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Abstract

Computational tools are widely used for ranking and prioritizing variants for characterizing their 

disease relevance. Since numerous tools have been developed, they have to be properly assessed 

before being applied. Critical Assessment of Genome Interpretation (CAGI) experiments have 

significantly contributed towards the assessment of prediction methods for various tasks. Within 

and outside the CAGI, we have addressed several questions that facilitate development and 

assessment of variation interpretation tools. These areas include collection and distribution of 

benchmark datasets, their use for systematic large scale method assessment, and the development 

of guidelines for reporting methods and their performance. For us, CAGI has provided a chance to 

experiment with new ideas, test the application areas of our methods, and network with other 

prediction method developers. In this article, we discuss our experiences and lessons learned from 

the various CAGI challenges. We describe our approaches, their performance, and impact of CAGI 

on our research. Finally, we discuss some of the possibilities that CAGI experiments have opened 

up and make some suggestions for future experiments.
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INTRODUCTION

Numerous genetic variants are known to be involved in diseases. The disease relevance of 

the majority of variants identified in exomes and complete genomes remains elusive. Each 

exome is estimated to code for about 11,000 amino acid substitutions (AASs) in comparison 

to a reference sequence (Abecasis, et al., 2010). Prediction tools are required for sorting and 

interpreting novel variants because all of them cannot be investigated experimentally. 

Systematic assessment of performance of prediction tools is important for identifying the 

best methods. Although some reports of systematic assessment of variant effect prediction 

methods have been published (Khan and Vihinen, 2010; Thusberg, et al., 2011; Grimm, et 

al., 2015), the Critical Assessment of Genome Interpretation (CAGI) experiments (Adebali, 
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et al., in preparation) have significantly contributed towards method validation, proof of 

concept testing, and general attitude for experimentally tested methods.

Our group has a long experience and interest in investigating variants and their effects and 

includes protein engineering experiments to improve enzyme properties (Vihinen and 

Mäntsälä, 1990; Vihinen, et al., 1990; Vihinen, et al., 1991; Vihinen, et al., 1994a; Nera, et 

al., 2000; Rasila, et al., 2012), variant collection and distribution on locus specific variation 

databases (LSDBs) (Vihinen, et al., 1995; Piirilä, et al., 2006; Väliaho, et al., 2006), 

interpretation of variants and their effects (Vihinen, et al., 1994b; Lee, et al., 2014; Väliaho, 

et al., 2015), and the development of recommendations and standards for variation data 

(Celli, et al., 2012; Vihinen, et al., 2012; Vihinen, et al., 2016) as well as the development of 

various prediction tools to filter and interpret harmful variants (Ali, et al., 2012; Olatubosun, 

et al., 2012; Niroula, et al., 2015; Niroula and Vihinen, 2015a; Niroula and Vihinen, 2016a; 

Yang, et al., 2016). In addition, we have promoted the importance of systematic performance 

assessments (Khan and Vihinen, 2010; Thusberg, et al., 2011), systematic measures and 

reporting of prediction methods (Vihinen, 2012; Vihinen, 2013), and need for benchmark 

datasets (Nair and Vihinen, 2013; Schaafsma and Vihinen, 2015b) and for systematics and 

nomenclature for describing variants (Byrne, et al., 2012; Vihinen, 2014b; Vihinen, 2015d; 

Vihinen, 2015b). Currently, we curate about 130 LSDBs, mainly for primary 

immunodeficiencies (PIDs) (Piirilä, et al., 2006; Schaafsma and Vihinen, 2015a) and also for 

protein kinase and Src homology 2 (SH2) domain variants (Ortutay, et al., 2005; 

Lappalainen, et al., 2008). These datasets have allowed studies for understanding disease 

mechanisms, especially in PIDs (Vihinen, et al., 1995; Thusberg and Vihinen, 2006; 

Väliaho, et al., 2006; Lanzi, et al., 2010; Lee, et al., 2014; Schaafsma and Vihinen, 2015a) 

and also in cancers (Niroula and Vihinen, 2015b).

Challenge-based experiments enable testing novel ideas and approaches to address the 

challenges. Several experiments or competitions have been organized in different fields of 

science (Bender, 2016; Saez-Rodriguez, et al., 2016). These competitions enable participants 

from different backgrounds to solve common problems and promote collaborations. The 

concept of blind predictions is a good way of testing the current status of methods. We are 

familiar with such experiments ever since the first Critical Assessment of protein Structure 

Prediction (CASP) where we participated with some protein structure predictions 

(Mosimann, et al., 1995). Thus, we welcomed the CAGI and have been involved in all the 

four experiments. Here, we reflect and recollect on our experiences of the CAGI 

experiments. Since the results of individual challenges are published elsewhere (Adebali, et 

al., in preparation; Carraro, et al., submitted; Daneshjou, et al., submitted; Pejaver, et al., 

submitted), we concentrate on describing how the CAGI experiments have impacted our 

method development and assessment as well as other aspects of variant effect prediction.

PERFORMANCE ASSESSMENT AND MEASURES

Since numerous variant impact predictors have been developed, it is essential to compare 

their performances. The developer-reported performance scores are not always reliable and 

representative (Vihinen, 2012). The predictor performance may vary depending on the 

dataset used for assessment. Therefore, for a fair comparison, an independent assessment 
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using a gold standard dataset is required (Fig. 1). Until recently, such benchmark datasets 

were missing. We have collected benchmark variation datasets for various prediction tasks to 

VariBench (Nair and Vihinen, 2013). VariSNP is another benchmark database containing 

neutral variants from dbSNP after filtering out disease-causing and cancer variants 

(Schaafsma and Vihinen, 2015b). When using benchmark datasets for testing the 

performance of machine learning (ML) tools, the training and test datasets have to be 

disjoint (Vihinen, 2013; Walsh, et al., 2016). One of the goals when developing variation 

ontology (VariO) for describing the effects, consequences and mechanisms of variants was 

to assist searchers for reliable, properly annotated, experimentally verified cases for training 

and testing of prediction methods (Vihinen, 2014b).

We and others have assessed the performance of methods for predicting impact of variants 

on tolerance/pathogenicity (Thusberg, et al., 2011; Bendl, et al., 2014; Grimm, et al., 2015; 

Niroula, et al., 2015; König, et al., 2016), protein localization (Laurila and Vihinen, 2009), 

protein stability (Potapov, et al., 2009; Khan and Vihinen, 2010), RNA splicing (Jian, et al., 

2014), protein disorder (Ali, et al., 2014), and solubility (Yang, et al., 2016). The 

performance assessments showed vast differences between methods and indicated a need for 

improved tools. One of the problems in performance assessments has been circularity i.e. 

overlap between the training and the test datasets at variant, protein, or protein family level. 

Performance of many methods decreased when they were tested on circularity-free test 

datasets (Grimm, et al., 2015; Vihinen, 2015a). Circularity-free test datasets should be used 

when assessing performance of methods.

Method performance assessment requires appropriate measures to describe the performance 

systematically. A single score is not sufficient to capture all aspects of performance; thus, 

several performance metrics should be used (Vihinen, 2012; Lever, et al., 2016). In several 

of the CAGI challenges, various performance measures have been used to assess the 

methods’ performances. Selective use of performance measures may give biased and 

misleading impression of the capabilities of tools. Therefore, details of algorithms, their 

application area, and their performance scores should be documented and reported (Vihinen, 

2013; Vihinen, 2015c). These guidelines are now a requirement for submission of articles 

describing prediction methods to Human Mutation and are applied e.g. on the articles in this 

special issue.

CAGI AND IMPROVEMENT OF OUR PREDICTORS

The CAGI experiments allow assessment of methods through diverse challenges. The 

challenges can be specific for genes, proteins, mechanisms, or diseases. Some of them 

require predicting the impacts of variants on specific genes, proteins, or diseases (e.g. CBS, 

CHEK2, BRCA, RAD50, etc.) and others require mapping genomes to the individual 

phenotype or predicting the diseased and healthy exomes (PGP, Sick Kids, Crohn’s disease, 

bipolar disorder, etc.).

When the first CAGI was announced, we were developing an ML-based method, PON-P, for 

predicting pathogenicity of variants (Olatubosun, et al., 2012). Although several tools were 

available for that purpose, independent performance assessment showed that they were 
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suboptimal (Thusberg, et al., 2011). We aimed at exploiting the benefits of existing 

prediction methods by developing a meta-predictor. Predictions of four tolerance predictors: 

PhD-SNP (Capriotti, et al., 2006), SIFT (Ng and Henikoff, 2003), PolyPhen-2 (Adzhubei, et 

al., 2010), and SNAP (Bromberg and Rost, 2007) and a stability effect predictor, I-Mutant 

(Capriotti, et al., 2008) were used to train PON-P after performing a feature selection. PON-

P was trained and tested on VariBench datasets (Nair and Vihinen, 2013). By bootstrapping, 

totally 200 random forest (RF) predictors were trained. Reliability score was computed 

based on the results of the RF predictors and the variants with a high reliability score were 

classified as pathogenic or neutral and those with a lower reliability as unknown. PON-P 

was benchmarked against state-of-the-art methods and it showed superior performance 

(Olatubosun, et al., 2012). We used PON-P predictions in the first two CAGIs.

Although PON-P had a good performance, it was slow and it became difficult to maintain 

due to the third party components. NGS data analysis demands for fast and reliable tools. 

Therefore, we developed a novel tool PON-P2 which does not rely on any other predictors, 

instead utilizes features describing evolutionary conservation, biochemical properties of 

amino acids, Gene Ontology (GO) annotations, and functional and structural annotations of 

variant sites (Niroula, et al., 2015). We used VariBench dataset for training and testing. To 

avoid circularity in testing, we separated the training and the test datasets so that all variants 

in proteins from the same protein family were kept either in the training or in the test dataset. 

We trained 200 RF predictors using bootstrap training data and the method classifies the 

variants into pathogenic, neutral, and unknown, similar to PON-P. Using a probabilistic 

approach, PON-P2 integrates information for functional and structural annotations of the 

variant site together with the RF predictions. PON-P2 was benchmarked using several 

datasets, and it consistently obtained the best performance scores (Niroula, et al., 2015; 

Riera, et al., 2016). PON-P2 predictions were used in the CAGIs 3 and 4.

CAGI CHALLENGES AND LESSONS LEARNED

We have participated in several challenges in the CAGI experiments. They fall into two 

categories, those that require predicting the impacts of genetic variants and those that require 

predicting the cases and controls from exome data. Both PON-P and PON-P2 have been 

developed for predicting variant tolerance (pathogenicity). Although many of the cases used 

for training the methods have functional effects, our tools are not originally intended for 

such predictions. During the four CAGI experiments, there were two challenges to predict 

pathogenicity of variants for which our methods, PON-P and PON-P2, are intended. We 

applied the tools also in some other challenges to test the applicability of the methods for 

new tasks. When using prediction methods, it is essential to know their strengths and 

limitations (Vihinen, 2014a). When applied outside the primary application area, problems 

may occur. We have shown that generic protein disorder predictors are not suitable for 

analysis of the effects of AASs on protein disorder (Ali, et al., 2014) or generic protein 

solubility methods for AASs affecting protein solubility (Yang, et al., 2016). The CAGI 

challenges allowed us to test our methods even outside the intended application area to learn 

about possible applications of methods and to find the best approaches for optimal 

application. We have learnt a number of lessons from the challenges. Here, we briefly 

discuss the challenges we have participated and our approaches for prediction.
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Challenges requiring prediction of variant impact

The variant impact prediction challenges required predicting effects of variants on 

pathogenicity and protein function. Although PON-P and PON-P2 are not intended for 

predicting the functional effect of variants, we used their predictions in some of these 

challenges by transforming the predicted pathogenicity scores. In the CHEK2 and RAD50 

challenges, the task was to predict whether the given variants are present in diseased cases or 

healthy individuals. In these challenges, we hypothesized the pathogenic variants to be in the 

diseased cases and the benign variants to have equal chances to be in both diseased and 

healthy individuals. So, we transformed the predicted pathogenicity scores in the range 0.5 

to 1 and used them as the probabilities for occurring in the diseased individual.

The CBS challenge required predicting the effect of AASs to the relative growth in yeast 

complementation assay in high and low pyridoxine concentrations. If x is the predicted 

probability of pathogenicity and se is the standard error obtained from PON-P, we 

transformed the predicted pathogenicity scores to relative growth rates as follows

The growth rates were modeled based on an assumption that there was a threshold for CBS 

enzyme activity below which the strains could not grow at low pyridoxine concentration. 

Above the threshold, the growth was assumed to be directly proportional to the PON-P 

predicted score. Among several models derived using different thresholds, this model 

showed the best performance.

We achieved average to top performance, depending on the challenge. Our submissions were 

rated among the best methods in the CBS, RAD50, and CHEK2 challenges, and average in 

the BRCA and p16 challenges. The numbers of AASs in these challenges were small, 10 for 

BRCA and for p16, 34 for CHEK2, 35 for RAD50, and 51 and 84 for CBS in CAGI 1 and 

CAGI 2, respectively. In the CBS challenge in CAGI 1, PON-P predictions were consistently 

ranked among the top five methods based on various scores e.g. Spearman’s correlation 
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coefficient, Receiver Operating Characteristic (ROC) curve, area under the ROC curve 

(AUC), Z-score, and root mean square deviation (RMSD). The method obtained the top 

ranks for both high and low pyridoxine concentrations. In CAGI 2, our method obtained 

average to high ranks based on different performance measures. In the CHEK2 challenge 

(CAGI 1) and the RAD50 challenge (CAGI 2), our predictions with PON-P were ranked 

among the best five tools. In the RAD50 challenge, PON-Pall included all variants that PON-

P could predict and PON-P0.95 included variants that were predicted reliably at probability 

level 0.95 (Olatubosun, et al., 2012). PON-P0.95 showed the best performance for all AASs 

as well as for AASs in the domains (P-loop hydrolase and Zinc hook).

Our methods have learned to generalize based on variants from a large number of different 

proteins, approximately 29,000 variants in 7,600 proteins in the case of PON-P2. The 

performance of predictors varies protein-wise (Riera, et al., 2016). The CAGI challenges 

taught us to be careful with the application areas of methods. On the other hand, the results 

indicated that generic tolerance prediction can be transformed quite reliably to functional 

effects, such as the growth rates in the CBS challenge, as discussed also in (Pejaver, et al., 

submitted). However, if large enough datasets are available, it might be better to develop a 

dedicated tool. When such data are lacking, reliable tolerance scores can provide a basis for 

estimates. The datasets in the challenges were too small for obtaining reliable estimation of 

method performance and for their ranking. We have previously used 40,000 cases for 

tolerance method performance assessment (Thusberg, et al., 2011).

Challenges requiring identification of patients and healthy individuals using exome data

We participated in Crohn’s disease and bipolar disorder exome challenges, which required 

distinguishing diseased and healthy individuals based on exome sequencing data. In both 

challenges, our strategy was to use PON-P or PON-P2 to identify harmful variants in 

candidate genes and then to stratify the diseased cases and controls based on these 

predictions. As the exomes contain large numbers of variants including AASs in numerous 

proteins, the candidate gene approach allows reducing the data dimensionality. In the CAGI 

2, we collected a list of candidate genes previously implicated in Crohn’s disease in 

genome-wide association studies (GWAS). Then, we computed a statistical score based on 

the odds ratio for locations identified in GWAS and the predicted pathogenicity of variants. 

The statistical score was used to distinguish Crohn’s disease cases and controls.

In the CAGI 4, we used ML-approach for both Crohn’s disease and bipolar disorder exome 

challenges. The training datasets provided by the CAGI were split into training and 

validation sets. The training dataset was used for generating and selecting features and for 

training models. Then, the validation dataset was used to evaluate the models. We collected 

candidate genes for both diseases from literature. Then, the pathogenicity of variants in the 

datasets was predicted using PON-P2. Based on the predicted pathogenicity of variants in 

the candidate genes, we derived several features for training ML-methods. We performed 

extensive feature selection approach to identify useful features and used them for predictor 

training.

Our approaches failed to distinguish the diseased exomes from the healthy ones. Although, 

the ML-approaches for bipolar disorder exome challenge showed approximately 70% 
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accuracy in our validation, they performed close to random on the challenge datasets. 

Among other limitations, the size of the training data set was too small considering the 

feature space. In addition, we limited our analysis to variants in the candidate genes. Several 

genes have been suggested to be related to Crohn’s disease and bipolar disorder, but have not 

been verified. We might have missed relevant genes while concentrating on the candidate 

genes. Another limitation of our approach was that, we left out truncating variants; and the 

splicing effect of variants was not considered either.

We tested various approaches to improve the predictions on these challenges. The co-

occurrence of harmful variants in pairs of genes was often identified to be useful during the 

feature selection. The predictors trained on different but overlapping training datasets 

showed similar performance which was slightly improved when the predictions were 

combined. Although the utilized approach did not work well, the knowledge and experience 

gained from these challenges will be useful when addressing the challenges in the future 

CAGI experiments.

LOOKING FORWARD

The CAGI experiments have enabled method developers to test their ideas and learn about 

the benefits and limitations of the tools. In our opinion, the strongest contribution of the 

CAGI has been in facilitating proof of concept tests for novel ideas (Fig. 1). CAGI 

experiments have included various types of challenges. We have been able to test 

applicability of our methods for different purposes. We have submitted predictions from 

alternative models for the same tasks and compared them.

New tools for variant interpretation are developed constantly and others updated. Although 

most journals require the developers to report performance of the methods compared to the 

state-of-the-art methods, it is not uncommon to find mistakes, biased and incomplete 

reporting, and overblown statements. The quantity and quality of the training and test 

datasets, the scope of feature space utilized, algorithm implementation, and performance 

assessment, all affect the performance of predictors (Niroula and Vihinen, 2016b). 

Independent large scale performance assessment studies provide reliable performance scores 

for methods. Community-wide efforts are required to develop, maintain, and use benchmark 

datasets and assessment systems. The CAGI challenges are useful for assessing method 

performance for specific tasks, but it is not a suitable approach for extensive ranking of the 

methods due to limited sizes of datasets (Fig. 1). Large validated datasets have higher power 

and enable reliable ranking of predictors; however, it is difficult to obtain such datasets.

Although the methods for variant interpretation are not perfect, in some areas especially in 

pathogenicity prediction, they are approaching a plateau. With the increasing numbers of 

validated variants, it has become possible to develop some gene/protein or disease specific 

predictors. Such specific predictors benefit from gene or disease-specific information and 

can have better performance than generic prediction methods (Jordan, et al., 2011; Ali, et al., 

2012; Masica, et al., 2012; Thompson, et al., 2013; Thompson, et al., 2014; Niroula and 

Vihinen, 2015a; Väliaho, et al., 2015; Niroula and Vihinen, 2016a; Vazquez, et al., 2016). 

However, a recent study indicated that generic and specific predictors have complementary 
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roles and our PON-P2 tool was better than protein specific predictors in 70 out of 82 cases 

(85%) (Riera, et al., 2016). The availability of increased numbers of validated cases will 

facilitate development of novel tools for specific tasks.

The existing prediction methods are mainly targeted for the coding part of the genome. 

Despite the limited amount of validated non-coding variation data, some tools are available 

in this domain (Kircher, et al., 2014; Ritchie, et al., 2014; Zhou and Troyanskaya, 2015). 

The numbers of non-coding variants associated with diseases are increasing and eventually 

will allow the development of novel tools. Most methods predict impacts of single variants 

as independent events, but many disease phenotypes are due to the simultaneous 

contributions of multiple variants and/or factors. Predictors capable of exploring variant 

interactions are of great need to improve our abilities to understand the mechanisms of 

complex diseases. There have been several CAGI challenges for such diseases and we 

believe there will be more challenges of similar kind in the future.

Variant interpretation has largely focused on predicting the pathogenicity or impacts of 

variants and classifying them into binary groups, harmful and benign. Some methods predict 

continuous scores; but their predictions are based on the binary data. While binary 

predictions provide useful information for variant screening, they do not capture the 

complete range of pathogenicity. Most diseases have a continuum of phenotypes ranging 

from benign to severe (Vihinen, 2017). Variants in several genes or diseases have been 

classified into groups of disease severity. These classifications are often based on clinical 

characteristics of patients and molecular analysis (Weinreb, et al., 2010; McCormick, et al., 

2013). The classification of disease severity is useful for studying disease mechanisms, 

disease prognosis, genotype-phenotype correlations, and for designing interventions for 

personalized/precision medicine. Although many variants in several genes/proteins and 

diseases have been associated with certain phenotypic severity, extensive classification is 

available only for a few of them. Recently, we collected variants causing mild, moderate, or 

severe disease phenotypes from 91 proteins and developed a tool, PON-PS, for predicting 

the severity of disease-causing AASs (Niroula and Vihinen, 2017). As the disease severity is 

influenced by several factors, gene/protein or disease specific predictors could provide 

useful information. In the CAGI 4, Crohn’s disease exome challenge included a sub-

challenge for predicting those individuals who developed the disease before the age of 10. 

Such a challenge is very interesting and has a high clinical impact. Challenges for predicting 

the severity of diseases could be of high interest and impact, but it may be difficult to obtain 

data for such challenges.

In conclusion, the CAGI experiments have witnessed improvements in the prediction 

methods, novel tools and applications, as well as indicated defects in our ability to interpret 

variants, especially in relation to diseases. The increasing size of data available for some of 

the CAGI challenges enables the participants to develop more reliable methods. Novel 

challenges are needed to encourage method developers to cover novel application areas. One 

problem preventing this is that the prediction seasons are relatively short, therefore do not 

allow extensive method development. The impact of CAGI experiments could increase if 

they promote collaboration between the data providers, assessors, and predictors/developers 

especially after the prediction and assessment season. This could lead to the development of 
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more accurate methods by combining the expertise of method developers, lessons learned 

from the challenges, and the know-how of the data producers about the application area.
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Figure 1. 
Different schemes used for method performance assessment. CAGI belongs to challenges, 

which are important for testing ideas and finding what is possible with the current 

approaches. Initial performance assessments typically represent those included in the 

original publications describing prediction methods. They often suffer from limitations of 

small dataset and may also be selective in regards to reporting performance measures. 

Sometimes they approach the thoroughness of systematic performance assessment. 

Especially the availability of benchmark datasets has improved the quality of method 

comparisons. It is essential that the cases used for training the methods are not used for 

testing the performance and that all the necessary performance measures and details are 

provided. For a meaningful comparison, the assessment should be extensive and include 

related methods, especially those with good performance. Challenges provide estimates of 

the method performance while the systematic comparisons facilitate their ranking. 

Challenges allow more freedom for experimenting with prediction methods, while mature 

methods require systematic optimization.
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