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Abstract

Critical Assessment of Genome Interpretation “CAGI” is a global community experiment to 

objectively assess computational methods for predicting phenotypic impacts of genomic variation. 

One of the 2015–2016 competitions focused on predicting the influence of mutations on the 

allosteric regulation of human liver pyruvate kinase. More than 30 different researchers accessed 

the challenge data. However, only four groups accepted the challenge. Features used for 

predictions ranged from evolutionary constraints, mutant site locations relative to active and 

effector binding sites, and computational docking outputs. Despite the range of expertise and 

strategies used by predictors, the best predictions were marginally greater than random for 

modified allostery resulting from mutations. In contrast, several groups successfully predicted 

which mutations severely reduced enzymatic activity. Nonetheless, poor predictions of allostery 

stands in stark contrast to the impression left by more than 700 PubMed entries identified using 

the identifiers “computational + allosteric”. This contrast highlights a specialized need for new 

computational tools and utilization of benchmarks that focus on allosteric regulation.
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INTRODUCTION

Blind challenge experiments, such as CASP (Moult, et al., 2016) and CAPRI (Lensink, et 

al., 2016), have provided independent assessment of computational prediction methods in 

structural biology. They have spurred the development of new methods and the integration of 

multiple methods in prediction pipelines. The Critical Assessment of Genome Interpretation 

(CAGI) experiment seeks to achieve the same goals by providing prediction challenges in a 

number of different areas. In this report, we describe a challenge involving the effect of 

mutations on the allosteric coupling of effectors and substrate binding to human liver 

pyruvate kinase (L-PYK). The focus of this competition was to predict the influence of 

mutations on the allosteric regulation of L-PYK by a negative regulator, alanine and a 

positive effector, fructose-1,6-bisphosphate (Fru-1,6-BP). Numerous methods for predicting 

the effect of mutations on allosteric effector binding have been published in recent years 

(Collier and Ortiz, 2013; Feher, et al., 2014).

The definition of allostery applicable to studies of L-PYK is the affinity of the enzyme for 

its substrate, phosphoenolpyruvate (PEP), in the absence versus presence of an allosteric 

effector, recognizing that the effector binds to a site distinct from the active site (Carlson and 

Fenton, 2016; Fenton, 2008; Fenton, 2012; Fenton and Alontaga, 2009; Fenton and 

Hutchinson, 2009; Fenton, et al., 2010; Ishwar, et al., 2015). This definition describes 

allostery by four enzyme forms that constitute the corners of a thermodynamic energy cycle 

(Figure 1) and it provides a mechanism to quantify allosteric function in the form of the 

allosteric coupling constant (Qax) (Fenton, 2012; Reinhart, 1983; Reinhart, 1988; Reinhart, 

2004; Weber, 1972):

Kia and Kia/x are equilibrium dissociation constants for binding the substrate (A) in the 

absence or presence respectively of an allosteric effector, X, as defined in Figure 1. Qax = 1 

indicates that the system is not allosteric. When Qax >1, there is positive allosteric coupling 

between the binding of X to a protein and the binding of A to the same protein at distinct 

sites. When Qax <1, there is a negative or inhibitory coupling between the X and A sites.

The predictors were provided two sets of mutations for predictions of enzyme activity and 

allosteric effects in L-PYK. Qax was determined for each active mutant protein by 

determining PEP affinity (via titrations of activity over a concentration range of PEP) over a 

concentration range of effector. Experiment 1 consisted of 113 mutations at 9 sites in or near 

to the binding of the negative allosteric regulator, alanine. Participants were asked to predict 

provide a probability that each mutant enzyme was active (i.e., not the level of activity) and 

the value of Qax for alanine for each mutant. Experiment 2 consisted of mutations to alanine 

at 430 sites throughout the protein. Participants were then asked to predict the enzyme 

activity and Qax values for the effectors alanine and Fru-1,6-BP. Since alanine is a negative 

regulator, all values of Qax-Ala are between 0 and 1, while the value of Qax for Fru-1,6-BP is 

unbounded. Predictors were provided with the maximum value (Qax-Fru-1,6-BP =320) found 

in the alanine-scanning experiment.
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METHODS AND MATERIALS

Experimental data generation

Wild-type and mutant human L-PYK were expressed in the E. coli FF50 strain, which lacks 

endogenous pyk genes, and partially purified using ammonium sulfate fractionation 

followed by dialysis, as previously described (Fenton and Alontaga, 2009; Ishwar, et al., 

2015). L-PYK catalyzes the following reaction:

Activity measurements were performed at 30°C using a lactate dehydrogenase assay to 

detect the production of pyruvate by L-PYK. Lactate dehydrogenease catalyzes the 

following reversible reaction:

As the L-PYK reaction proceeds, producing pyruvate, the concentration of NADH 

decreases, which can be detected by monitoring absorbance at 340 nm (A340). Reaction 

conditions contained 50 mM HEPES or bicine, 10 mM MgCl2, 2 mM (K)ADP, 0.1 mM 

EDTA, 0.18 mM NADH, and 19.6 U/mL lactate dehydrogenase. PEP and effector 

concentrations were varied. The rate of the decrease in A340 due to NADH utilization was 

recorded at each concentration of PEP and these initial velocity rates as a function of PEP 

concentration were used to evaluate the apparent affinity for PEP (Kapp-PEP) at any one 

effector concentration. Kix and Qax for each mutant and the wildtype were obtained by 

fitting the observed Kapp-PEP to the equation:

where Ka = Kapp-PEP when the concentration of effector [X] = 0.

The dataset represents two experiments, which are characterizations of mutant human L-

PYK proteins expressed in E. coli, named Experiment 1 and Experiment 2. Experiment 1 

consisted of site-directed mutations at residue positions with a side-chain contacting with 

alanine or very near the bound alanine. A total of 113 substitutions were introduced at 9 

different sites, of which 23 mutant proteins were completely inactive (no measurable 

enzyme activity). Qax-Ala was determined for the 90 mutant proteins with activity. In 

experiment 2, 430 residues were mutated into alanine across the entire protein, of which 44 

did not have detectable enzyme activity. Allosteric coupling Qax for inhibition by alanine 

and activation by Fru-1,6-BP were separately determined.

Performance assessment of L-PYK enzyme activity

From the binary experimental enzyme activity data (1=positive=active; 

0=negative=inactive), we calculated the number of true positives (TP), false positives (FP), 
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true negatives (TN), and false negatives (FN) for all participating groups in Experiment 1 

and Experiment 2. From these, we calculated the true positive rate (TPR), true negative rate 

(TNR), positive predictive value (PPV), and negative predictive value (NPV):

We also calculated four measures that assess overall accuracy: total accuracy (ACC), 

balanced accuracy (BACC), Matthews correlation coefficient (MCC) (Matthews, 1975) and 

F1 score. F1 score is the harmonic mean of precision (PPV) and sensitivity (TPR).

Since some predictors provided real values (between 0 and 1), these were converted into 

binary predictions as described below in the Results section.

Evaluation of predictions of Qax-Ala and Qax-Fru-1,6-BP

Spearman’s rho (ρ), or Spearman’s rank correlation coefficient, measures the monotonic 

correlation between prediction and experimental data. ρ = 1 means the predictions and 

experimental data points have identical rankings. For data set (pi, ei), prediction data points 

are converted into ranks Rpi, experimental data points are converted into ranks Rei. Then ρ is 

calculated from the formula:

Kendall’s tau (τ), or Kendall rank correlation coefficient, like Spearman’s rho, measures the 

rank correlation between two variables. For data set (p, e), any pair of (pi, ei) and (pj, ej), 

where i ≠ j, are said to be concordant if both pi > pj and ei > ej, or if both pi < pj and ei < ej. 

They are discordant, if both pi > pj and ei < ej, or if pi < pj and ei > ej. If pi = pj or ei = ej, the 

pair is neither concordant or discordant. We use C for the set of concordant pairs, and D for 

the set of discordant pairs. τ is defined as the difference between the number of concordant 

pairs (|C|) and the number of discordant pairs (|D|), divided by the total number of pair 

combinations (n * (n − 1)/2). The formula is given as following:
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All statistical calculations and kernel density estimates of the data were performed in R (R 

Core Team, 2015).

RESULTS

In this assessment, four groups (53, 54, 55 and 56, Table 1) submitted a total of 5 prediction 

sets, of which two are from group 56, labeled 56_1 and 56_2. The methods utilized by each 

group are provided in the Supplemental Materials as are the instructions and information 

provided to predictors at the time of the experiment.

Human L-PYK is a tetrameric enzyme with distinct binding sites for its reactants, pyruvate 

and ADP, and its allosteric effectors, alanine and fructose-1,6-bisphosphate. The structure of 

the tetramer is shown in Figure 2A, where molecules at the three sites are represented as 

spheres in each monomer. This composite structure was created by superposing monomers 

from structures containing alanine (PDB: 2G50, a structure of rabbit L-PYK (Williams, et 

al., 2006)), phosphoenolpyruvate (PDB: 4HYV, Trypanosoma brucei pyruvate kinase 

(Zhong, et al., 2013)), and ADP (PDB: 3GR4, human pyruvate kinase M2 (Hong et al., 

unpublished, DOI: 10.2210/pdb3gr4/pdb) onto each member of the tetrameric biological 

assembly of human L-PYK (PDB: 4IP7 (Holyoak, et al., 2013)). Experiment 1 consisted of 

113 mutations spread across 9 amino acid positions in or near the alanine binding site 

(Figure 2B): Arg55, Ser56, Asn82, Arg118, His476, Val481, Pro483, and Phe514. 

Experiment 2 consisted of alanine-scanning mutations across the entire protein, excepting 

wild-type positions that are Gly or Ala. The fructose-1,6-bisphosphate site is shown in 

Figure 2C.

Prediction of L-PYK Enzyme activity

The first challenge was to provide a probability that each enzyme was active. This was a 

binary outcome, not the level of activity. Even weakly active enzymes were considered 

active in the experiment. In both experiments, some mutants had no detectable activity, and 

these were labeled 0; the rest were labeled 1. The active mutants included some enzymes 

with very low but detectable activity. In experiment 1, 79.6% of mutants were active and 

20.4% were inactive. In experiment 2, 88.8% of the mutants were active and 10.2% were 

inactive. Two of the groups (53 and 54) submitted real values between 0 and 1, instead of 

binary indicators. For these groups, we labeled all predictions with values ≥0.5 as active and 

the rest as inactive. Figure 3 shows the density functions of predicted enzyme activities. For 

experiment 1, two groups (55 and 56_2) predicted all mutants to be active (a value of 1) 

(Fig. 3, top row). This is not unreasonable since all of the mutations were in or near the 

alanine effector binding site, which is distant from the active site.

Table 2 provides an assessment of the predictions of enzyme activity for each group for both 

experiments. We also included values obtained from the PolyPhen2 server, which is 

commonly used to predict phenotypes of missense mutations (Adzhubei, et al., 2010). Group 

56 achieved the highest absolute accuracy (ACC) in both experiments (ACC of 0.867 for 

Group 56_1 in experiment 1; ACC of 0.894 for Group 56_2 in experiment 2). Since the goal 

was to predict whether enzymes were active or inactive, rather than the level of activity, this 

is a successful result. In the case of experiment 1, predicting all mutants as active would 
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result in an accuracy of 0.796, while in experiment 2, a value of 0.888 would be obtained. At 

least for experiment 1, group 56 achieved better predictions than the simple prediction that 

all mutants were active.

In most binary phenotype prediction assessments (Wei and Dunbrack Jr, 2013), it is 

important to balance the success of positive predictions and/or experimental outcomes with 

negative predictions and/or experimental outcomes. One such measure is the balanced 

accuracy, BACC, which is the average of the rate of correctly predicting the experimentally 

active mutants (true positive rate, TPR) and the rate of correctly predicting the 

experimentally inactive mutants (true negative rate, TNR). For experiment 1, only groups 53 

and 56_1 achieve balanced accuracy (BACC) values above 0.5, with BACC = 0.768 and 

0.755 respectively. A BACC of 0.50 is trivial to achieve, since if one predicts all of the 

phenotypes in one class, the BACC is automatically 0.50 (e.g., groups 55 and 56_2 for 

Experiment 1). Groups 53 and 56_1 achieve their results in contrasting manners: group 53 

has low TPR and high TNR, and group 56_1 has high TPR and low TNR. For experiment 2, 

which contained mutations across the entire protein and is therefore a more real-world 

prediction task, only group 53 has TPR and TNR > 0.5, resulting in a BACC of 0.745.

Similarly, the MCC and F1 values also balance positive and negative predictions and 

experimental values but in different ways than BACC (see Methods). F1, in particular, only 

includes positive predictions and experimental phenotypes and omits negative predictions 

and phenotypes. Since both data sets consisted of majority of active enzymes (80% and 88% 

for experiments 1 and 2 respectively), groups which predicted a larger fraction of the 

enzymes to be active did better in F1 (groups 55, 56_1, 56_2) than the other groups. Group 

54 predicted a majority of the mutants to be inactive in both experiments and thus achieved 

much lower values for F1 than the other groups.

We compared the results of CAGI groups with that of PolyPhen2, a server that is commonly 

used to predict the phenotypes of missense mutations in proteins. Polyphen2, like other 

servers, predicts phenotypes to be deleterious or neutral, or “damaging” vs “benign.” This is 

not necessarily directly associated with enzyme activity, since a deleterious mutation might 

affect protein expression or the ability to regulate the protein by allosteric mechanisms. 

Also, the inactive enzymes were only those with no activity, and not those with significant 

reduction in activity. In experiment 1, Polyphen2 predicted most mutants to be inactive, 

probably because the alanine binding site is very highly conserved in L-PYK enzymes in 

order to retain the negative effector capability of alanine. This resulted in a BACC of 0.539. 

In experiment 2, the mutations were spread across the protein and PolyPhen2 does better, 

with a BACC of 0.674. Nevertheless, group 53 was able to achieve better results on all four 

measures of overall success in experiment 2.

As mentioned above, groups 53 and 54 provide real values (not binary values) for the 

enzyme activity. We speculated that a cutoff of 0.5 might not be ideal to turn their real values 

into binary predictions. We calculated BACC as function of the cutoff and found that for 

group 53, a value of 0.5 was still the best for both experiments. But for group 54, values of 

0.3 for experiment 1 and 0.35 for experiment 2 provide better results. The values of BACC 

are 0.724 and 0.696 respectively, which are much better than the 0.5 cutoff (0.534 and 0.627 
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respectively). But this is only possible with reference to the experimental data, which would 

not be available in real-world situations. Since the density for predictions for group 54 were 

unimodal (Fig. 3), it was not possible to define a cutoff based on a minimum of density 

between a low-activity and a high-activity mode in the data.

Prediction of allosteric inhibition of alanine (Qax-Ala)

The second challenge was to estimate the inhibitory allosteric effect of binding alanine, 

Qax-Ala on binding of the substrate phosphoenolpyruvate (PEP). The density estimates of 

experimental Qax-Ala values of two experiments are shown in Figure 4. The wild type 

enzyme had a Qax-Ala value of ~0.08 in both experiments. In experiment 1, 23 out of 90 

mutants did not have measurable allosteric coupling, shown in a peak at Qax = 1 (Fig. 4, 

left). One possiblity is that alanine continues to bind to these mutant proteins, but that 

binding does not alter PEP affinity. In other cases, the Qax = 1 outcome is likely because the 

mutation eliminated binding of Ala to L-PYK altogether (at least to the maximum 

concentration tested in the experiments). In experiment 2, after excluding 37 mutants for 

which the allosteric coupling effect could not be measured, the Qax-Ala values of 325 (83%) 

mutants were between 0 and 0.2, relatively similar to the wild-type enzyme.

A comparison by scatter plot of the experimental and the predicted Qax-Ala values is shown 

in Figure 5. Group 55 provided only binary prediction for Qax-Ala. Group 56_1 and 56_2 

provided identical values for both experiments. The scatter plots do not show any obvious 

correlations between the predicted and experimental Qax-Ala.

We calculated Spearman’s ρ and Kendall’s τ coefficients as non-parametric tests of the 

correlation of the predictions with the experiments, since the data and predicted values are 

not unimodal or normally distributed. Only group 55 in Experiment 1 achieves a favorable 

correlation, with ρ = 0.351 and τ = 0.299 with p-values of 0.002 for both (Fig. 6). All of the 

other p values are in the range of 0.17 to 0.88, which implies there is no correlation between 

the predicted and experimental Qax-Ala values. If we treat the experimental Qax-Ala values as 

binary for experiment 1 (Figure 4, left), we can calculate binary assessment measures such 

as TPR, TNR, etc. We did this for group 55, which also provided binary prediction values 

(0.1 and 1.0) with the following results (where positive indicates Qax-Ala=1): TPR = 17/23 = 

0.739; TNR = 39/55=0.709; BACC = 0.724. This is better than random and explains the 

positive correlation coefficients.

The results for experiment 2 are negatively correlated for 3 of the groups, and only very 

weak positive correlations were achieved by groups 54 and 55 (Fig. 6 right). The p values 

are in the range 0.38 to 0.88.

Prediction of allosteric activation of Fru-1,6-BP (Qax-Fru-1,6-BP)

Predictors were asked to predict the allosteric effect of fructose-1,6-bisphosphate binding to 

L-PYK for the mutants created in experiment 2 and were told that the maximum value in the 

experiments was 320. The wild type protein has a Qax-Fru-1,6-BP value of 14.2. The density 

estimate of experimental Qax-Fru-1,6-BP values is shown in Figure 7, showing that the vast 

majority of mutants had values between 0 and 60. The scatter plots of the predicted 

Qax-Fru-1,6-BP vs experimental Qax-Fru-1,6-BP show that group 53 and 54 provided real values 

Xu et al. Page 7

Hum Mutat. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



over the full range of the experimental values, Group 55 provided discrete values (1, 50, 250 

and 320) while group 56 provided an approximate wild type value of 15.3 for most of the 

mutants and other values for 18 mutants in the range from 1 to 28.3 (Figure 8).

We calculated Spearman’s ρ and Kendall’s τ to evaluate the correlations between predicted 

and experimental Qax-Fru-1,6-BP values (Figure 9). Only group 55 has positive correlations, 

both very marginal (both ρ and τ ~ 0.05, with p-value of 0.2). All others have negative 

correlations, especially for group 53 and 54. The p values of group 53 are 7.5E-05 for ρ and 

8.98E-05 for τ, the p-values of group 54 are 0.0003 for both ρ and τ.

DISCUSSION

We may summarize the results of the CAGI experiment on liver pyruvate kinase as follows. 

Groups 53 and 56 had good predictions of the L-PYK enzyme activity in Experiment 1 and 

2 as measured by balanced accuracy (group 53) and total accuracy (group 56). In these 

cases, the results were better than that achieved by PolyPhen2. Group 54 had good 

predictions only if we set a new cutoff for binary enzyme activity from their real-valued 

results in both experiments 1 and 2.

For the prediction of allosteric effects of alanine and fructose, group 55 and 53 had positive 

correlations for the Qax-Ala challenge in Experiment 1, but only group 55 had a statistically 

significant positive correlation. No group had statistically-significant, positive correlations 

for their predictions of Qax-Ala or Qax-Fru-1,6-BP in Experiment 2.

At the conclusion of this experiment, we are left to contemplate why the overall success of 

predicting allosteric effects was underwhelming. This consideration is particularly valuable 

given the indications of success of computational approaches reported in the literature. As 

noted, the only statistically significant result for predicting allosteric data was for group 55 

on the Qax-Ala challenge in Experiment 1. This group used a very simple model that 

considered the distance each wild-type residue was from bound Ala (as modeled from the 

structure of human pyruvate kinase M2) and the severity of the mutation from wild type (as 

determined by scores from a substitution matrix). It is likely that they correctly predicted 

many of the mutations that abrogated Ala binding altogether (Qax-Ala=1), rather than 

quantitatively predicting the effect of the mutations on the diverse values of Qax-Ala of the 

remaining mutations (Qax-Ala<1). It is not likely that their distance-based method would 

extend readily to the general problem of predicting allosteric effects, especially for residues 

not in or near the binding site. The results for Experiment 2, where mutations were made 

throughout the protein, confirm this.

It is also clear from the experiment that methods that predominantly used evolutionary 

considerations (groups 53 and 54) were not able to predict the effects of mutation on 

allosteric behavior. Group 53 used the evolutionary action (EA) of each mutation, a number 

which can be calculated from phylogenetic sequence analysis (Katsonis and Lichtarge, 

2014). Group 54 used covariation of amino acids in pairs of positions within a multiple 

sequence alignment of homologues of L-PYK (Jones, et al., 2015).
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Group 56 calculated the binding affinity of each effector to each mutant with docking 

calculations (Shin, et al., 2013), and made the assumption that Qax was directly proportional 

to these values. In fact, Qax = Kix/Kix/a where Kix is the equilibrium dissociation constant of 

the effector X and Kix/a is the equilibrium dissociation constant of the effector X when the 

substrate A is bound. The approximation is not unreasonable given the experimental data 

from Experiment 2: the Pearson and Kendall correlation coefficients between the 

experimental values of Qax and Kix for alanine are 0.73 and 0.59 respectively and for 

Fru-1,6-BP they are 0.80 and 0.64 (all p-values < 1.0×10−15).

Group 56 only performed docking calculations to mutations in the binding sites of alanine 

and Fru-1,6-BP, and submitted values for all other positions of 1.0 for Qax-Ala and 15.3 for 

Qax-Fru-1,6-BP (the experimental value). This resulted in only 8 mutations with Qax-Ala not 

equal to 1.0, only 5 of which had experimental values available. If we restrict the calculation 

of correlation coefficients to these 5 values, the p-values for the Spearman and Kendall 

correlation coefficients are greater than 0.8 and the values of rho and tau are 0.1 and 0 

respectively. For Qax-Fru-1,6-BP, group 56 produced values for 17 mutations adjacent to the 

Fru- 1,6-BP site, only 11 of which had enough enzyme activity to measure Qax-Fru-1,6-BP. 

The correlation coefficients with Qax-Fru-1,6-BP were both ~0.2 with p-values of ~0.5. Unless 

docking calculations are able to discern changes in binding affinity of the effector (in the 

presence or absence of the substrate) for sites far from their binding sites, it is not possible to 

determine whether such calculations provide valuable information on allosteric behavior.

It is clear from the quality of predictions in this study that additional approaches are needed. 

Many of the methods reported in the literature involve molecular dynamics simulations 

which are very computationally intensive (Blacklock and Verkhivker, 2014; Hertig, et al., 

2016; Weinkam, et al., 2012). Several simulations of other forms of pyruvate kinase 

(Naithani, et al., 2015) and mutants thereof have been performed (Kalaiarasan, et al., 2015). 

However, whether such methods could be used in a predictive fashion has yet to be 

determined. The current data set could be used to benchmark such methods, if a sufficient 

number of mutants can be simulated.

Allosteric regulation is sometimes presented as a Rube Goldberg-type mechanism initiated 

by the effector associating with the enzyme/protein (binding causes change A; change A 

causes change B; change B causes change C, etc.). However, the definition for allostery 

based on an energy cycle (Figure 1) implies that allostery is an equilibrium mechanism 

(Carlson and Fenton, 2016). As such, the allosteric mechanism would be a comparison of 

changes in the fully equilibrated enzyme forms represented in Figure 1 and not a Rube 

Goldberg mechanism that would be associated with a kinetics mechanism. Calculations of 

this sort remain a challenge for computational approaches to predicting the effects of 

mutations on allosteric regulation.
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Figure 1. 
A reaction scheme for an allosteric energy cycle in which an enzyme (E) can bind one 

substrate (A) and one allosteric effector (X). Kia is the equilibrium dissociation constant of 

the substrate binding to the enzyme in the absence of effector. Kia/x is the equilibrium 

dissociation constant of the substrate binding to the enzyme in the presence of saturating 

concentrations of effector. Kix is the equilibrium dissociation constant of the effector when 

substrate is absent, while Kix/a is the equilibrium dissociation constant of effector in the 

presence of saturating concentrations of substrate.
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Figure 2. 
Structure of human pyruvate kinase, as well as the binding sites of inhibitor alanine and 

activator fructose-1,6-bisphosphate. (A) A modeled structure of L-PYK tetramer with 

substrates PEP and ADP, allosteric inhibitor alanine, and allosteric activator. PEP, ADP, 

alanine (labeled ALA) and fructose-1,6-bisphosphate (labeled FBP) are shown in spheres, 

colored in magenta, pink, orange and red respectively. The structure was assembled by 

superposing monomers from several structures of homologues of L-PYK with PEP, ADP, 

and alanine bound onto a tetrameric structure of human L-PYK with fructose-1,6-

bisphosphate bound (PDB: 4IP7). (B). The allosteric binding site of alanine. Alanine is 

shown in sticks and colored in orange. Residues that were mutated in experiment 1 are 

shown in sticks, and colored in pink. (C). The binding site of fructose-1,6-bisphosphate 

(FBP). FBP is shown in sticks and colored in red. Interacting residues are shown in sticks 

and colored in blue.
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Figure 3. 
Kernel density estimates of five sets of predicted L-PYK enzyme activities.
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Figure 4. 
Kernel density estimates of experimental Qax-Ala values of Experiments 1 and 2.
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Figure 5. 
Scatter plot of the experimental Qax-Ala vs the predicted Qax-Ala values.
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Figure 6. 
The correlations represented by Spearman’s ρ and Kendall’s τ between the predicted and 

experimental Qax-Ala values of two experiments.
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Figure 7. 
The density estimate of experimental Qax-Fru-1,6-BP from Experiment 2.
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Figure 8. 
The scatter plot of the predicted vs experimental Qax-Fru-1,6-BP values from Experiment 2.
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Figure 9. 
Correlations represented by Spearman’s ρ and Kendall’s τ between the predicted and 

experimental Qax-Fru-1,6-BP values in Experiment 2.
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Table 1

Groups participating in L-PYK enzyme activity and allostery prediction challenges

Group No Affiliation Authors

53 Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, 
Texas, United States

Panagiotis Katsonis, Olivier 
Lichtarge

54 Department of Computer Science, University College London, Gower Street, London, 
WC1E 6BT, United Kingdom

David Jones

55 Biocomputing Group, CIG/Interdepartmental Center «Luigi Galvani» for Integrated 
Studies of Bioinformatics, Biophysics and Biocomplexity, University of Bologna, Italy

Samuele Bovo, Giulia Babbi, Pier 
Luigi Martelli, Rita Casadio

56 Department of Chemistry, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 
08826, Republic of Korea

Gyu Rie Lee, Chaok Seok
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