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The bone marrow is the only organ in mammals in which bone and fat tissue reside side-by-

side. Intriguingly cells from these two tissues arise from the same mesenchymal progenitor, 

yet their functions are quite distinct. Moreover, their morphologic appearance would never 

betray their common origin. The degree of intimacy between bone and fat cells is unique 

among tissue types, and as such their relationship begs for a clear interpretation, not just to 

complete our understanding of the marrow niche, but also because there may be therapeutic 

implications. In the past decade the number of publications directly related to bone marrow 

adiposity has increased more than five fold although it should be noted that some are review 

articles or opinion pieces. This reflects the relatively slow progress in understanding some of 

the basic tenets that underlie the development and function of marrow adipose tissue. 

Notwithstanding, now is a great opportunity to look back at some of the original 

observations concerning marrow adiposity and its relationship to bone, in order to better 

gauge our progress and to look forward to the challenges that lie ahead.

Marrow adipose tissue was first described by anatomists in the late 19th century. These 

scientists painstakingly characterized all types of normal and pathologic tissues. Some of the 

earliest observations were reported in individuals who died of arsenic poisoning where fat 

infiltration was extensive and was associated with a paucity of hematopoietic elements1. 

Those observations were buried for fifty years until the relationship of adipocytes to blood 

cells was re-examined in the latter half of the 20th century. The advent of chemotherapy for 

hematologic disorders led to bone marrow biopsies after treatment. These often revealed 

extensive fatty infiltration with few red or white cells. Similarly patients with aplastic 

anemia and myelofibrosis were reported to have a related marrow adiposity phenotype2 

Subsequent reports noted an inverse relationship of bone marrow adipocytes to 

hematopoiesis. This led pathologists to hypothesize that fat infiltration was a ‘filler’ that 

occupied space reserved for hematopoietic stem and progenitor cells. Others postulated that 

the presence of fat cells was a default mechanism that resulted from stress on the marrow. 

Nevertheless, the concept that the marrow is ‘space-limiting’ has persisted and has re-

emerged as new studies on bone marrow adiposity have been undertaken.

In contrast to hematologists, bone biologists were late to studying constituents of the bone 

marrow. In 1964, Emery and Follett took advantage of the practice of taking the second toe 

at autopsy for routine histology at the Sheffield Children’s Hospital and assessed bone 

marrow adipose tissue (BMAT) within small bones from the toes of two groups of neonates, 

i.e., those born at term and premature fetuses3. They reported that fatty change in the 
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marrow begins, in many cases, before full term (40 weeks). Among 43 full-term infants 

fewer than 1/3 showed no fat replacement. Moreover, the authors detected MAT in the toes 

of children born as early as at 28 weeks of gestation and observed that the increment in MAT 

was more marked between 6 and 10 weeks after birth3. In the small bones of the toe, the 

process of fat replacement was very advanced by 8 months of life, and at the age of 1 year 

the marrow cavity was completely filled with fat. The study also allowed the authors to 

determine that premature birth did not change the time course of MAT development in that 

part of the skeleton. Thus in appendicular bones, the development of MAT begins in the 

distal portion of bones and represents a preserved process shared by different vertebrates 

(e.g., mice, rats, rabbits and humans).

It took one of the great pioneers of bone biology, Pierre Meunier, working in Lyon 45 years 

ago, to first describe the replacement of bone marrow elements with fat from iliac crest 

biopsies of adult patients with osteoporosis4 Meunier hypothesized that it was the 

osteoporotic condition itself that led to replacement of bone marrow with fat. It wasn’t long 

however before a controversy arose that was related to the definition of fat in the marrow. 

Some had proposed that marrow adiposity represented lipid droplets but not true adipocytes. 

Others considered these lipid droplets to be true white adipocytes. It took more recent 

studies with the advent of lineage tracing to resolve that controversy and define a true 

‘marrow’ adipocyte’ rather than an ectopic lipid droplet. On the other hand, the inverse 

relationship between bone and fat, originally noted by Meunier, has been repeatedly 

confirmed over the last 2 decades, not only from bone biopsies but also by in vivo MRI and 

dual energy CT imaging56.

In 1976, Tavassoli began the process of characterizing marrow adipocytes and delineated 

their morphologic features7. Tavassoli identified two distinct populations of adipocytes, one 

present within the red marrow and the other populating the yellow marrow. Only the former 

stained positively with Performic acid-Schiff (PFAS) and disappeared when hematopoietic 

tissue expanded in response to experimentally induced hemolysis. In those circumstances, 

PFAS-negative adipocytes of yellow marrow lingered. Early in life, yellow marrow was 

structurally arranged as a dense grouping of cells similar to white adipose tissue in other 

depots, occupying the distal part of small bones of the hands and feet. Later, adipocytes were 

presumed to fill both the long bones and the vertebrae, and these cells were acid-Schiff 

positive. Interestingly, Tavassoli also was the first to note adipogenic and gelatinous 

infiltration of the marrow with starvation8. Forty years later Scheller and colleagues 

confirmed this observation by describing two types of marrow adipocytes in rodents, 

‘constitutive’, i.e. from birth and located in the distal extremities and tail vertebrae, and 

‘regulated’ located more proximally and adjacent to hematopoietic marrow but capable of 

expanding and contracting in response to environmental and nutritional stimuli9. Those 

authors also went on to define in rodents, distinctions in insulin sensitivity between the two 

types of marrow fat. They also described unique differences in the extent of marrow 

adiposity among inbred strains of mice.

In sum, seminal observations from a half-century ago still provide us with an important road 

map to further characterize bone marrow adipose tissue (BMAT) and its relationship to bone 

remodeling. Indeed there has been progress in this area of investigation within the last two 
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decades. But, we should also note what we don’t know about BMAT so that the reader can 

judge the true extent of progress.

Several aspects of BMAT physiology and pathogenesis are now established. First and 

foremost, bone marrow adiposity is a physiologic process that begins at or before birth and 

proceeds inexorably in the appendicular skeleton and ultimately in the vertebrae, replacing 

hematopoietic tissue10. Second, BMAT is composed of adipocytes that are lipid laden and 

stain positive for perilipin11. These cells are not ectopic lipid droplets and do not reflect 

excess fat that is deposited outside of conventional adipose depots. Third, BMAT is 

dynamic and responsive to nutritional, environmental and hormonal stimuli1213. It can 

expand in response to a high fat diet or calorie restriction14. Endocrine signals strongly 

influence the extent of BMAT in syndromes such as estrogen withdrawal, absence of PTH 

signaling, or glucocorticoid excess12,15. In some circumstances the gain in BMAT is directly 

related to expansion of peripheral adipose tissues, but in other circumstances, such as 

anorexia nervosa and some lipodystrophies, the reverse is sometimes found1617. Fourth, 

marrow adipocytes can express markers of both bone and fat cells181920. For example, 

marrow adipocytes trace with Prrx1 and Sox9, early mesenchymal makers, but also with 

Osterix, or Sp7, once considered an osteoblast specific transcription factor2115. As such, 

although both osteoblasts and adipocytes can express common transcriptional factors, a 

divergence in the differentiation scheme beyond the earliest mesenchymal progenitor could 

lead to mesenchymal cells with distinct functions22 In that vein, Fan et al reported that 

marrow adipocytes but not peripheral adipocytes express and secrete RANKL15. To 

complicate the cellular phenotype further, Westendorf and colleagues noted that in an 

osteoblast specific conditional mouse with deletion of HDAC3, more than 10% of the 

‘presumed’ marrow adipocytes also stained positively for Runx2 and contained perilipin 

positive lipid droplets23. Fifth, excess BMAT is often but not always associated with 

uncoupled turnover. In many of the conditions associated with infiltration of marrow 

adipocytes, the bone-remodeling unit is uncoupled such that resorption is increased and bone 

formation is suppressed. These include aging, Type I Diabetes Mellitus, rosiglitazone 

exposure, anorexia nervosa and others2425,26. Almost certainly stromal cell fate is altered in 

these conditions and there is a shift towards adipogenesis. On the other hand, the increase in 

resorption has been related to enhanced Pparγ expression leading to higher expression of 

osteoclastic differentiation markers, although recently that tenet has also been 

challenged2728. Other factors certainly must be important, including the adipocytic 

expression of cytokines that could directly mediate osteoclastogenesis. Sixth, marrow 

adipocytes secrete adipokines that can affect whole body metabolism. Cawthorn and 

colleagues demonstrated that adiponectin secretion is very high from the bone marrow in 

some conditions in which there is increased BMAT (e.g. anorexia nervosa and post 

chemotherapy)14. It is uncertain if this occurs in other disorders or if other adipokines are 

also generated by marrow adipocytes. Seventh the phenotypic characterization of high 

BMAT does not always imply skeletal loss or fragility. For example, in C3H/HeJ, an inbred 

strain of mice, bone marrow adiposity is markedly higher, yet bone formation and bone mass 

are very high293031. Similarly the loss of BMAT does not immediately translate into greater 

bone mass. In the lactating B6 mouse, bone marrow adiposity declines while bone loss is 

occurring32. And during cold exposure, mice lose both bone mass and BMAT33.
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So there has been some progress, particularly in BMAT phenotyping and the use of osmium 

microCT to quantitate whole bone adiposity in mouse models, but many questions remain. 

For example, first we still do not know the origin of the marrow adipocyte. Certainly Osterix 

(Sp7) marks waves of early progenitor cells that could ultimately become an adipocyte or 

osteoblast34. In addition, virtually all peripheral fat cells label with PDGFRa, an early 

progenitor marker, although data in marrow adipocytes is not as convincing35. Morrison and 

colleagues demonstrated that the presence of the leptin receptor on mesenchymal progenitor 

cells in the marrow is an early indicator of the marrow adipocyte particularly with diet-

induced obesity36. However, others have suggested, but not proven, that the bone lining cell 

(BLC) or a pericytic cell lining the vasculature, could differentiate into an adipocyte. These 

hypothesis may be tenuous because of our previous inability to fully characterize the BLCs 

and pericytes. On the other hand, Kalajzic et al have for the first time identified genes 

expressed on DMP positive bone lining cells37. This breakthrough may lead to further 

characterization of cells within the niche that could give rise to the marrow adipocyte. 

Second, we do not understand the nature of the marrow adipocyte in regards to its response 

to fuel homeostasis. Why would a marrow adipocyte trap fatty acids in both states of 

starvation and diet induced obesity? Does BMAT exist as a reserve for the struggling 

osteoblast, or another depot that can store fat during periods of excess substrate? Work from 

Donahue and colleagues in hibernating marmots provide novel insights, particularly into the 

lipases that may be active in the marrow adipocyte during fuel deficient states38. Third, and 

importantly, we believe that the marrow adipocyte is unique in its characteristics, but what 

function would a distinct adipocyte have in the marrow niche. It is clearly established that 

the site of origin of adipocytes plays a huge role in its subsequent function (e.g. visceral vs 

subcutaneous fat) but it is less clear what function the marrow adipocyte plays in niche 

homeostasis. Moreover, although some ‘beige’ like genes are expressed in mature marrow 

adipocytes, there is very little evidence to suggest that these cells are thermogenic39. 

Intuitively, one might consider the appendicular skeleton as having lower temperatures and 

therefore need a source of heat to maintain the niche, but we have no functional evidence to 

support that tenet, and some contrary data that in states of ‘beiging’ in other depots (e.g. 

cold), the BMAT does not express UCP1 protein of become multilocular39.

Fourth, if increased marrow adiposity in the vertebrae is associated with greater fracture 

risk, what is the mechanism? We don’t believe enhanced BMAT in the long bones impacts 

skeletal strength, although not all the data are in since femoral MRI spectroscopy in humans 

has only been available for a few years. On the other hand it is intriguing that vertebral MRI 

has identified a very strong inverse relationship with bone mass and fracture risk. Is it 

conceivable that compressive forces on the vertebrae may lead to greater fragility in the 

presence of marrow adiposity? Or is this a function of greater bone resorption and enhanced 

uncoupling in the remodeling sequence? We have no data to argue one way or the other, but 

what we have learned is that BMAT is very location specific and that function may also be 

distinct at various locations.

We have attempted to delineate both the progress and the challenges in respect to our 

understanding of marrow adiposity. The advent of greater technology for lineage tracing, for 
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imaging, and for sorting marrow adipocytes promise to provide new insights into this novel 

area of bone biology.
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