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Abstract

The steady advances in machine learning and accumulation of biomedical data have contributed to 

the development of numerous computational models that assess the impact of missense variants. 

Different methods, however, operationalize impact differently. Two common tasks in this context 

are the prediction of the pathogenicity of variants and the prediction of their effects on a protein’s 

function. These are related but distinct problems and it is unclear whether methods developed for 

one are optimized for the other. The Critical Assessment of Genome Interpretation (CAGI) 

experiment provides a means to address this question empirically. To this end, we participated in 

various protein-specific challenges in CAGI with two objectives in mind. First, to compare the 

performance of methods in the MutPred family with the state-of-the-art. Second and more 

importantly, to investigate the applicability of general-purpose pathogenicity predictors to the 

classification of specific function-altering variants without additional training or calibration. We 

find that our pathogenicity predictors performed competitively with other methods, outputting 

score distributions in agreement with experimental outcomes. Overall, we conclude that binary 

classifiers learned from disease-causing mutations are capable of modeling important aspects of 

the underlying biology and the alteration of protein function resulting from mutations.

Keywords

CAGI; pathogenicity prediction; functional effect prediction; MutPred; severity; generalization; 
machine learning; MutPred2

Introduction

In the era of high-throughput sequencing, computational methods that predict the impact of 

newly discovered variants have become integral to the studies of disease (Peterson et al., 

2013; Niroula and Vihinen, 2016; Rost et al., 2016). Different methods, however, use 
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different definitions of impact, depending on the established practices in the research 

community that their developers and users belong to. Broadly speaking, an impactful variant 

can be interpreted in an evolutionary sense as ‘deleterious’; i.e., affecting reproductive 

fitness, or in a biochemical and molecular sense, as ‘damaging’ to a protein’s function; i.e., 

function-affecting (MacArthur et al., 2014). Another term, ‘pathogenicity’, has been used to 

describe disease-causing variants and is usually interpreted as clinically significant 

(Richards et al., 2015). These terms are often used interchangeably and, consequently, 

predictions from one class of methods may be misused to inform decisions regarding related 

but different concepts. It has been pointed out, for instance, that evolutionary conservation is 

not sufficient to establish pathogenicity (MacArthur et al., 2014) and that many variants that 

affect protein function appear to be disease-neutral (Schaefer et al., 2012; Bromberg et al., 

2013; Lugo-Martinez et al., 2016).

Computational methods for variant impact prediction either rely on rules derived from expert 

knowledge or on data-driven machine learning algorithms; see Peterson et al. (2013) for an 

overview. The basic idea behind supervised machine learning methods involves ‘training’ a 

computer to ‘learn’ a mathematical function (model) that relates observable features (e.g., 

protein sequence) to known outcomes (e.g., protein function), in order to make predictions 

on a previously unseen set of observed features. Ideally, the choice of training data and 

features leads to the optimization of a mathematical function that captures the underlying 

biology. For instance, it has been observed that a predictor of protein-protein interaction 

(PPI) sites tends to predict hotspots (residues critical for interactions) more strongly than 

other interacting residues (Ofran and Rost, 2007). However, this behavior is not guaranteed. 

In the context of impact prediction, there are methods, particularly for missense variants, 

that rely on similar training data and feature sets to predict various notions of impact. 

Several questions, thus, naturally arise. Do these models learn some principles that underlie 

what makes an amino acid substitution impactful? Are they all learning similar or different 

classification functions? Or how can one use available data from disparate experimental 

studies to improve learning of each notion of impact?

Before addressing such questions, it is important to understand these methods in the context 

of the aforementioned variance in terminology. Supervised or semi-supervised learning 

methods can be divided into those that are trained on variants demonstrated to affect protein 

function in vitro or in vivo; e.g., SNAP (Bromberg and Rost, 2007), SNAP2 (Hecht et al., 

2015), and those that are trained directly on known pathogenic variants; e.g., PhD-SNP 

(Capriotti et al., 2006), MutPred (Li et al., 2009), PolyPhen-2 (Adzhubei et al., 2010), 

FATHMM (Shihab et al., 2013) and VEST (Carter et al., 2013). This allows us to 

disambiguate the two different but related binary classification tasks that these methods 

address: the classification of amino acid substitutions as (1) protein function-altering or not, 

and (2) pathogenic or benign. This distinction has been made previously (Schaefer et al., 

2012) and has recently been reiterated (Hecht et al., 2015; Richards et al., 2015).

Pathogenic amino acid substitutions can be understood as those that severely affect protein 

function (note that we do not specifically address variants that disrupt protein structure and 

its dynamics, but rather group those into the broader classes of function-impacting, 

pathogenic, or other variants depending on their downstream consequences). Therefore, a 
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predictor trained on functional variants should be able to predict pathogenic ones as those 

that score highly. Indeed, it has been shown that pathogenic amino acid substitutions can be 

predicted using functional effect predictors with reasonable accuracy (Schaefer et al., 2012; 

Reeb et al., 2016). Schaefer et al. (2012) further demonstrated that SNAP’s prediction scores 

for disease mutations tend to be higher than even those for the function-altering mutations 

that it was trained on and that PhD-SNP predicted nearly two-thirds of function-altering 

substitutions from SNAP’s training set as disease-causing. However, Bromberg et al. (2013) 

found that SIFT and PolyPhen-2 do not capture effect severity as well as SNAP does. 

Therefore, it remains unclear under what conditions and to what extent pathogenicity 

predictors can directly be transferred to infer the effects of substitutions on the specific 

aspects of protein function.

There are several factors to consider when investigating the generalizability of pathogenicity 

predictors to the functional effect prediction problem. First, the definition of functional 

and/or pathogenic variants varies between studies and depends on the evidence at hand. 

Genetic evidence is insufficient when factors such as penetrance and epistatic effects are 

unaccounted for. In vitro assays, on the other hand, provide evidence of functional impact in 

controlled settings but do not necessarily reflect what happens at the cellular or organismal 

level. In vivo experiments rely on model organisms and cell lines, and their findings may not 

necessarily translate to the clinical setting. Currently, training variants for pathogenicity 

predictions are obtained from databases such as the Human Gene Mutation Database 

(HGMD) (Stenson et al., 2014) and SwissVar (Mottaz et al., 2010), which do not necessarily 

annotate the lines of evidence used to establish impact and are sparse on specific 

experimental outcomes. This suggests that pathogenicity predictors, in particular, are 

exposed to a broad spectrum of functional outcomes under the umbrella of ‘pathogenic’ and 

‘benign’. Second, there has been a growing debate over whether general-purpose 

pathogenicity prediction models trained on variants combined from multiple genes are more 

powerful than gene-specific models. Recently, a case has been made for the development of 

both as the performance advantages relate to the amount and composition of the training 

data available for each protein (Riera et al., 2016). Finally, in spite of substantial curation 

efforts, errors and biases are major issues with public databases (Schnoes et al., 2009, 2013). 

This has particularly been noted in the case of HGMD (George et al., 2008; Cassa et al., 

2013) and it is not clear if learned models are robust to this noise in practice.

Community experiments such as the Critical Assessment of Genome Interpretation (CAGI) 

provide excellent opportunities to not only assess the status of the field but also address the 

aforementioned questions through controlled studies. To this end, we participated in multiple 

challenges in CAGI by primarily submitting predictions from MutPred, a random-forest 

based predictor that we previously developed to classify pathogenic and benign variants (Li 

et al., 2009). A distinguishing feature of MutPred is that it includes internal predictors for 

specific structural and functional properties such as secondary structure, intrinsic disorder, 

DNA-binding, phosphorylation, and others. For a given amino acid substitution, MutPred 

runs these predictors on the original and mutated sequence, models the putative change in 

the propensities for these properties and uses them to predict pathogenicity. Sequence-and 

structure-based analyses have revealed that such changes in local properties account for a 

substantial fraction of disease-causing mutations and can classify pathogenic variants more 
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effectively than conservation-based approaches (Li et al., 2009; Mort et al., 2010; Lugo-

Martinez et al., 2016). However, it is not clear whether such site-specific or region-specific 

changes in structure and function are predictive of impact beyond the protein level.

In this study, we take advantage of the numerous data sets available as part of the CAGI 

experiment to assess the utility of general sequence-based methods for pathogenicity 

prediction such as MutPred for more specific prediction tasks. In particular, we address the 

following questions: (1) Are pathogenicity predictors trained on mutations from multiple 

proteins useful for individual protein-specific prediction tasks? (2) Can predictors trained to 

distinguish between pathogenic and benign variants predict the outcomes of function-

specific experimental assays? (3) Are pathogenicity predictors robust to heterogeneity in 

evidence for pathogenicity/functionality in current training and test sets? (4) Do supervised 

learning approaches capture the biologically intuitive relationship between pathogenicity 

and functionality? By addressing these questions, we aim to provide a more thorough 

understanding of the variant impact predictors and lay the groundwork for the development 

of next-generation methodologies.

Materials and Methods

Data sets

Over the four iterations of the CAGI experiment, several prediction challenges accompanied 

by data sets obtained through different types of experimental techniques have been archived 

on the CAGI website (https://genomeinterpretation.org/). In this study, only those data sets 

containing mutations (predominantly amino acid substitutions) from a single gene or a small 

set of genes were selected (Table 1). For each challenge, raw ground truth values were 

extracted from the official results file provided along with the data set. For four challenges, 

experimental results have already been published by the data providers and were obtained 

directly from the literature: the p16 challenge (Scaini et al., 2014), the NaV1.5 channel 

challenge (Calloe et al., 2013), the 2010 CBS challenge (Dimster-Denk et al., 2013) and the 

CHEK2 challenge (Le Calvez-Kelm et al., 2011). When numbering all the mutations in this 

work, the initiation codon was assumed to be codon 1.

Data processing

For all challenges, only missense variants were extracted from the original data sets. Variants 

without experimental values and/or predictions (due to mismatch between reference residue 

in the variant and that in the reference sequence) were excluded. For challenges where 

experimental quantities were expressed as percentages, the values were mapped to the [0, 1] 

interval. In challenges where the combined effects of multiple mutations were to be 

predicted, the predictors were run on each mutation individually and the maximum value 

was chosen as the final prediction. This approach was chosen over other potential 

approaches in a systematic analysis on the SUMO ligase challenge and applied to the other 

data sets without further experimentation. The underlying assumption of this approach was 

that the combined effects of multiple substitutions would not exceed the effect of the most 

deleterious variant. Other challenge-specific aspects of data set construction are outlined 

below.
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The MRN, RAD50 and CHEK2 challenges contained data sets derived from case-control 

sequencing studies. In these special cases, the ground truth for each variant was available 

through the numbers of case and control individuals harboring it. When counts for different 

sub-populations were available, they were summed together to create single pooled count 

sets. To establish ground truth values, the probability of pathogenicity for a variant was 

estimated in two ways: (1) as the fraction of its occurrence in case individuals among all 

individuals carrying the variant, and (2) as the same fraction when the imbalance between 

case and controls was accounted for. This case-control-balanced frequency was calculated as

where ‘carrier’ indicates that the variant is carried by an individual. A frequency value of 0.5 

indicates that a variant is equally likely to occur in the case and control cohorts. Any variant 

with a value greater than this was treated as a pathogenic variant. To assess the effect of this 

frequency threshold on predictor performance, it was varied between 0.1 and 0.9 in 

increments of 0.1 and AUC values were calculated at each threshold.

In the case of CBS, binary class labels (non-functional or other) and raw experimental values 

for the 2010 and 2011 challenges were obtained from the work of Dimster-Denk et al. 

(2013) and the CAGI repository, respectively. ‘Sensitive’ mutations were included in the 

‘non-functional’ class and ‘Heme rescue’ mutations were excluded. Only those raw 

experimental values that corresponded to the assay conditions defined in the original 

challenge description were extracted.

For the SUMO ligase challenge, experimental values could be negative and were set to zero 

to fall within our predictors’ score distributions. Apart from evaluating predictions in terms 

of raw experimental values, all variants were classified into four groups, based on thresholds 

defined by the official CAGI assessors. If a value for a variant was < 0.3, it was considered 

to be ‘deleterious’. If its value was ≥ 0.3 and < 0.7, it was treated as ‘unsure’. If the variant 

had a value ≥ 0.7 and < 1.3, it was considered to be ‘wild-type’ and any variant with a value 

≥ 1.3 was treated as ‘advantageous’.

Predictors

Pathogenicity predictions were made on all missense mutations from these data sets using 

two different predictors. First, MutPred, an existing random forest-based method that relies 

on sequence, conservation, predicted structural and functional features to make 

pathogenicity predictions, was used (Li et al., 2009). Second, a neural network ensemble 

using an expanded feature set, was trained on a much larger and more heterogeneous data set 

obtained from HGMD (Stenson et al., 2014), SwissVar (Mottaz et al., 2010), dbSNP (Sherry 

et al., 2001), and others (details of this approach will be described elsewhere). This predictor 

will be referred to as MutPred2 (Pejaver, et al., 2017). The predictor was run in two modes, 

with or without accounting for gene families in training. These features simply enumerate 

proteins in the human and mouse genomes at various levels of sequence identity to the 

protein in which the variant is observed. We informally refer to these features as ‘homolog 
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counts’. Both MutPred and MutPred2 require only a protein sequence and an amino acid 

substitution as input, and output scores between zero (benign) and one (pathogenic). For 

challenges where experimental assay scores were expressed as a fraction of the wild-type 

function, prediction scores were ‘inverted’ by subtracting them from one. Thus, a score of 

zero would indicate a complete loss of function and a score of one would indicate similar 

function levels as the wild-type protein.

Evaluation

For prediction tasks that were treated as soft (unthresholded) classification problems, the 

predictors were assessed as rankers. The area under the receiver operating characteristic 

(ROC) curve (AUC) was therefore chosen as an evaluation metric (Fawcett, 2006). In the 

case of regression tasks, to measure the concordance between prediction scores and actual 

experimental values, one or more of the following measures was used: Pearson’s correlation, 

Spearman’s rank correlation and the root-mean-square deviation (RMSD) (Rosner, 2010). 

The choice of metric varied depending on how evaluations were undertaken by the official 

CAGI assessors for each challenge. Performance values for other methods were obtained 

from the assessors’ materials on the CAGI website. For more systematic comparisons, the 

reader is referred to the assessors’ publications.

Results

The CAGI experiment has resulted in a valuable repository of data sets associated with a 

variety of prediction tasks. For the purposes of this study, we concentrated on protein-

specific data sets rich in amino acid substitutions. This resulted in a collection of 11 data sets 

covering 13 proteins, with the number of protein variants ranging from three to 5,109 (Table 

1). Depending on the experimental means used to determine ground truth values, this 

collection can be grouped into three broad categories: (a) challenges with genetic evidence 

from large sequencing studies (BRCA1, BRCA2, CHEK2, MRE11A, NBN and RAD50), 

(b) challenges with biochemical functional assays (NAGLU, NPM-ALK, PKLR) and, (c) 

challenges that measure effects such as growth rate at the cellular level (CBS, CDKN2A, 

SCN5A, UBE2I). We note that these proteins can also be grouped along the lines of their 

phenotypic roles. For instance, BRCA1, BRCA2, CDKN2A, CHEK2, the MRN complex 

proteins, and the NPM-ALK fusion protein have all been implicated in a variety of cancers 

while CBS, NAGLU, PKLR and SCN5A have been implicated in relatively rare genetic 

disorders. In the following sections, we describe the nuances associated with the specific 

prediction tasks within each of the three aforementioned groups and their evaluation.

Prediction of the effects of pathogenic amino acid substitutions identified through 
sequencing studies

In this section, we describe results for prediction challenges where the true values for impact 

were assigned based solely on genetic evidence with no additional biochemical or molecular 

experiments. For the four challenges covered here, frequency of occurrence or the mere 

presence of variants in patient and control cohorts largely influenced their categorization as 

being pathogenic.
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BRCA challenge—Myriad Genetics, a molecular diagnostic company, has created the 

proprietary BRACAnalysis® test for the assessment of a woman’s risk of developing 

hereditary breast or ovarian cancer. This test is based on the detection of mutations in 

BRCA1 and BRCA2 and their classification into one of four classes: (1) Deleterious, (2) 

Benign, (3) Genetic Variant - Favor Polymorphism (VFP), and (4) Variant of Unknown 

Significance (VUS). The basis for these designations is proprietary but is thought to 

incorporate information from patient testing, population-level variant frequencies and 

segregation of variants in families with disease. In the BRCA challenge, the goal was to 

predict the probability that Myriad Genetics classified each of 100 BRCA variants into one 

of these four classes. Apart from this multiclass classification task, a more straight-forward 

task was to predict the probability that Myriad Genetics classified a given variant as 

deleterious (a binary classification problem). Since our predictors were directly amenable to 

this task, we concentrated on the prediction of the deleteriousness of variants, particularly 

missense variants. As a result, of the 19 and 42 missense variants in BRCA1 and BRCA2, 

respectively, only four and seven were considered for evaluation. The remaining missense 

variants had been classified as VUS by Myriad Genetics and any quantitative evaluation was 

infeasible.

The predictions for these 11 variants are summarized in Table 2 along with their class labels. 

In the case of BRCA1, both predictors returned perfect predictions with AUC values of one. 

For BRCA2, the AUC values of MutPred and MutPred2 were 0.90 and 0.67, respectively. 

However, when the two variants classified as ‘probably benign’ were excluded, both 

methods resulted in AUCs of one. This suggests that the difference between the methods lies 

in how such ‘probably benign’ variants were ranked relative to other variants in BRCA2. In 

fact, the MutPred2 score distribution was such that a low score threshold was sufficient to 

classify variants as deleterious (Table 2). This was probably due to the selection of the 

MutPred2 model that included protein-level homolog counts as features. Although this 

model performed better than the one without these features, it typically rescales scores based 

on the number of homologs that a given protein has in human and mouse. Overall, while it 

appears that MutPred performed better than MutPred2, the results were inconclusive, due to 

the small data set size, class imbalance and the lack of additional experimental evidence for 

deleteriousness. We note that only MutPred predictions were included in our official 

submission to the challenge and it was found to be the best-performing method by the 

assessors.

We then performed a qualitative analysis of the scores from both predictors for the 50 

variants designated as VUS. We found that VUSs from both genes were dominated by 

benign predictions for both predictors (Figure 1). This is in general agreement with the 

majority of the official CAGI submissions. However, the score distributions of MutPred and 

MutPred2 differed from each other significantly for both BRCA1 (Kolmogorov-Smirnov P = 

1.1 × 10−3) and BRCA2 (Kolmogorov-Smirnov P = 9.7 × 10−3). In the case of MutPred, the 

score distribution peaked in the interval [0.3, 0.4] for both BRCA1 and BRCA2 and was 

slightly bimodal for BRCA2. On the other hand, MutPred2 favored lower scores, peaking in 

the interval [0.1, 0.2] for both genes with a shorter right tail for BRCA2. This trend agrees 

with that in Table 2. We speculate that, in addition to the homolog count features, the 
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different score distributions for the two predictors largely arise due to an expanded feature 

set and the use of neural networks in MutPred2.

MRN and CHEK2 challenges—In addition to the BRCA genes, there were four other 

genes with only genetic evidence for pathogenicity of their variants in the CAGI experiment. 

These were MRE11A, NBN, RAD50 and CHEK2 and their variants were provided in three 

distinct challenges: the MRN challenge (for the first two genes), the RAD50 challenge and 

the CHEK2 challenge. However, all of these challenges were structured similarly. Variants in 

these four genes were obtained from breast cancer case and control individuals through 

population-level sequencing at the respective loci; for details see (Le Calvez-Kelm et al., 

2011; Damiola et al., 2014). The goal of these challenges was to predict the probability of a 

given variant occurring in an individual from the case group. Since the challenge focused 

primarily on rare variants, these probabilities (derived from frequencies) were very similar to 

each other and evaluating the task as a regression problem would be too stringent. Therefore, 

we treated this task as a binary classification problem, applied our predictors to only 

missense variants and evaluated them using AUC. However, it is important to note that the 

definition of whether a variant was truly pathogenic or not depended on its frequency in 

cases and controls. Therefore, in addition to the default threshold of 0.5, we investigated the 

effects of varying class label thresholds on AUCs as well.

Evaluation results for all four genes are summarized in Figure 2. In all four cases, the 

MutPred2 model with homolog count features was used as it performed comparably or 

better than the model without these features. In the case of MRE11A, the AUC for MutPred 

was higher than that for MutPred2 (0.66 vs. 0.62). However, at low fpr values, MutPred2 

identified more true positives than MutPred (Figure 2A). As the cutoff for pathogenicity was 

increased, both predictors improved performance and converged to similar AUC values 

(Figure 2B). For RAD50, although MutPred had a smaller AUC value than MutPred2 (0.63 

vs. 0.68), the performances were very similar, differing only at high fpr values (Figure 2C). 

Again, both predictors showed similar performance at higher frequency thresholds, with 

MutPred being more stable (Figure 2D). NBN deviated from the other members of the MRN 

complex in that both predictors performed worse than random at the default frequency 

threshold, with MutPred2 doing slightly better (Figure 2E). Interestingly, this performance 

was recovered for both predictors when the threshold was decreased; i.e., unlike the previous 

case, more relaxed thresholds ([0.2, 0.3]) yielded better performances, with MutPred 

reaching AUC values up to 0.7 (Figure 2F). Finally, in Figures 2G and 2H, we describe the 

results for CHEK2. Although the AUC for MutPred was higher than that for MutPred2 (0.64 

vs. 0.61), their true positive rates (tpr) in the [0, 0.1] fpr interval were comparable. 

Furthermore, AUC values for both predictors at lower frequency thresholds were equal, with 

MutPred’s performance improving at more stringent thresholds. These results held even 

when the true pathogenicity labels were assigned based on case-control-balanced 

frequencies (Supp. Tables S1–S4).

We note that the official CAGI assessors used measures other than AUC. Although our AUC 

values for these four genes were modest at best, the official assessment concluded that 

MutPred was the best-performing method for the RAD50 challenge (MutPred2 had not been 

developed at the time). To the best of our knowledge, all submitted predictors performed 
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poorly on MRE11A and NBN and our predictors were among the better-performing ones. 

Although some of the variants in these data sets were included in our predictors’ training 

sets (more so for MutPred2; data not shown), the comparable performances of both 

predictors indicates no significant advantage to either of our methods. This suggests that 

either variants from these genes are difficult to predict on with current approaches or that the 

frequency-based annotations of pathogenicity are generally unreliable.

Prediction of the effects of amino acid substitutions on protein activity and function

In these challenges, the ground truth values were established through in vitro biochemical 

assays. Typically, these experiments first involved expression of proteins of interest in cells 

followed by their extraction from cell lysates and purification. Then specific functions such 

as enzyme activity or binding affinity were assayed against known substrates or analogs. 

Although several mutations, and almost all of the proteins (NAGLU, NPM-ALK and 

PKLR), covered in this section are medically important, the prediction tasks here focused 

mostly on the specific functional consequences of these mutations, without regard to cellular 

or organismal phenotype.

NAGLU challenge—The most recent challenge in this category was the prediction of the 

effect of naturally-occurring missense mutations on the enzymatic activity of N-acetyl-

glucosaminidase (NAGLU), a lysosomal glycohydrolyase. Deficiency of NAGLU and/or its 

mutations cause Mucopolysaccharidosis IIIB or Sanfillipo B disease. The data set consisted 

of 165 missense mutations extracted from the Exome Aggregation Consortium (ExAC) data 

resource (Lek et al., 2016). The effects of these mutations on NAGLU’s hydrolysis activity 

were assayed and quantified relative to the wild-type to establish ground truth values. An 

activity value of zero indicated complete abolition of activity, a value of one indicated wild-

type levels of activity and any value greater than one indicated activity greater than the wild-

type value. We evaluated our predictions in two ways. First, we treated every mutation with 

activity levels > 0.1 (Wyatt T. Clark, personal communication) as wild-type-like and 

evaluated the task as a binary classification problem. Second, we treated the task as a 

regression problem and used Pearson’s correlation coefficients to measure the agreement 

between our predicted activity values and actual experimental values.

We found that the inclusion of homolog count features had little impact on the predictive 

performance of MutPred2 and, therefore, considered the model without these features. 

Irrespective of whether mutations with activity levels above 1 were included or not, the 

AUCs of MutPred and MutPred2 were 0.78 and 0.85, respectively (Figure 3A). This was the 

case even when considering Pearson correlation coefficients. MutPred was less correlated 

with activity values (r = 0.54; P = 3.4 × 10−13; t-test) than MutPred2 was (r = 0.62; P = 1.1 × 

10−17; t-test) when mutations with activity levels above 1 were excluded. When these 

mutations were included, the corresponding correlation coefficients were 0.54 (P = 1.6 × 

10−13; t-test) and 0.61 (P = 6.7 × 10−18; t-test). Overall, MutPred2 outperformed MutPred 

and was, in fact, judged to be the best-performing method among all submissions for this 

challenge.
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Interestingly, as in the case of the BRCA VUS, the distributions of scores output by MutPred 

and MutPred2 were very different. Unlike MutPred2, MutPred predicted no activity values 

to be greater than 0.7 and the spread of scores appeared more ‘compressed’ (Figure 3B and 

3C). One possible explanation for this is that MutPred2 was trained on 22 more NAGLU 

variants than MutPred, about half of which were not pathogenic. On the other hand, 

MutPred was only presented with pathogenic NAGLU variants during training and may have 

tended to favor pathogenic predictions in this protein. However, it is unlikely that the 

inclusion of such a small set of training variants (relative to the whole training set) would 

substantially affect performance. For instance, seven non-pathogenic mutations from the 

NAGLU data set overlapped with MutPred2’s training set. However, three of these have 

activities < 0.5 and are more likely to be damaging mutations. Therefore, any advantages 

gained here by MutPred2 would be nullified. An alternative explanation for the difference in 

score distributions is that MutPred2 uses a neural network ensemble, resulting in a smoother 

classification function that scales scores more evenly than the random forest model in 

MutPred.

NPM-ALK challenge—NPM-ALK is a protein formed through the fusion of 

nucleophosmin (NPM1) and Anaplastic lymphoma kinase (ALK). This fusion results in the 

ALK tyrosine kinase being constitutively activated and contributing to cancer. NPM-ALK is 

dependent on the molecular chaperone Hsp90 for its stability and activity. In this challenge, 

the goal was to predict the effects of 23 mutations (19 missense) on two distinct and 

separately-assayed functions of NPM-ALK relative to the wild-type protein, kinase activity 

and Hsp90-binding affinity. In both cases, the experimental values were set to zero if the 

given function was completely lost, 0.5 if the activity or binding was less than that of the 

wild-type protein, one if the function was at wild-type levels and two if the function was 

above wild-type levels. We ran and evaluated our predictors solely for this study and did not 

officially participate in this challenge. We note that MutPred2 uses predicted losses and 

gains of specific protein properties (as a consequence of mutation) such as catalytic activity, 

stability and protein-protein interactions (PPIs) as features. Therefore, in addition to the 

general scores output by our predictors, we evaluated scores from these individual predictors 

as well.

We note that all mutations in the data set were mappable to the ALK protein and predictions 

could be made on either NPM-ALK or ALK. We chose ALK, as our performance on this 

sequence was better overall. For the first task, MutPred correlated better with kinase 

activities than MutPred2 when all mutations were considered. However, the trend reversed 

when only those mutations with activity values ≤ 1 were considered (Figure 4A). To put 

these results in context, r of the best-performing method at CAGI was 0.88. However, we 

note that these methods were developed and/or customized for this challenge. When the 

assessors used general pathogenicity predictors such as SIFT (Ng and Henikoff, 2001), 

PolyPhen-2 (Adzhubei et al., 2010) and PROVEAN (Choi et al., 2012), the best-performing 

method (PolyPhen-2) had a coefficient of 0.47. Furthermore, when MutPred2’s internal 

catalytic site predictors were considered, correlation levels increased to those comparable to 

the top CAGI submissions.
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Next, we considered the Hsp90-binding affinity predictions. This task turned out to be much 

harder with the only positive correlation value arising from predictions made by MutPred 

when affinity-increasing mutations were excluded (Figure 4B). Interestingly, the PPI 

property predictors resulted in positive correlations in all but one case. However, none of 

these were statistically significant and were only better than MutPred when all mutations 

were considered. In the official assessment, all predictions were virtually random with the 

top r being 0.05, much below those of a majority of our approaches. These trends held even 

when considering Pearson’s correlation coefficients, except in the case of PPI mutant scores; 

a positive correlation was observed when affinity-increasing mutations were excluded, 

suggesting a strong linear relationship between the predicted and true values (Supp. Figure 

S1).

Pyruvate kinase challenge—Pyruvate kinase is an enzyme that catalyzes the last step in 

glycolysis and is regulated by two allosteric effectors, alanine and fructose 1,6 bisphosphate 

(Fru-1,6-BP). Of the four isoforms expressed from the pklr gene in mammals, the one 

specific to the liver, L-PYK, is of particular interest. Variants in this gene have been 

associated with pyruvate kinase deficiency and, in L-PYK, several variants fall in or around 

allosteric effector-binding sites, suggesting a link between allosteric regulation and disease. 

In the pyruvate kinase challenge, there were two major goals. The first goal was to predict 

the effect of missense mutations on kinase activity defined simply as the presence or absence 

of activity. The second goal involved the prediction of the real-valued effects of these 

mutations on allosteric regulation by the two effectors. The values between zero and one 

indicated allosteric inhibition, values above one indicated allosteric activation and values of 

one indicated no allosteric effects. As in the case of the NPM-ALK challenge, in addition to 

our general impact scores, we also evaluated MutPred2’s predicted allosteric site-related 

features for the second task.

There were two data sets in this challenge that were derived from two experiments. The first 

data set consisted of 113 amino acid substitutions at nine different positions close to the 

alanine-binding site. On this data set, the AUC for MutPred was greater than that for the 

MutPred2 model with homolog count features (0.80 vs. 0.76) al-though the latter identified 

more activity-disrupting mutations at low fpr values (Figure 5A). The second data set 

consisted of 430 mutations generated through an alanine scan on all non-alanine/glycine 

positions in L-PYK. The trends here were similar (AUC of MutPred = 0.79 vs. AUC of 

MutPred2 = 0.74), with MutPred also doing slightly better than MutPred2 at low fpr values 

(Figure 5B). Although we did not officially participate in this challenge, it is instructive to 

contextualize our performance in relation to the state-of-the-art. The official assessors used 

balanced accuracy, calculated as the average of sensitivity and specificity (Fawcett, 2006), as 

the primary measure and found the best-performing methods to have values of 0.77 and 0.75 

for the first and second data sets, respectively. We calculated MutPred’s balanced accuracy 

to be 0.54 and 0.61 at a score threshold of 0.5. The corresponding values for MutPred2 were 

0.59 and 0.67. When score thresholds corresponding to the maximum possible balanced 

accuracy were considered, MutPred had values of 0.77 and 0.75 (score threshold: 0.80 and 

0.81, respectively), and MutPred2 had values of 0.76 and 0.71 (score threshold: 0.74 and 

0.59, respectively) for the two data sets.
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Next, we evaluated the ability of our methods to predict effects on allosteric regulation by 

alanine and Fru-1,6-BP. These were measured in both experiments for alanine and only in 

the second experiment for Fru-1,6-BP. Unlike other challenges, all mutations were retained 

here because none of the these values exceeded one for alanine and all but one were below 

one for Fru-1,6-BP. We found that MutPred2 was the only approach with positive 

correlations in all three cases (Figure 5C). Interestingly, the predicted allosteric site features 

in MutPred2 performed better than the original MutPred model, achieving positive 

correlations in two out of the three data sets. To put these results in perspective, Spearman’s 

rank correlation coefficients of the best-performing methods at CAGI were 0.35, 0.01 and 

0.05 for the first and second alanine data sets and the Fru-1,6-BP data, respectively. Since 

none of these mutations were in our training sets, we interpret these results as follows. The 

score distribution returned by MutPred is optimized to perform better (and perhaps the best) 

when assessing kinase activity. However, MutPred2’s score distribution generalizes better to 

the different definitions of function in this challenge at the cost of a modest loss in accuracy 

when considering kinase activity (the primary function of L-PYK).

Prediction of the effects of amino acid substitutions measured at the cellular level

In order to establish the causal roles of variants in disease, it is often insufficient to 

demonstrate their effects on an isolated protein’s function. A common approach is to 

measure the effects of such mutations on measurable cellular parameters such as growth 

rate, detection of signals in or outside the cell, protein turnover, among others. The CAGI 

experiment included four such challenges: the SUMO ligase challenge, the p16 challenge, 

the SCN5A challenge and the CBS challenge (with two different data sets). Each of these 

used different experimental end-points to assign variant impact and are described in this 

section along with the evaluation of our predictions. It is important to note that these 

experiments are often carried out on cell lines and may or may not reflect actual phenotypes 

at the organism level.

SUMO ligase challenge—This challenge constitutes the largest data set of mutations in 

our collection and was generated through a high-throughput yeast complementation assay. 

UBE2I is the only human SUMO-conjugating protein (SUMO E2 ligase). It regulates the 

function of a multitude of proteins through the covalent attachment of small ubiquitin-like 

modifier proteins (SUMOs) to them (Geiss-Friedlander and Melchior, 2007). The goal here 

was to predict the effect of missense mutations on the function of UBE2I defined as the 

change in fraction of mutant SUMO ligase clones, relative to wild-type clones, in a 

competitive yeast growth assay. This set of variants was divided into three subsets. The first 

subset consisted of 219 amino acid substitutions whose experimental values were robust to 

multiple internal replicates. The second subset consisted of 463 amino acid substitutions 

whose experimental values were assigned with lower confidence than those in subset 1. 

Finally, the third subset consisted of 4,427 combinations of two or more amino acid 

substitutions occurring together. The predicted values were expected to be between zero (no 

growth) and one (wild-type growth), or greater than one (more growth than wild-type). We 

note that for this challenge, a score distribution was provided to calibrate raw prediction 

scores. While our official submissions included this calibration step, in this study, we aimed 
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to investigate the direct applicability of our methods and, therefore, used the raw scores. 

Calibration only provided modest improvements over the results from the raw scores.

Based on thresholds established by the CAGI assessors, we divided the data set into two 

classes (deleterious or wild-type) and obtained ROC curves for both predictors (Figure 6). In 

subsets 1 and 2, we found that both predictors had comparable performances with slight 

advantages belonging to MutPred2 in subset 1 and MutPred in subset 2. This trend remained 

even when the ‘unsure’ variants were included in the ‘deleterious’ class (Table 3(i) and 

3(ii)). However, both predictors’ performance improved on subset 1 and dropped on subset 2 

when the ‘unsure’ variants were re-assigned. In this case, the trend for subset 1 agreed with 

the trend for subset 3 and we concluded that subset 2 deviated from the other subsets due to 

the noise introduced by a larger fraction of low-confidence growth values. As can be seen in 

Table 3, Spearman correlation coefficients between predicted and experimental growth rates 

followed a similar pattern as the AUC values with modest differences between the two 

predictors. We note that the exclusion of ‘unsure’ variants made both subsets easier to 

predict on and that the performance improved for both predictors (data not shown).

Subset 3 was a harder task for both predictors as neither of them were designed to predict 

the combined effects of multiple substitutions. We therefore decided to run the predictors on 

individual mutations and perform post-processing to assign a single value to each multi-

mutant protein variant. Table 3(iii) shows the three different post-processing methods that 

we explored and, clearly, taking the maximum predicted value among individual predictions 

for a variant worked the best for MutPred2 and the average predicted value worked slightly 

better for MutPred. Both predictors showed modest correlations with experimental values. 

We note that the official assessors for this particular challenge used multiple sophisticated 

metrics to identify the best method. Although our methods were not the best-performing, 

their performances were very similar to the state-of-the-art, suggesting that UBE2I is a hard 

target to predict on with current methods.

p16 challenge—The CDKN2A gene codes for two proteins through alternate splicing of 

its first exons, both of which have tumor suppressor functions. Among these, the p16 

isoform inhibits cyclin dependent kinase (CDK4/6) and, thus, promotes cell cycle arrest and 

affects cell proliferation. Mutations that affect the inhibitory function of p16 cause cells to 

grow rapidly and contribute to malignant melanoma. The p16 challenge involved the 

prediction of cell proliferation rates as a consequence of 10 different mutations at four 

positions in p16. These rates were set by the data providers to be 0.5 for wild-type cells 

(negative controls) and one for tumor-like cells (positive controls). Since a mutation 

resulting in a growth rate closer to 0.5 could be interpreted as being ‘benign’ and that with a 

rate closer to one could be interpreted as ‘pathogenic’, we directly applied our predictors to 

this data set. Our predictions were evaluated in two ways. First, we treated every mutation 

with growth rate above 0.75 as tumor-like and evaluated the task as a binary classification 

problem. Second, we treated the task as a regression problem and calculated the RMSD to 

determine how close our predicted proliferation rates were to actual experimental values.

The results for the p16 data set are summarized in Table 4. When evaluated as a 

classification task, both models in MutPred2 (with or without homolog counts) 
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outperformed MutPred (AUC values of 0.80 and 0.84, respectively, vs. 0.68). This is the 

case even for RMSD values except that the MutPred2 model with homolog counts had the 

lowest RMSD (0.1397), followed by the other MutPred2 model (0.1506) and MutPred 

(0.2061). As suggested before, the better performance of the homolog count model can be 

explained by the fact that the inclusion of these features rescales scores, which better mimic 

actual proliferation rate distributions. Since we did not participate in this challenge, we 

directly compared our performance values to other methods that were officially assessed. 

MutPred2 had an AUC value comparable to the top-performing methods and the second-best 

RMSD value among all methods submitted.

NaV 1.5 challenge—This challenge involves the smallest data set among all the 

challenges described in this study. SCN5A encodes the NaV 1.5 integral membrane protein, 

primarily found in cardiac muscle cells and is responsible for mediating the fast influx of 

Na+ ions across the cell membrane. This influx, in turn, results in the fast depolarization of 

the cardiac action potential. Thus, this protein plays an important role in impulse 

propagation through the heart. Although mutations in SCN5A have been associated with 

multiple heart diseases, this challenge concentrates on those that have been linked to 

Brugada Syndrome (Calloe et al., 2013). The data set contains three missense mutations 

obtained by sequencing two independent families and screening the resulting mutations 

against a control group. The effects of these mutations on current flow were measured by 

patch clamp experiments and expressed as the fraction of the reduction in current density 

due to the mutation, when compared to the wild type protein. The goal of this challenge was 

to predict these current density fraction values. We did not officially participate in this 

challenge and ran our predictors on this data set solely for this study.

Table 5 shows the prediction scores for the three mutations along with actual current density 

values obtained from Calloe et al. (2013). Although the data set was too small to assign 

statistical significance to our results, we found the Spearman correlation coefficients to be 

one for both prediction methods. The Pearson correlation coefficients were 0.83 and 0.90 for 

MutPred and MutPred2, respectively. This suggests that while scores from both predictors 

were monotonically related to current density fractions, MutPred2 scores were linearly 

related to these fractions and could directly be applied to this prediction task. Interestingly, 

although both function-altering mutations were present in MutPred2’s training set as 

pathogenic, it was able to reasonably predict actual outcomes from the patch clamp 

experiments.

CBS challenge—One of the earliest challenges included in the CAGI experiment was the 

prediction of the effects of mutations in cystathionine beta-synthase (CBS) on its function. 

CBS plays a role in cysteine biosynthesis via the transsulfuration pathway and has been 

implicated in homocystinuria. There have been two CBS challenges in CAGI with different 

data sets for each: one in 2010 and the other in 2011. The 2010 data set contained 51 

synthetically generated amino acid substitutions and the 2011 data set contained 84 

substitutions observed in patients with homocystinuria. The experimental setup in both 

situations was the same and involved the expression of mutated human CBS clones in yeast 

cells with the orthologous gene CYS4 removed. Thus, in this in vivo yeast complementation 
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assay, the growth of yeast cells was directly dependent upon the level of mutant human CBS 

and could be used to infer functionality for each mutation. Since human CBS requires 

vitamin B6 (supplemented in the soluble form of pyridoxine) as a co-factor for its function, 

experiments were carried out with high (400 ng/ml) and low (2 ng/ml) co-factor 

concentrations. The goal was to predict cell growth rates expressed as a fraction relative to 

the wild-type with the same amount of pyridoxine supplementation, where zero indicates 

complete loss of function and one indicates wild-type levels of function. Since the data sets 

also provided explicit binary information on whether a variant was non-functional or not, we 

directly ran our predictors on these data sets and evaluated them as both classification and 

regression problems.

We found that MutPred2 (without homolog counts) had greater AUC values than MutPred in 

both data sets (Figures 7A and 7B). However, in the 2011 data set, MutPred was more 

sensitive in the low fpr interval; 79 of the 84 mutations in the 2011 data set were present in 

MutPred’s training set (78 pathogenic and one benign) and 81 were present in MutPred2’s 

training set (79 pathogenic and two benign). Of these pathogenic mutations, only 

p.Asn228Lys occurred in the 2010 data set as well. Since our predictors were trained in a 

binary classification scenario similar to this challenge (albeit with different class 

definitions), we calculated Spearman’s correlation coefficients as an additional measure of 

performance. When mutations with relative growth rates above one were excluded, 

MutPred2’s scores correlated better with experimental values than MutPred’s for the 2010 

data set but the converse was true for the 2011 data set (Figures 7C and 7D). Predictions 

from both methods correlated better with the rates at high pyridoxine concentrations in the 

2010 set but were similar in both experimental conditions in the 2011 data set. This was 

perhaps due to the lack of null mutant growth rates for the low concentration experiment in 

the 2010 data set (Figure 7C; second column). When the full set of mutations was 

considered for each data set, MutPred2 outperformed MutPred on all data sets in all 

experimental conditions (Supp. Table S5), suggesting that its scores scaled better even when 

mutations outside its prediction range were included. We note that neither of these methods 

were officially submitted to CAGI. The best-performing method in 2010 had an AUC value 

of 0.90 and Spearman coefficients of 0.62 and 0.65 for high and low concentrations of 

pyridoxine, respectively. Since our training sets substantially overlapped with the 2011 data 

set, we did not compare our performance to the official assessors’ results.

Discussion

In this study, we applied two pathogenicity predictors, MutPred and MutPred2, to various 

single-gene prediction challenges related to impact of missense mutations. This impact was 

measured through genetic sequencing in case-control settings (BRCA1, BRCA2, MRE11A, 

RAD50, NBN, CHEK2), biochemical assays for protein function (NAGLU, NPM-ALK, 

PKLR) and assays measuring cellular variables (UBE2I/SUMO ligase, CDKN2A/p16, 

SCN5A/NaV 1.5, CBS). Both methods were trained on large sets consisting of amino acid 

substitutions from thousands of genes and were not specifically tuned for any particular gene 

or task at hand. They performed comparably or better than the top-performing methods 

identified by the independent assessors. In some cases, these methods only utilized 

information specific to the given gene, implicitly suggesting that generic models trained on 
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larger data sets, benefit from information learned from other genes. This is in general 

agreement with a recent systematic study that concluded that the best-performing generic 

models frequently outperform gene-specific ones (Riera et al., 2016). In addition, our results 

provide insights on the transferability of pathogenicity predictors to the prediction of 

functional effects of missense mutations, the robustness of these predictors to heterogeneity 

in evidence types in current test sets, and the interpretability of these models in a biological 

context; i.e., the relationship between the problem of predicting pathogenic variants and that 

of predicting function-altering variants.

MutPred and MutPred2 models generalize to different prediction tasks

It has been previously argued that functional effect predictors can predict disease-related 

mutations with reasonable accuracy and that prediction scores correlate with effect severity 

(Schaefer et al., 2012). We inverted this question and asked whether pathogenicity predictors 

can similarly capture different specific functional effects of amino acid substitutions. We 

used a variety of CAGI prediction tasks to investigate this and found that pathogenicity 

predictors performed well on almost all of the functional effect prediction tasks that this 

study covers. Furthermore, prediction scores (especially MutPred2) often correlated with 

actual experimental values without any calibration or pre-processing. Although the direct 

use of these prediction scores without any calibration can be context-dependent, the 

evidence suggests that one can generally utilize the rankings to prioritize variants of interest. 

Another interesting observation has to do with mutations that overlap with our methods’ 

training sets. For example, nearly all of the variants in the 2011 CBS data set were present in 

MutPred’s and MutPred2’s training sets as pathogenic variants. Despite being trained to 

identify all of these mutations as one class, our methods generated distributions of scores 

that agreed with actual experimental measurements. Moreover, we found that MutPred2 

generally outperformed MutPred. In the case of NPM-ALK and pyruvate kinase, we 

demonstrated that the new functional site predictors (allosteric site and PPI-binding) in 

MutPred2 provide alternative ways to infer the impact of amino acid substitutions. 

Furthermore, the prediction and inclusion of such residue-level functional impact (a 

distinguishing attribute of MutPred and MutPred2) improved the prediction of both 

pathogenic and function-altering substitutions. We conclude that our methods can be directly 

used to predict experimental values without any calibration and, at the very least, can serve 

as a baseline approach or a feature for customized functional impact prediction tasks. We 

recommend that a set of models similar to (and potentially including) ours, be selected by 

the CAGI organizers and used as a baseline in each relevant prediction challenge.

Predictor score distributions matter

When considering metrics that measure the concordance between experimental and 

predicted values, MutPred2 performed better than MutPred; e.g., the NAGLU, pyruvate 

kinase, p16 and the CBS challenges. A major factor contributing to this are the differences 

between the score distributions of the two methods. MutPred2 had a spikier score 

distribution on the BRCA VUS data set and was more spread out in the NAGLU challenge. 

The learning algorithm in MutPred2 is a neural network, which can approximate any 

discriminant function (Cybenko, 1989) as well as posterior probabilities of the underlying 

distribution of inputs and outputs (Rojas, 1996). Score distributions of predictors are often 
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viewed and optimized in terms of the separation between different classes. However, our 

results support the attempts to approximate posterior distributions as closely as possible 

(Rost et al., 2016). While random forests (MutPred) performed comparably or even better 

than MutPred2 on classification tasks, they were frequently outperformed on the prediction 

of functional effect severity. We speculate that this may be due to the differences between 

the individual components of the two ensemble models: neural networks and classification 

trees. Although both neural network ensembles and random forests involve averaging the 

outputs of these individual predictors, the smoother approximation of posterior distributions 

by the neural networks seems to better capture the intermediate levels of functional effect 

severity. Our arguments are further supported by the fact that SNAP (which has been 

demonstrated to correlate with the magnitude of functional effects) also relies on neural 

networks.

The relationship between predictive performance and the evidence for pathogenicity and 
functional impact

As illustrated through the different CAGI prediction tasks, the strength of the annotation of a 

pathogenic variant depends on the operating definition of a pathogenic variant. Our results 

suggest better performance of the pathogenicity predictors when information on 

biochemical, molecular or functional impact is available. For instance, in the cases of 

MRE11A, RAD50, NBN and CHEK2, AUC values for our predictors seldom exceeded 0.7 

and yet our predictors were among the top-performing methods. Despite being trained for 

the purpose of distinguishing between pathogenic and benign variants, state-of-the-art 

methods did not perform as well as expected. However, in the case of challenges with 

evidence of functional impact (NAGLU, CBS and p16), our predictors and the community 

itself fared much better. Based on these observations, we reason that evaluations against 

disease variants annotated simply based on their frequencies in case-control studies are 

confounded by several external factors and these likely contribute to the underestimation of 

predictive performance (Jain et al., 2017).

Predictors trained on variants from multiple genes in HGMD are robust

Public databases provide valuable data for the systematic hypotheses testing and the 

development of predictive models. However, issues of uncertainty (overlap between class-

conditional distributions in a given feature space), sample selection bias, and noise will 

always have to be overcome either through best practices in data processing or by the 

models themselves (Rost et al., 2016). We found that supervised learning methods that rely 

on large resources for training, were actually useful on tasks specific to individual proteins. 

Our predictors were competitive with or in some cases better than methods customized for 

the given protein and/or task; e.g., the p16, CBS and NPM-ALK challenges.

Interestingly, all pathogenic mutations in the MutPred training set and a substantial fraction 

in the MutPred2 training set derive from HGMD. From our experience going beyond this 

specific study, both MutPred models heavily benefited from the use of this database. Results 

from recent large-scale studies on the development of meta-predictors for pathogenicity 

prediction support this view; predictors trained on HGMD mutations tended to perform 

better than other methods (Dong et al., 2015; Ioannidis et al., 2016). This can be explained 
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by the fact that the specialization of HGMD and its expert curators for the task of collecting 

and storing disease variants reduces noise, especially when the evidence for pathogenicity is 

variable and/or sparse.

Limitations and future work

Our work is not without limitations and we discuss them here. First, unlike in many previous 

studies (Schaefer et al., 2012; Bromberg et al., 2013), the CAGI data sets covered a dozen or 

so proteins with significant variability in data set sizes. While our study serves as a proof-of-

concept for the direct applicability of our pathogenicity predictors to functional effect 

prediction tasks, more systematic analyses on larger data sets will be needed to fully 

disentangle the relationship between the two prediction problems. Second, the CAGI data 

sets likely contained some biases. Amino acid substitutions predominantly came from 

proteins that were of medical interest. Moreover, several data sets were obtained from 

ongoing studies with different objectives. For example, in the 2010 CBS data set, nearly half 

of all mutations were selected for their mild to severe impact on protein stability (Dimster-

Denk et al., 2013), as predicted by Rosetta (Kellogg et al., 2011). Third, as of now, our 

methods do not account for activating mutations and this not only introduces complications 

for evaluation (see below) but also overestimates the direct applicability of our methods. 

However, since the overall ranking of amino acid substitutions were often consistent with 

real values, our methods would still be effective in the prioritization of interesting variants. 

Assigning directionality to predicted functional effects is a potential avenue for future 

research that should rely on predictions of specific functional activities (Lugo-Martinez et 

al., 2016). Finally, while our choice of evaluation criteria for a given task was influenced by 

the respective CAGI assessors, our analyses were not as comprehensive. Moreover, our data 

handling and pre-processing protocols deviated from theirs; e.g., exclusion of frameshifting 

indels and nonsense mutations. As a result, in some cases our performance values did not 

agree with CAGI assessments. For instance, in our hands, we found the AUC values for 

subset 1 of the SUMO ligase challenge ranged between 0.65 and 0.71 (with varying data 

selection criteria), but in the official assessments our methods performed consistently around 

0.75. Therefore, any direct comparisons between actual performance evaluations must be 

interpreted cautiously. However, our general conclusions still hold as the overall trends 

remained the same; e.g., in the SUMO ligase challenge MutPred and MutPred2 did cluster 

together with other methods, in terms of performance.

Final remarks

The CAGI experiment has enabled us to assess the utility of general machine learning 

models for multiple function-specific tasks and draw meaningful conclusions both on a case-

by-case basis and on the aggregate. Although our results may not generalize to other 

predictive methods, they provide empirical support that models trained on pathogenic 

variants with the incorporation of local structural and functional features, transfer well to the 

related problem of functional effect prediction. Disambiguating specific functional effects 

from pathogenicity, and understanding their mutual relationship, may be of interest in the 

future iterations of CAGI.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Table 2

Predictions on missense variants classified by Myriad Genetics

(i) BRCA1

Variant True classification MutPred score MutPred2 score

p.Cys39Phe deleterious 0.99 0.76

p.Tyr777Asp benign 0.54 0.54

p.Ile1275Val benign 0.20 0.02

p.Asp1546Glu benign 0.11 0.03

(ii) BRCA2

Variant True classification MutPred score MutPred2 score

p.Val211Leu deleterious 0.24 0.29

p.Ile975Ser deleterious 0.37 0.34

p.Arg2336Hisa deleterious 0.69 0.15

p.Val3079Ile deleterious 0.58 0.09

p.Leu2368Val benign 0.19 0.09

p.Glu2956Ala probably benign 0.23 0.18

p.Pro3243Leu probably benign 0.35 0.21

a
Present in both predictors’ training sets as a pathogenic variant
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Table 3

Performance measures for the prediction of the deleteriousness of amino acid substitutions in SUMO ligase. 

All correlations are significant at a P-value threshold of 0.05.

(i) Subset 1

  Method Processing

AUC

Spearman correlation coefficient

Unsure as "Wild-type" Unsure as "Deleterious"

MutPred NA 0.669 0.694 0.380

MutPred2 NA 0.687 0.703 0.408

(ii) Subset 2

  Method Processing

AUC

Spearman correlation coefficient

Unsure as "Wild-type" Unsure as "Deleterious"

MutPred NA 0.708 0.671 0.389

MutPred2 NA 0.689 0.653 0.360

(iii) Subset 3

  Method Processing

AUC

Spearman correlation coefficient

Unsure as "Wild-type" Unsure as "Deleterious"

MutPred
Meana

0.615 0.625 0.197

MutPred2 0.608 0.628 0.184

MutPred
Max

0.613 0.624 0.189

MutPred2 0.631 0.649 0.226

MutPred
Product

0.601 0.624 0.182

MutPred2 0.609 0.638 0.170

a
Official submission to CAGI
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Table 5

Predictions of the change in cellular current densities due to SCN5A mutations associated with Brugada 

syndrome

Mutation
Fraction of current density
reduction as compared with

wild-type

1 - Prediction score

MutPred MutPred2

p.Arg620His 1.00 0.64 0.93

p.Arg811His 0.57 0.14 0.22

p.Ser1218Ile 0.00 0.12 0.07
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