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Abstract

Genetic data consists of a wide range of marker types, including common, low frequency, and rare 

variants. Multiple genetic markers and their interactions play central roles in the heritability of 

complex disease. In this study, we propose an algorithm that uses a stratified variable selection 

design by genetic architectures and interaction effects, achieved by a data-set adaptive W-test. The 

polygenic sets in all strata were integrated to form a classification rule. The algorithm was applied 

to the Critical Assessment of Genome Interpretation 4 bipolar challenge sequencing data. The 

prediction accuracy was 60% using genetic markers on an independent test set. We found that 

epistasis among common genetic variants contributed most substantially to prediction precision. 

However, the sample size was not large enough to draw conclusions for the lack of predictability 

of low frequency variants and their epistasis.
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Introduction

The risk of psychiatric disorders is largely attributed to genetic factors and their interactions 

with the environment (Smoller and Finn 2003). The estimated heritability of bipolar disorder 

(BPD) is as high as 90%; however, few large main effect genes have been identified 
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(Craddock and Sklar 2013). In recent years, exome sequencing studies identified a number 

of rare or de novo variants associated with bipolar disease risk (Goes, Pirooznia et al. 2016, 

Kataoka, Matoba et al. 2016). While these finding are very interesting and important, it is 

unclear how much they contribute to the prediction of complex disorders. The prediction 

challenge also lies in the diverse genetic marker compositions including common variants 

with minor allele frequencies (MAFs) greater than 5%, low frequency variants (1% < MAF 

< 5%), and rare variants (MAF < 1%). Disease classification models typically do not 

distinguish these different variant types and use machine learning approaches to conduct 

variable selection and phenotype prediction (Touw, Bayjanov et al. 2013). The distinct 

nature of these genetic markers requires specialized statistical models to evaluate their risk 

effect. Therefore, in this study, we developed a stratified polygenic risk model: from simple 

to complex, the model is gradually built based on the effect of common and low-frequency 

variants and their respective epistasis. When the sample size is sufficiently large, the model 

may include rare variants. Variable selection is conducted using the W-test, which estimates 

null probability distributions of each stratum. The polygenic risk sets from all strata are 

finally integrated to form a unified classification rule through boosting. The method was 

applied to the Critical Assessment of Genome Interpretation 4 (CAGI 4) bipolar challenge, 

which contains exome sequencing data for 500 subjects with the objective of predicting an 

independent test set. Context is challenging for complex disease predictions, as rare 

variation association tests require a large sample size to have enough power; furthermore, 

rare mutations may not reappear in another sampling group of modest size. Therefore, we 

focused on common to low-frequency variables and their epistasis effect in the challenge. 

Using the proposed model, the prediction accuracy for the independent test set was 60%, 

mainly because of common variant polygenic epistasis.

Method

Data set and quality control

The data set included whole exome sequencing data consisting of 500 samples and 501,253 

single-nucleotide polymorphisms (SNPs), sequenced using the Illumina HiSeq 2000 

platform (San Diego, CA, USA). Variants with more than 5% missing or Hardy-Weinberg-

Equilibrium test p-value < 10−6 were filtered first. Principle component analysis based on 

the remaining SNPs identified a cluster of 3 outlier subjects, which were excluded from 

further analysis (Price, Patterson et al. 2006). The remaining data consisted of 226 bipolar 

disorder subjects and 221 healthy controls. From the total of 497 subjects, 50 individuals 

were randomly drawn as the independent test set, while the remaining 447 subjects were 

used as the training set. Missing SNP data were imputed using SHAPEIT2 (Delaneau, 

Zagury et al. 2013). SNPs with MAF above 1% were analyzed. The total number of low to 

common frequency SNPs evaluated was 75,288, among which 21,339 SNPs had MAFs 

between 1% and 5% and 53,949 SNPs had MAFs > 5%. Feature selection was performed 

without using SNP location information. The final selected SNPs were mapped to genes 

using the UCSC Genome Browser on Human within a 10 kb genome distance (Kent, Sugnet 

et al. 2002).
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Stratified variable selection via W-test

We used the W-test to select important variables and construct epistasis sets (Wang, Sun et 

al. 2016). The W-test measures the distributional differences between cases and controls in a 

contingency table and follows a chi-square distribution with data-set adaptive degrees of 

freedom. This feature makes the test robust to small sample sizes and complex genetic 

architectures. The test statistic takes the following form:

Equation 1

where k is the number of categories formed by a marker set. For a single SNP, k = 3 and for 

an SNP-pair, k = 9. p̂1i is the proportion of subjects in cell-i in cases, and p̂0i is the 

proportion of subjects in cell-i among total controls. SEi is the standard error of the log odds 

ratio of cell-i, in which n1i and n0i are the number of cases and controls in the ith cell; N1 and 

N0 are the total number of cases and controls, respectively. The statistic follows a chi-

squared distribution of f degrees of freedom. The scalar h and degrees of freedom f were 

obtained by estimating the covariance matrix from bootstrapped samples under the null 

hypothesis. The W-test was performed using the wtest package in R. Genetic risk variables 

were selected in a stratified manner by evaluating the: 1. main effect of common variants; 2. 

epistasis effect among common variants; 3. main effects of low-frequency variants; and 4. 

epistasis effect among low-frequency variants. The W-test adaptively estimates the 

probability distribution according to the genetic architecture of each stratum and provides an 

accurate evaluation of association effects. The procedure is illustrated in Diagram 1.

Classification algorithm

The top genetic markers were candidates for the adaptive-boosting (ada-boost) algorithm 

(Schapire 1999). Each SNP or SNP-pair forms a classifier through logistic regression. The 

ada-boost recursively selects the next best classifier from the remaining classifiers list, and 

each time reweights all samples based on the prediction error rate in the training set, with 

samples that are more difficult to classify given heavier weights. The algorithm is most 

suitable for aggregating multiple modest effect classifiers to form a stronger rule. Before 

submitting the classifiers to boosting, a filtering method is applied to remove the dependency 

among the pairs: First, all pairwise interactions were evaluated among SNPs with main 

effect p-values < 0.1; second, these pairs were evaluated using the W-test and ranked by p-

value in an ascending order; third, an SNP-pair will be removed if it contains an overlapping 

SNP in a set (Wang, Tsoi et al. 2015). This screening method was used for two reasons: (1) 

When an SNP has a very strong main effect, it can couple with a large number of SNPs to 

form significant pairs, most of which are redundant and do not help the prediction. Filtering 

can remove most of these main effect-driven pairs and allows new epistasis that reveals 

additional information for classification. (2) Filtering can reduce the correlation among 

classifiers and improve prediction accuracy. In the adaboost algorithm, heavier weights were 

assigned to rules that have predictive power for a more difficult training case. Adaboost 

shows better results if the predictive powers from many rules are complementary and are 
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more effective for different subsets of cases. This logic of boosting favors the classifiers to 

exhibit low correlation among them that is achieved by removing overlapping pairs. The 

final vote is the classification rule formed by the boosting algorithm (Wang, Lo et al. 2012). 

Standard deviation of the vote was calculated by taking the sigmoid function on the boosting 

rule R: S.D = 1/(1+e−R), −∞ < R < ∞.

Results

Classification results

For common SNPs, 21 variants with main effect p-values < 1 × 10−5 were selected. The 

classification error rate was 31% for the training set and 48.0% for the independent test set 

(Supp. Figure S1). For common variants epistasis, variants with main effect p-values smaller 

than 0.1 were used to calculated pair-wise interactions. The number of SNPs with main 

effect p-values < 0.1 was 5521. The Bonferroni-corrected significance level at a nominal 

alpha 0.05 was 3.28 × 10−9. The top 24 pairs with p-values smaller than 1 × 10−5 were used 

in the classification algorithm. The final error rate for the training set was 24.1% and for the 

independent test set was 40.0%. No prior biological knowledge or clinical characteristics has 

been used, and the classification was purely based on SNP data. Figure 1 shows the 

adaptively improved boosting error; the algorithm updates voting rule in each iteration and 

decreased the overall error rates as more classifiers are added. The error of the test set 

decreased with fluctuation and stabilized at 40.0% for the final 6 iterations, indicating that 

the classifier was not over-trained in the training set (Figure 1).

For low-frequency variants, the same procedure was used to select main effect SNPs and 

epistasis pairs. However, when these variables were added to the previous common variants 

sets, the test set error rates increased to 46%. This demonstrates that the low-frequency 

variant did not improve prediction of the disease phenotype, although the results may be 

limited because of the small sample size.

Top SNP-pairs are biologically relevant

The top 24 common pairs consisted of 48 unique SNPs, 45 of which were located in protein 

coding genes; pairs located in known psychiatric genes are listed in Table 1 (The full table 

can be found in Supplement Table S1). One of the most frequently appearing genes is 

GAS7. SNPs in this gene show strong epistasis with SDF4, TPO, PLK2, and others (Figure 

2). Because none of the SNPs in GAS7 were marginally significant, the epistasis did not 

result from a large main effect. GAS7 is also known as MLL and plays a putative role in 

brain development by regulating neuronal cell morphology (Chao, Chang et al. 2005, Gotoh, 

Hidaka et al. 2013), and is known to be related to Alzheimer’s disease (Hidaka, Koga et al. 

2012). Another significant epistasis pair was found between CPNE5-CRLF1. Both genes 

play roles in neuronal disorder. CPNE5 is a calcium-dependent membrane-binding protein 

and was reported to be associated with alcohol dependence and obesity (Wang, Zuo et al. 

2015); CRLF1 encodes a protein complex that acts on cells expressing ciliary neurotrophic 

factor receptors and promotes the survival of neuronal cells (NCBI, Herholz, Meloni et al. 

2011). SDF4 also encodes proteins containing calcium-binding motifs. The top genes 
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identified are consistent with the findings that the etiology of bipolar disorder involves 

calcium-channel.

Discussion

In this study, an algorithm for stratified variable selection by genetic architecture and 

classification was developed. We used main and epistasis effects in common variants and 

low-frequency variants to perform bipolar disorder phenotype prediction. Our results 

showed that the classification algorithm utilizing common variants interactions reached 60% 

accuracy in disease classification.

To design a risk prediction model, we first conducted stratification, followed by 

consolidation. Genetic marker selection was stratified by the genetic architectures of 

common and low frequencies, and then by main and interaction effects. The advantage of 

stratification is that it improves the inference of variable selection. Therefore, the statistical 

method that is most suitable for that stratum’s genetic architecture can be applied. For the 

W-test, a different set of h and f parameters for the data-adaptive probability distribution was 

estimated for each stratum. In the prediction step, all risk effects were combined through the 

boosting algorithm to produce a final vote. The stratification effect is clear: when only main 

effect common variants were included in the model, the independent test error rate was 48% 

(Supp. Table S1). By including epistasis within the common variants, the test error improved 

to 40%. Low-frequency variables in this dataset did not improve the prediction accuracy, 

likely because of the limited sample size. In a recent review, Chatterjee et al. demonstrated 

the necessity of understanding the relative contribution of common, low-frequency, and rare 

variants towards absolute risk estimation for genetic disease diagnosis (Chatterjee, Shi et al. 

2016). Our findings are also consistent with the current understanding of bipolar disorder, a 

highly complex disease triggered by polygenic effects and the interplay of environmental 

factors.

In the feature selection part, the W-test was used to test the main effects and epistasis effects. 

The method has three distinct characteristics that differentiate it from other statistical 

methods: First, the test is data-set adaptive; it contains a degree of freedom parameter and 

scalar that are adjusted according to the data structure of each dataset, and therefore 

produces data-set adaptive null distributions that allows for more accurate p-value 

calculation. Second, the W-test is model-free; it is constructed by directly testing the 

distributional differences between the cases and control groups. Thus, the method is not 

restricted by assumptions such as linearity and may capture effects arising from different 

types of associations, linear or non-linear. Third, the W-test has a closed statistical form and 

calculates a p-value from a probability distribution. These properties make the W-test a 

practical and interpretable method applicable for large genetic dataset analysis.

One of the limitations of the study is the sample size, which prevented us from fully 

determining the effect of low-frequency and rare variants effect in disease classification. 

Clinical and environmental variables were also unavailable and thus could not be 

incorporated into the algorithm. However, using the CAGI project bipolar challenge dataset, 

we demonstrated the important contribution of common variants to complex disorder risk 
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prediction, with the most substantial improvement of accuracy made by including epistasis 

among the SNPs. This CAGI project data set was generated from a single batch, and thus 

there was no systematic difference in the training and testing set. In real-life scenarios, when 

applying the prediction algorithm to a distant data set, the classification model should be 

calibrated for the test set to ensure unbiased estimation. The identified polygenic markers 

used in the final prediction model must also be validated in future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Prediction error of bipolar phenotype using common SNPs in epistasis
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Figure 2. 
Epistasis network in bipolar disorder common variants
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Diagram 1. 
Stratified Polygenic Risk Prediction
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