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ABSTRACT

Working memory plays an important role in human 
cognition. This study investigated how working 
memory was encoded by the power of multi-channel 
local field potentials (LFPs) based on sparse non-
negative matrix factorization (SNMF). SNMF was 
used to extract features from LFPs recorded from 
the prefrontal cortex of four Sprague-Dawley rats 
during a memory task in a Y maze, with 10 trials for 
each rat. Then the power-increased LFP components 
were selected as working memory-related features 
and the other components were removed. After 
that, the inverse operation of SNMF was used to 
study the encoding of working memory in the time-
frequency domain. We demonstrated that theta and 
gamma power increased significantly during the 
working memory task. The results suggested that 
postsynaptic activity was simulated well by the sparse 
activity model. The theta and gamma bands were 
meaningful for encoding working memory.

Keywords: sparse non-negative matrix factorization; 
multi-channel local field potentials; working memory; 
prefrontal cortex

INTRODUCTION

Working memory refers to a brain system that provides 
temporary storage and manipulation of information, 

supporting human thought processes by providing an 
interface between perception, long-term memory and 
action[1-3]. Studies have suggested that working memory 
is mediated by the continuous activity of prefrontal cortex 
(PFC) neurons[4,5], and the PFC plays an important role 
in working memory[6,7]. Multi-channel local field potentials 
(LFPs) are signals recorded from extracellular electrodes 
that result from superposition of local excitatory and 
inhibitory postsynaptic potentials[8]. LFPs recorded from the 
PFC are rich in information related to working memory[9,10]. 
One study has shown that theta (4–12 Hz) oscillations peak 
at the choice point when rats execute Y-maze tasks[11]. 
Gamma (30–80 Hz) oscillations also play an important 
role in functions such as information transmission and 
storage[12-14].

However, not all components of LFPs recorded from 
the PFC are devoted to encoding working memory. It would 
therefore be beneficial to remove the noise for intensive 
studies of working memory. The conventional methods 
for analyzing LFPs include principal component analysis, 
independent component analysis, factor analysis and non-
negative matrix factorization (NMF), among which only 
NMF can ensure non-negative decomposition. Since the 
LFP power is non-negative, NMF has certain advantages 
in analyzing these signals. Moreover, considering the 
sparseness of neuronal activity[15], we gave the NMF 
algorithm a sparseness constraint to better simulate 
neuronal activity. So in this study, sparse non-negative 
matrix factorization (SNMF) was used to extract features 
from the time-frequency representation of LFPs. 
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The power in the theta and gamma bands has been 
reported to increase during working memory[16-19]; based on 
this, we selected the power-increased LFP components as 
working memory-related features and eliminated the other 
components. After that, the inverse operation of SNMF 
was used to reconstruct working memory-related features. 
Then we obtained the time-frequency representation of the 
power-increased LFP power components, which are useful 
for studying working memory.

MATERIALS AND METHODS

All surgical and experimental procedures conformed to the 
Guidelines for the Care and Use of Laboratory Animals and 
were approved by the Tianjin Medical University Animal 
Care and Use Committee.

Training and Data Acquisition
LFPs were recorded from the PFC of male Sprague-Dawley 
rats (300–350 g, 17 weeks old) during a Y-maze working 
memory task (Fig. 1). Each trial consisted of a free choice 
and a delayed alternation. After raising the guillotine door, 
the rat started the free choice from arm A. The rat would 
get a small piece of food as a reward when it chose either 
arm B or arm C. Then the rat returned to the starting point 
(arm A), and the door was lowered. After a 5-s interval, the 
door was raised again and the rat started a ‘choice run’. 
If the rat reached the end of the arm that was not chosen 
previously, it would get a food reward. After each trial, the 
animal returned to arm A to start the next trial (Fig. 1). 

Before training in the Y-maze, the rats had free access 
to water and 2 days of food restriction. We limited the 
access to food to 2 h/day and adjusted the quantity to 
maintain body weight at a minimum of 85% of normal body 
weight under a normal 12 h light-12 h dark cycle.

The rats received training sessions unti l  their 
performance reached a steady rate of at least 80% correct. 
Under aseptic conditions and chloral hydrate (350 mg/kg) 
anesthesia, the rats were then implanted with a 16-channel 
nickel-cadmium microelectrode array (impedance <1 MΩ) 
targeting the PFC (AP: 2.5–4.5 mm, ML: 0.2–1.0 mm, DL: 
2.5–3.5 mm). The array location was estimated in vivo 
using a stereotaxic instrument and a drive to calculate the 
depth. After recovery, the raw signals were recorded during 
training sessions with a Cerebus Data Acquisition System 
(Cyberkinetics, Foxborough, MA). LFPs (low-pass filter, 
0.3–500 Hz) sampled at 2 000 Hz were extracted from the 
raw signals via digital filters in the Neural Signal Processor 
(Fig. 2).

Working Memory Group
When rats made a choice run, the occurrence of behavioral 
events was marked using an infrared detector in the Y 
maze (Fig. 1), crossing of which defined as the ‘reference 
point’ (RP). The duration of each LFP used in this study 
was 6 s (4 s before and 2 s after the RP), which included 
the process of the working memory event.

Control group
Before the working memory task, the rat was placed at A 
arm and left for ~5 min with the guillotine door closed, when 
LFPs were recorded as controls.

SNMF for Spectral LFP Feature Extraction
Given a non-negative matrix Xm×n, a natural number r < min 

Fig. 2. The LFP (low-pass filter, 0.3–500 Hz) sampled at 2 000 Hz 
was extracted from the raw signal via digital filters in the 
Neural Signal Processor.

Fig. 1. Schematic representation of the Y maze. Arm A is the 
starting position. Cribs for reward delivery are located at 
the ends of arms B and C.
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(m, n), and parameter λ, SNMF seeks the non-negative 
matrices Am×r and Sr×n. According to the principle of sparse 
coding[20], the objective function of SNMF can be written as:

                                                                                   

  (1)

where λ >0. The parameter λ balances the trade-off 
between the accuracy of approximation and the sparseness 
of S. A larger value of λ implies stronger sparsity while 
smaller values of λ can be used for better accuracy of 
approximation[21]. The columns of matrix A are normalized 
to unit L2-norm here[22]. Using a gradient-based search 
to minimize this divergence with a step-size yielding 
multiplicative updates, the following updates of A and S 
forming the NMF-KL algorithm are achieved[23]:

(2)                                                        (2)

We constructed the data matrix  from the 
time-domain of the LFP data. After removing the baseline, 
a short-time Fourier transform (Hamming window length, 
3 000; step size, 1; number of frequency samples, 1 024) 
was used to obtain the time-frequency representation of the 

LFP, which we denoted by . Then we constructed 
the data matrix X by  as:

                            
(3)

where channel, time and frequency indices respectively run 
over k = 1 ,…, K, t = 1 ,…, n, and f = 1 ,…, F, and m = K × F. 
We took the number of frequency indices F as 42 to keep 
the frequency below 80 Hz and the number of time indices 
n = 12 000. An application of SNMF to two-channel LFP 
data is shown in Fig. 3. The data matrix X is decomposed 
into a product of basis matrix A and sparse matrix S. Basis 
matrix A contains bases in its columns, which we took as 
different types of postsynaptic potentials, and each row of 
sparse matrix S shows how each basis varies with time. 

In SNMF, the values of parameters r and λ must 
be set. Different parameter values lead to different 
results. Researchers often set reasonable values of the 

parameters according to their own experience, or by 
numerical pretreatment[24-26]. Considering the accuracy of 
approximation and the sparseness of S, the parameters 
r and λ were chosen to be 40 and 0.6 respectively after 
repeated tests.

Selection and Reconstruction of Working Memory-
Related Features 
Based on elevations in LFP power[16-19], we selected 
working memory-related features. First, we determined the 
approximate time of the working memory event from matrix 
S. Let Hi be the maximum value of each row vector Si in 
the time we determined before, and G the maximum value 
of Hi. If Hi > 0.3G, then we selected the corresponding row 
vector Si as the working memory-related row vector, which 
was denoted Fi. Then we set the other rows of matrix S to 0. 
After that we obtained a new matrix U from matrix S. Finally 
we reconstructed features using the inverse operation of 
SNMF as:

Y=AU                                                                         (4)
where Y contains the time-frequency information of the 
working memory-related features. Then the purpose 
of removing noise was achieved. An application of 
reconstruction is shown in Fig. 4.

RESULTS

In this study, LFPs were recorded from the PFC of four rats 
during the Y-maze working memory task, with 10 trials for 
each rat. LFPs from one rat were 15-channel data, while 
those from the other three were all 16-channel data. The 
length of each data segment was 6 s (4 s before and 2 s 
after the RP), which included the entire process of working 
memory events.

Theta and Gamma Power Changes during Working 
Memory
Examples of LFP and time-frequency representation in the 
working memory and control groups were shown in Fig. 
5A and B. We analyzed the changes of theta and gamma 
power over time in the working memory and control groups 
(Fig. 5C, D) and found that there were no significant  
differences in the theta and gamma power in each 
corresponding second between two groups. LFP power 
increased remarkably in a specific period of the alternate 
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Fig. 4. Diagram of the principle of selection and reconstruction of working memory-related features. The power of some sparse vectors 
remarkably increased in the time period between the red lines, while the power of the other vectors was almost invariant. The 
features whose power remarkably increased were selected as working memory-related features. Matrix U obtained from matrix 
S contained many 0 vectors that were not working memory-related features. Matrix Y, which was derived from matrices A and U, 
contained the time-frequency information of the working memory-related features. ▲ denotes the reference point.

Fig. 3. Application of SNMF to two-channel LFP data. A: The two-channel time-domain LFP data after removing the baseline. B: The data 
matrix X constructed with two-channel time-domain LFP data is decomposed into a product of basis matrix A and sparse matrix 
S. The vertical axis of matrix A represents frequencies between 0 and 80 Hz in each channel, and the horizontal axis is related 
to the number of basis vectors. The vertical axis of matrix S is related to the number of sparse vectors, and the horizontal axis 
represents time. C: Basis vector A5 is mainly related to the theta band for channels 1 and 2. Sparse vector S5 shows the power of 
the corresponding feature concentrates near 3 s. Symbol ▲ denotes the reference point.
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choice before the rat crossed the corner of the Y maze. We 
calculated the theta and gamma power in each second for 
both groups when the LFP power peaked. Group statistics 
showed that the theta and gamma power in the working 
memory group were greater than those in the control group 
in the second when the LFP power of both groups peaked 
(Fig. 5E, **P <0.005, ***P <0.001).

Theta and Gamma Power in Working Memory-Related 
Features
Spectral analysis showed remarkable power changes at 
frequencies <30 Hz, and it was difficult to discriminate 
power changes at frequencies >30 Hz (Fig. 5B). It would be 
helpful to remove the noise. Moreover, the increased LFP 
components could not simply be assumed to be completely 

Fig. 5. Comparisons of theta/gamma power between the working memory and control groups. A: An example of LFP and time-frequency 
representation in control group. B: An example of LFP and time-frequency representation in working memory group. The power 
was normalized. ▲ denotes the reference point. C: Average theta power of control group (red) and working memory group (blue) in 
each second. D: Average gamma power of control group (red) and working memory group (blue) in each second. a–d indicate the 
four rats. E: Theta and gamma power in control and working memory (WM) groups in each second when the LFP power peaked. 
All data are expressed as mean ± SEM. **P <0.005, ***P <0.001 vs control group, t test. 



Neurosci Bull     June 1, 2013, 29(3): 279–286284

devoted to encoding working memory. It was necessary to 
extract the power-increased LFP components.

We constructed the data matrix  (630 
= 15 × 42) from 15-channel LFP data, and  
(672 = 16 × 42) from 16-channel LFP data. The parameters 
r and λ were chosen to be 40 and 0.6 respectively after 
repeated tests. After SNMF, we obtained 50 groups of 
basis matrix A and sparse matrix S from 50 groups of LFP 
data. Subsequently, we selected working memory-related 
features one by one and eliminated the noise features. 
Then we used the inverse operation of SNMF to reconstruct 
the features. After that, the noise was removed, and only 
the time-frequency information of working memory-related 
features remained. The results of SNMF and reconstruction 
for a single channel are shown in Fig. 6. It was easier to 
discriminate power changes at frequencies >30 Hz from 
the time-frequency representation after reconstruction than 
before (Fig. 6A, B). We calculated the theta and gamma 
power in working memory-related features for each rat (Fig. 
6E) and found they were significantly greater than zero (P < 
0.001, t test).

DISCUSSION

As noted above, the column vectors of basis matrix A 
could be considered as representing different types of 
postsynaptic potentials, which correspond to different 
neuronal activity. The sparseness of postsynaptic activity is 
the prerequisite assumption for using the SNMF algorithm 
to extract features from LFPs. The successful feature 
extraction suggests that postsynaptic activity can be well-
simulated by the sparse activity model. The disadvantage 
of the SNMF algorithm in this study was that the basis 
matrix A contained not only the characteristics of the data in 
the frequency domain, but also information of the channels, 
which increased the difficulty of analyzing LFP features. 
However, this problem is avoidable with the sparse non-
negative tensor factorization (SNTF) algorithm[27]. So we 
will use the SNTF algorithm to extract LFP features in the 
future work.

Our results showed that theta and gamma power 
were not increased at all times during the working memory 
task but increased remarkably over controls in a specific 

Fig. 6. Results of SNMF and reconstruction for a single channel. A and B: Time-frequency representations before (A) and after (B)
reconstruction for a single channel. For ease of comparison, the power is normalized. The time-frequency representation before 
reconstruction shows more evident power changes in the lower frequencies (<30 Hz) than in the higher frequencies (>30 Hz). C: 
Sparse vectors corresponding to the time-frequency representation after reconstruction in B. D: Basic vectors corresponding to 
the time-frequency representation after reconstruction in B. E: Theta and gamma power in working memory-related features. All 
data are expressed as mean ± SEM. ▲ denotes the reference point.
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period before the rat crossed the corner of the Y maze. 
And the theta and gamma power in the power-increased 
LFP components were significantly greater than zero. 
These suggest that both the theta and gamma bands 
are meaningful for working memory. Earlier research has 
shown that the theta band reflects neuronal resources 
involved in memory processes and directed attention[28,29]. 
The increased theta power is probably related to the 
organization of spatial information and decision-making 
over delays[30-32] in the Y-maze working memory task. 
Besides, studies show that the gamma band is involved 
in perceptual processing, which is associated with the 
maintenance of detailed item representations over a 
delay[33,34].

In continuing analyses of cortical LFPs, researchers 
have shown that the interaction between the frequency 
bands might reflect a higher-order representation[35]. 
Theta-gamma coupling is thought to play a role in the 
maintenance of working memory and sequential memory 
organization[36]. In this study, we found that theta and 
gamma band activity often co-existed in the working 
memory-related basis vectors (such as basis vectors A2, 
A4, A5, A6 and A7 in Fig. 6D), suggesting that there is a 
power relationship between the theta and gamma bands. 
However, this still needs further clarification.
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