse, 1984).

Previously, Adams et al (2012), argued for a ‘bottom-up’
neurobiological decision-making schemata conserved across
species. The authors describe how problems, such as patch
leaving, are solved similarly across different animal taxo-
nomies. This suggests that natural selection has favored
simple, repeated design patterns capable of being imple-
mented by many biological configurations (Adams et al,
2012). This argument supports the idea that these decision-
making computations and the circuits that embed them are
applied to other behavioral-flexibility challenges. Thus, many
behavioral impairments, such as addiction or problem
gambling, may result from dysfunction in these basic,
common foraging mechanisms. For example, patch leaving
choices made by humans and other animals are consistent
with outcomes predicted by the marginal value theorem
(Charnov, 1976; Constantino and Daw, 2015), and neurons
in the dorsal anterior cingulate encode the relative value of
leaving a diminishing-value patch for a new one (Hayden
et al, 2011). Importantly, research with patch leaving
paradigms suggests that some cognitive fallacies, like the
belief in ‘winning streaks’, may be due to instinctive
psychological expectations that evolved while foraging in
patchy environments (Wilke and Barrett, 2009). Altogether,
foraging theory can provide new ways of understanding
healthy decision making and open new avenues for
investigating abnormal psychiatry.

Traditional behavioral measures used in psychiatry
research have shown that individuals with substance
dependence are more prone to risk-taking (ie, spending
time, effort or money on an uncertain outcome) and
impulsivity (ie, preference for short-term rewards over
long-term rewards) than healthy individuals (for review,
see deWit, 2009; Verdejo-Garcia et al, 2008). Presumably, the
behaviors measured with risk-taking or impulsivity para-
digms are inherently disadvantageous and represent a lack of
self-control. However, within the explore/exploit trade-off,
these behaviors can be understood as advantageous in the
short- and long-term depending on the environmental
context, and the flexibility to adapt advantageously to
changes in the environment is critical. For example, when
acorns are plentiful and the weather is warm, squirrels will
bury nuts to exploit them later rather than eating them all
right away. However, in the cold winter months, squirrels
must consume more calories to stay warm and a delayed
meal could be deadly. Similarly, saving for retirement is not a
practical use of resources for someone struggling to provide
food for their family every day.

The decision between delaying a reward to maximize long-
term survival or enjoying it immediately is not necessarily a
contest between a ‘top-down’ prefrontal control system and a
‘bottom-up’ striatal impulsive system, where delay discount-
ing is always disadvantageous. Rather, it is an interplay of
environmental pressures, biological needs, and brain chem-
istry that serves to flexibly adapt behavior to support
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survival. Risk-taking and impulsivity can be advantageous
if they help the individual adapt to changes in environmental
uncertainty. Self-report questionnaire data may lead to the
conclusion that risk attitudes are stable personality traits, but
risk-taking behavior has been shown to be dynamically
modulated by the environmental context and the past action-
outcome sequence of events. For example, in a foraging game
players became less risk averse as the remaining opportu-
nities to earn points decreased (as the horizon for decision
making was approached) (Kolling et al, 2014). Furthermore,
another study showed that reward-based decision making
under risk is better explained by homeostatic principles (ie, a
combination of avoiding ‘starvation’ and the expected value
of the outcome) than by standard economic models, which
underscores the importance of factoring survival instincts
into human decision making (Korn and Bach, 2015; but also
see Kacelnik and El Mouden, 2013). The explore/exploit
trade-off provides a neutral framework for investigating
these behavioral components, and future research on risk-
taking and impulsivity should take into account the stability
of the individual’s environment.

Although the findings reviewed above support the utility of
explore/exploit trade-off to investigate the underlying neural
mechanisms of reward-based decision making, interpreting
the existing evidence is difficult due to the heterogeneity
of methods and concepts across studies. Research in
computational neuroscience has developed a number of
measures and behavioral models to assess explore/exploit
decision making, but this work is not readily translatable into
psychiatry research. In particular, more replication of results
is needed. A current limitation to replication is the variety of
explore/exploit measures. We described the three most
common paradigms developed to study explore/exploit
decisions: the bandit task, the leapfrog task, and the clock
task; but many more have been reported (eg, Constantino
and Daw, 2015; Costa et al, 2014; Glass et al, 2011; Wilson
et al, 2014). Even within measures, changes in the number of
options (eg, 2- or 4-armed bandit tasks), reward values, and
the predictability of these values can affect behavioral
outcomes. In order to move forward in psychiatry research,
there needs to be a standardized measure of explore/exploit
decisions that is a reproducible and valid measure of real-
world decision making, in addition to a behavioral model, or
set of models, that can provide a mathematical characteriza-
tion of parameters in normal and abnormal psychiatric
populations. Ultimately, clinical cut-offs for extreme ends of
the behavioral spectrum (ie, too much exploratory or too
much exploitative choices) or a behavioral flexibility
impairment could be defined and provide a new context
for understanding psychiatric disorders.

Explore/exploit paradigms have already shown potential
for distinguishing between people with and without psy-
chiatric disorders. In particular, several studies suggest that
addictive disorders are associated with reduced exploratory
and increased exploitative decisions. This would indicate a
preference in behavioral planning for the near-term and a
preference for familiar, expected rewards over unfamiliar
and/or unknown rewards. Furthermore, studies linking
addiction to low levels of DA function (Volkow et al, 2004)
are consistent with the proposal that decreased tonic DA
function favors energy conservation and exploitation (Beeler
et al, 2012). Future work could investigate this by comparing
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the ratio of explore/exploit decisions to DA receptor
availability among substance addicted individuals.

Most importantly, more research is needed comparing the
sensitivity of explore/exploit paradigms for detecting group
differences, compared to traditional behavioral measures
used in psychiatry research. In particular, explore/exploit
and other foraging paradigms need to be tested against
existing behavioral tasks to determine the best predictor of
group differences, symptom severity, neural dysregulation,
and therapeutic treatment outcomes. For example, Addicott
et al reported that individuals who gambled frequently made
more exploratory choices on a 4-armed bandit task, although
there were no differences across groups on other assessments
of risky or impulsive behavior (eg, balloon analog risk task)
(Addicott et al, 2015). It is our belief that foraging paradigms
can provide new insights into psychiatric disorders, but first
these paradigms must be incorporated into new and ongoing
studies in a diverse field of research. We hope that this
primer on the explore/exploit trade-off will encourage more
psychiatry researchers to add explore/exploit or other
foraging paradigms to their battery of behavioral tasks.
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