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Spinal cord injury (SCI) can have a range of debilitating effects and permanently alter the capabilities and 
quality of life of survivors. The first specialized centers of care for SCI were established in 1944 and since then an 
increasing amount of research has been carried out in this area. Despite this, the present treatment and care 
levels for SCI are not comparable to those in other areas of medicine. In the clinic, the aim of SCI treatment 
is primarily to limit secondary damage by reducing compression in trauma spots and stabilizing the spinal 
column. Currently, no effective strategy for functional recovery is offered. In this review, we focus on research 
progress on the molecular mechanisms underlying SCI, and assess the treatment outcomes of SCI in animal 
models, i.e., neurotrophins and stem cells are discussed as pre-clinical therapies in animal models. We also 
assess the resources available and national research projects carried out on SCI in China in recent years, as 
well as making recommendations for the future allocation of funds in this area. 
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Introduction

Data from the National Spinal Cord Injury Statistical Center 
show that in the USA an estimated 270 000 people are liv-
ing with spinal cord injury (SCI) and ~12 000 new injuries 
are reported annually[1]. It is reported that China has had a 
ten-fold increase in SCIs caused by car crashes, construc-
tion and mining accidents in the past decade. About 60 000  
new injuries are reported annually[2]. In addition to the de-
bilitating effects and permanently reduced quality of life, an 
enormous social, financial and emotional cost for the vic-
tims, their relations and the government is brought about by 
SCI[3]. Despite this immense cost to society, today’s clinical 
treatments offer only modest benefits. This is most likely 
due to the complex mechanisms of SCI, the relative inabili-
ty of the human body to repair or regenerate neurons in the 
spinal cord, and the lack of adequate government funding 
in this area. In this review, we focus on current progress in 
the molecular mechanisms of SCI, and look at the treatment 

outcomes of SCI in animal models.

Pathophysiological Mechanisms Underlying SCI

Normally, the primary injury of the spinal cord is due to 
either contusion or compression[4]. Although the primary 
cause of injury can result in the death of neurons, most is 
due the body’s response to trauma, known as secondary 
injury. The mechanisms underlying this have been reported 
and catalogued into 25 different mechanisms[3]. The most 
significant of these are vascular disturbances, inflamma-
tion, lipid peroxidation, excitotoxicity, apoptosis, demyelina-
tion and ionic disturbances.
Vascular Disturbances
Vascular disturbances play important roles in secondary 
injury of the spinal cord, such as hemorrhage, ischemia 
and reperfusion-induced damage, microcirculatory distur-
bances, and systemic hypotension. The traumatized cord 
shows severe hemorrhaging predominantly in the central 
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grey matter, which then expands to peripheral regions, 
leading to necrosis[5]. SCI also leads to acute ischemia, 
which may contribute to secondary degeneration[6]. It has 
been reported that a major reduction in blood flow at the le-
sion occurs immediately after SCI[7-9]. Furthermore, ischemia 
becomes progressively worse over the first few hours, and 
has a linear dose-response association with the severity of 
the injury[3,8]. Reperfusion damage is the paradoxical dam-
age caused by the increased levels of free radicals and 
other toxic byproducts during the reperfusion of blood after 
a period of ischemia[10-12]. Large arteries are unaffected, but 
a major change in the local microcirculation from the dis-
ruption of small blood vessels and hemorrhage leads to a 
failure of autoregulation and glutamate-mediated excitotox-
icity[3,13]. In addition, severe systemic hypotension can ag-
gravate the dysfunction of microcirculation and exacerbate 
injury. 
Inflammation
Any lesion in the central nervous system (CNS) can lead 
to failure of the blood-brain barrier, resulting in increased 
permeability and consequently triggering an inflammatory 
response[14]. Thus, the immune system is involved in me-
diating CNS injury by inflammation through the cumulative 
effects of immune cells and regulatory proteins. SCIs gen-
erally induce inflammation, which is deleterious to tissue 
recovery and aggravates the progressive necrosis of cells 
in the damaged area. The extent of inflammation is in-
creased by pro-inflammatory cytokines secreted by immune 
cells, including interleukin (IL)-1β, IL-6 and tumor necrosis 
factor-α, which are all capable of leading towards apoptotic 
cell death[3]. 

Four major categories of immune cells are recruited 
by the inflammatory response: neutrophils, monocytes, mi-
croglia and T-lymphocytes[15,16]. Neutrophils are the first to 
arrive at the site of injury through the circulatory system. In 
addition to removing microbial intruders and tissue debris, 
they release cytokines, proteases and free radicals that 
induce further inflammation and involve glial cells in the 
inflammatory cascade, which ultimately leads to neuronal 
injury or death[3,17]. Then monocytes infiltrate into the spinal 
cord and differentiate into macrophages, and, together with 
activated resident microglia (differentiated macrophages in 
the CNS), also secrete cytokines, free radicals and growth 
factors. The role of T-lymphocytes in SCI is rather contro-

versial[3,15,18,19]. Following SCI, activated microglia become 
efficient antigen-presenting cells, which bind to T-cells when 
they pass through the blood-brain barrier. T-cells also release 
neurotrophins and modulate microglia or macrophages 
which function to protect neurons from degeneration[14,20,21].
Glial-Associated Damage
Demyelination following SCI aggravates the damage in a 
traumatized cord since the loss of myelin exposes axons 
to the injurious surroundings, leading to neuronal loss via 
necrosis and/or apoptosis[3]. It also delays or even blocks 
the conduction along axons resulting in inefficient commu-
nication between neurons[22,23]. Demyelination is due to the 
loss of oligodendrocytes, whose death is triggered by glu-
tamate excitotoxicity and exacerbated by the inflammatory 
cascade. Hence, further understanding of demyelination 
and oligodendrocyte-caused neuronal loss is fundamental 
to improving the treatment and cure for SCI[3,22]. 

Inflammatory reactions subside eventually and glial 
scar tissue forms. Hours after SCI, astrocytes in the le-
sion site proliferate and form glial scars, which can isolate 
neural tissue from inflammatory cells and decrease neuro-
inflammation during the early phases[24]. However, this scar 
tissue is another obstacle for neurite outgrowth which con-
tinuously develops for several months after SCI. Moreover, 
the inhibitory molecules secreted by these scar cells pre-
vent functional recovery[24]. Actually, there are many sorts 
of molecules, covering the scar and its surroundings, that 
prevent injured axons from regenerating, and the net effect 
of degeneration is likely to be amplified in the traumatized 
spinal cord[3]. 
Necrosis and Apoptosis
Apoptosis is a natural physiological process that plays a 
key role in the developmental maintenance of cells and 
the spinal cord. In the primary phase of SCI, many types of 
cells undergo necrosis and apoptosis, while in the second-
ary phase, apoptosis is mainly limited to the white matter. 
The apoptotic cascade in SCI is activated in neurons, oligo-
dendrocytes, microglia, and, perhaps astrocytes[25,26]. A ma-
jor trigger appears to be the injury-induced calcium influx, 
the loss of ionic homeostasis, and the increased excitotox-
icity following SCI, which all trigger apoptotic cell death and 
mitochondrial dysfunction[27-30]. Recent studies have report-
ed that apoptosis in SCI is primarily mediated by Fas, thus 
its inhibition may be a potential therapeutic strategy[31,32]. 
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Others
Lipid Peroxidation and Oxidative Stress
The level of free radicals, which are one of the main media-
tors of axonal disruption in SCI, increases in the lesion site. 
As spinal cord tissues are rich in lipids and sensitive to lipid 
peroxidation, free radicals can cause cell membrane lysis 
by absorbing an electron from a lipid molecule to make it 
less stable[3]. In physiological states, healthy tissues gener-
ate some free radicals, which are effectively removed by 
endogenous oxidative systems, while in SCI, excessive 
free radicals are produced because of the derangements in 
energy metabolism[33]. Hence, too many free radicals in SCI 
ultimately lead to the lysis of cell membranes and necrosis 
through lipid peroxidation (oxidative stress). In addition, oxi-
dative damage aggravates mitochondrial dysfunction and 
causes intracellular calcium overload[3,30,34].
Calcium-Associated Disorder
Calcium influx is involved in excitotoxicity and ion imbal-
ance, both of which are main mechanisms of SCI. It is 
triggered by acute injury and continues for hours to weeks 
afterwards[17].  

Glutamate, the major excitatory neurotransmitter in 
the CNS, is released excessively after SCI. The abnormally 
high level of extracellular glutamate causes direct damage 
to the spinal cord and increases calcium influx. This leads 
to neuronal death by necrosis or apoptosis through the pro-
cess known as excitotoxic cell death (excessive glutamate 
stimulates the NMDA and AMPA receptors in the postsyn-
aptic membrane)[13,35]. Neurons and oligodendrocytes are 
particularly vulnerable to glutamate excitotoxicity since they 
express a full complement of glutamate receptors[3]. As a 
result, excitotoxic injury brings about the demyelination 
of axons and loss of neurons. Furthermore, nitrous oxide 
produced by iNOS after SCI is also involved in glutamate 
excitotoxic injury[36].

The derangements of ionic homeostasis in SCI that 
are detrimental to cell function and survival include increased 
calcium influx, potassium outflow and intercellular ac-
cumulation of sodium[37]. An excessive intracellular level of 
calcium ions is a key element in the secondary injury mech-
anism. It is considered that calcium influx is the final shared 
pathway that leads to cell death. Hence, the inhibition of 
calcium influx is a viable therapeutic strategy for SCI. 

All the above, primary and secondary damage con-

tribute to the dysfunction of spinal cord injury, so improved 
understanding of the complex mechanisms underlying both 
are imperative for the development of clinical methods.

Research Progress in the Treatment of SCI

Neurotrophins
Neurotrophic factors are regulators of neuronal plasticity 
and regeneration, and their expressions are modified after 
SCI[38]. Therefore, they have been used to both promote 
axonal growth and prevent neuronal death. To date, re-
searchers have carried out experiments on the classic neu-
rotrophin family that includes typical neurotrophic factors, 
like nerve growth factor (NGF), brain-derived neurotrophic 
factor (BDNF), and neurotrophin-3 (NT-3)[39]. They have 
also been applied in cell transplantation to promote tissue 
regeneration after SCI. 
Nerve Growth Factor
NGF promotes the sprouting and regeneration of ax-
ons[40-42]. And exogenous delivery of NGF to animal 
models of SCI can promote robust axonal growth[40]. NGF 
moderately promotes neuronal survival in certain nuclei[43]. 
It also has stimulatory effects on the sensory fibers in the 
spinal white matter after SCI[44].

Both methylprednisolone and erythropoietin are cur-
rently used in SCI treatment. Erythropoietin partially con-
tributes to improved recovery of motor functions via the 
increased expression of NGF. However, methylpredniso-
lone and saline do not have such effects[45]. In contrast, 
anti-NGF treatment prevents the development of abnormal 
somatosensory behavior, which suggests a potential pre-
emptive analgesic treatment for central pain[46].

Furthermore, neutralizing NGF in the cord can mini-
mize the life-threatening autonomic dysreflexia following 
SCI[47]. Therefore, using NGF for therapy should take all 
possibilities into account.
Brain-Derived Neurotrophic Factor
BDNF can reduce the necrotic zone and help neuronal sur-
vival after SCI[48]. Like NGF, exogenous delivery of BDNF to 
animal models of SCI can promote robust axonal growth[49]. 
BDNF has both short- and long-term effects on neuronal 
regeneration and functional recovery[50]. For instance, lo-
cal application of BDNF decreases loss of function in the 
partially-transected rat spinal cord starting one day after 
SCI[50]. And BDNF, playing a neuroprotective role, is synthe-
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sized in both neurons and astrocytes during the acute re-
sponse to SCI[51]. Moreover, even delayed BDNF treatment 
has an anti-apoptotic effect in oligodendrocytes after SCI, 
which suggests that it is capable of suppressing secondary 
injury[52].  

BDNF-GFP transgenic stem cells have better out-
comes than stem cells alone for SCI[52]. Bone marrow 
stromal cell grafts secreting BDNF also promote the regen-
eration of some neuronal populations[38]. 

Furthermore, continuous intramedullary infusion of 
BDNF provides neuroprotection and enhances some re-
generative activity after SCI[54]. And continuous infusion of 
BDNF after initial methylprednisolone treatment improves 
functional recovery after severe SCI without reducing the 
therapeutic effect of methylprednisolone[55].
Neurotrophin-3
NT-3, like BDNF, promotes the regeneration and overex-
pression of NT-3 in the rat spinal cord, which subsequently 
induces sprouting of corticospinal tract axons[56]. Further-
more, the delivery of a single dose of NT-3 at the time of spi-
nal cord lesion induces sprouting of corticospinal axons[57].

Much more research has been undertaken on the use 
of NT-3 in SCI therapy. NT-3 plays a protective role in the 
injured CNS through interaction with trk receptors. The 
multi-neurotrophins NT3/D15A have the capacity to bind 
both trkB and trkC and have positive effects on cell survival 
and remyelination after SCI. This is indicative of a possible 
treatment therapy in the future if it is combined with cell 
transplantation[58]. 
Stem Cell Transplantation
Due to the cavitation resulting from SCI, a better treatment 
strategy can be filling the physical gap by replacing its lost 
elements and supporting tissues with various cell trans-
plants[59]. This can contribute to the remyelination of axons, 
including embryonic stem cells (ESCs), adult neural precur-
sor cells (NPCs), induced pluripotent stem cells (iPSCs), 
and oligodendrocyte precursor cells (OPCs), as well as 
Schwann cells, olfactory ensheathing cells, and bone mar-
row stromal cells[60,61].
Human Embryonic Stem Cells
ESCs, with self-renewal potential and genetic adaptability, 
have the capacity to differentiate into nearly all types of 
cells, including motoneurons and glial fate cells, which thus 
make them an attractive source for treating neurological 

disorders and trauma such as SCI[14,62-64]. The demyelina-
tion and loss of myelinated cells cause abnormal neuronal 
function, since oligodendrocytes are highly vulnerable to 
the factors existing in the sites of trauma and may undergo 
apoptosis or necrosis[14].

In the late 1990s, the successful isolation and differen-
tiation of human ESCs showed much promise for regenera-
tive therapy for CNS injuries and created much interest in 
this area. Since then, this technique has been shown to be 
effective in restoring function in various animal models[65]. 
Human ESCs transplanted into Parkinsonian rats become 
integrated functioning cells in the nervous system[66]. In 
SCI, human ESCs are one of the most attractive strategies 
for promoting cell survival and integration into the spinal 
cord[42]. It seems that their beneficial effects are not due to 
remyelinating activity, but through fostering a neuroprotec-
tive environment[67]. Human ESC-derived oligodendrocyte 
transplantation activates the BDNF and IL-6 signaling path-
ways[68].

An outstanding advantage of human ESCs is that they 
are able to generate NPCs, including regionally specific 
neurons, guaranteeing that human ESC-derived NPCs are 
more effective in transplantation than adult neural stem 
cells (NSCs) following SCI[13]. However, challenges remain 
that should be taken into consideration before they can be 
applied in the clinic. These include the potential of human 
ESCs to cause tumorigenesis, ethical issues and rejection 
by the host immune system[69].
Neural Stem Cells, Neural Precursor Cells, Neu-
ronal Restricted Progenitor Cells, Oligodendro-
cyte Precursor Cells and Glial-Restricted Progenitor 
Cells
NSCs can be efficiently propagated in vitro and have the 
potential to differentiate into neurons, oligodendrocytes and 
astrocytes[70,71]. 

NPCs can be differentiated into both neuronal and 
non-neuronal lines, while NRPs, which are more differ-
entiated NPCs, can only be differentiated into neurons[59]. 
When NPCs are transplanted into the permissive neuronal 
environment of the dentate gyrus or subventricular zone, 
they differentiate into neurons. When they are transplanted 
into a non-permissive environment, like that of an SCI, they 
usually differentiate into a glial line[72-74].

Hence, in therapy for SCI, endogenous or transplanted 
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NSCs differentiate mostly into oligodendrocytes and as-
trocytes. The majority of transplanted NPCs differentiate 
along the oligodendroglial lineage[75]. The dentate gyrus is a 
source of this cell type[76]. Transplantation of glial-restricted 
progenitor (GRP) cells and OPCs differentiated from NSCs, 
results in remyelination and functional repair following 
SCI[77].

In rodent SCI models, NPC-derived oligodendrocytes 
ensheath injured axons, generate new myelin, and pro-
mote locomotor recovery. These cells can also myelinate 
the congenitally-dysmyelinated spinal cord of the shiverer 
mouse[69,78]. However, there are still two important barriers 
to endogenous OPC remyelination. One is the glial scar 
that blocks the access of OPCs to demyelinated axons; the 
other is the expression of inhibitory molecules by astrocytes, 
which inhibit OPC differentiation and proliferation[14,79].

Compared to oligodendrocytes, astrocytes, which are 
also differentiated from GRP cells, play a role in the media-
tion of neuroprotection. They support axonal regeneration 
and decrease focal motor neuron loss by secreting many 
neurotrophic factors[80,81].

Recruitment of endogenous NSCs or transplantation 
of NSCs is another strategy for the treatment of SCI. In 
fact, NSCs maintain their capacity for stable self-renewal 
after several passages in vitro, so it seems they have less 
potential for tumor formation than ESCs[81]. There are still, 
however, many critical challenges that have to be faced: 
(1) the decreased potential of differentiation after several 
passages, (2) the need for pure neuronal populations of 
differentiated cells, (3) the formation of glial scars, (4) the 
inhibitory molecules secreted by astrocytes, (5) inefficient 
attacking systems, and (6) moderate cell survival after 
transplantation[14,71,82].
Induced Pluripotent Stem Cells
Current cell-based approaches have to overcome a num-
ber of critical problems before clinical application, including 
ethical concerns, tumor formation and immunological rejec-
tion. 

iPSCs are modified cells used for transplantation and 
have the capacity to differentiate into all kinds of cells like 
ESCs, e.g. neurons, glia, NPCs, and motoneurons[83,84]. 
Initially, they were generated to overexpress defined fac-
tors (Oct4, Sox2, Klf2, and c-Myc) using retroviral transfec-
tion[85]. These factors are sufficient to reprogram somatic 

cells to a pluripotent state. iPSCs have been obtained 
from different sources, e.g. mice, rats, monkeys, and hu-
mans[86-91]. When they are derived from patient-specific 
adult somatic cells, there is no danger of host rejection in 
autologous transplants, and they circumvent ethical prob-
lems that are often associated with obtaining ESCs by de-
stroying an embryo. However, there are two big barriers to 
the clinical application of iPSCs. One is the introduction of 
transgenes[92]. It has also been noted that their global gene 
expression and histone methylation differ from their ESC 
controls. It is known that epigenetic modifications of methy-
lation and de-methylation act to open and close DNA to 
gene transcription. The other is teratoma formation. iPSCs 
may have even greater tumor potential than ESCs, as a re-
sult of genetic alteration[69,93].

Consequently, iPSCs can be seen as superior to ESCs 
in many ways. In fact, pre-clinical studies of the safety and 
effectiveness in in vitro models and in vivo are not suf-
ficient. In vivo application of human iPSCs is the ultimate 
goal of regenerative medicine in SCI, and there is no rea-
son why this could not be achieved in the near future with 
adequate funding and resources.

An Analysis of Funding for SCI Projects in China

In order to assess the funding situation in China, we ana-
lyzed data from the central database of the National Natu-
ral Science Foundation of China (NSFC). We thus found 
that national funding for SCI projects is increasing, but the 
increase is not in line with other areas of medical research. 

The NSFC was founded in 1986, but at this time SCI 
was not an area of medicine receiving much emphasis. 
Since then, a total of 297 projects (Fig. 1A) have been car-
ried out in this field and 74 525 000 RMB (US$11 904 952) 
(Fig. 1B) spent on it. In recent years, ~50 projects/year 
have been carried out. The distribution of these projects 
is by no means uniform across China. They are primarily 
done in high-level universities and research institutions. 
The proportion of government funds spent on this area is 
significantly lower than that in western countries. Further-
more, the absence of activities against research in this area 
on religious grounds makes China an ideal country to make 
groundbreaking discoveries and develop pioneering thera-
pies for victims of SCI.
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