Abstract
Objective
The aim of the present study was to determine the changes in the mRNA levels of neurotrophins and their receptors in the striatal tissue of mice treated with 3-nitropropionic acid (3-NP).
Methods
At 1 and 48 h after the last drug administration, the mRNA expression of nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 as well as their receptors p75, TrkA, TrkB and TrkC, was evaluated using semi-quantitative (semi-Q) and real-time RT-PCR. β-actin mRNA and ribosomal 18S (18S rRNA) were tested as internal controls.
Results
3-NP treatment did not affect mRNA expression of all neurotrophins and their respective receptors equally. Also, differences in neurotrophin and receptor mRNA expression were observed between semi-Q and real-time RT-PCR. Real-time RT-PCR was more accurate in evaluating the mRNA expression of the neurotrophins than semi-Q, and 18S rRNA was more reliable than β-actin as an internal control.
Conclusion
Neurotrophins and their receptors expression is differentially affected by neuronal damage produced by inhibition of mitochondrial respiration with 3-NP treatment in low, sub-chronic doses in vivo.
Keywords: neurotrophins, striatum, neurodegenerative disease, PCR, 18S, 3-nitropropionic acid
Footnotes
These authors contributed equally to this work.
References
- [1].Huang E.J., Reichardt L.F. Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736. doi: 10.1146/annurev.neuro.24.1.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [2].Connor B., Dragunow M. The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res Rev. 1998;27:1–39. doi: 10.1016/S0165-0173(98)00004-6. [DOI] [PubMed] [Google Scholar]
- [3].Hofer M., Pagliusi S.R., Hohn A., Leibrock J., Barde Y.A. Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J. 1990;9:2459–2464. doi: 10.1002/j.1460-2075.1990.tb07423.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [4].Canals J.M., Marco S., Checa N., Michels A., Pérez-Navarro E., Arenas E. Differential regulation of the expression of nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 after excitotoxicity in a rat model of Huntington’s disease. Neurobiol Dis. 1998;5:357–364. doi: 10.1006/nbdi.1998.0211. [DOI] [PubMed] [Google Scholar]
- [5].Timmusk T., Belluardo N., Metsis M., Persson H. Widespread and developmentally regulated expression of neurotrophin-4 mRNA in rat brain and peripheral tissues. Eur J Neurosci. 1993;5:605–613. doi: 10.1111/j.1460-9568.1993.tb00526.x. [DOI] [PubMed] [Google Scholar]
- [6].Lee P.D., Sladek R., Greenwood C.M., Hudson T.J. Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res. 2002;12:292–297. doi: 10.1101/gr.217802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [7].Boda E., Pini A., Hoxha E., Parolisi R., Tempia F. Selection of reference genes for quantitative real-time RT-PCR studies in mouse brain. J Mol Neurosci. 2009;37:238–253. doi: 10.1007/s12031-008-9128-9. [DOI] [PubMed] [Google Scholar]
- [8].Canals J.M., Checa N., Marco S., Michels A., Pérez-Navarro E., Alberch J. The neurotrophin receptors trkA, trkB and trkC are differentially regulated after excitotoxic lesion in rat striatum. Mol Brain Res. 1999;69:242–248. doi: 10.1016/S0169-328X(99)00130-8. [DOI] [PubMed] [Google Scholar]
- [9].Hanbury R., Charles V., Chen E.Y., Leventhal L., Rosenstein J.M., Mufson E.J., et al. Excitotoxic and metabolic damage to the rodent striatum: role of the P75 neurotrophin receptor and glial progenitors. J Comp Neurol. 2002;444:291–305. doi: 10.1002/cne.10104. [DOI] [PubMed] [Google Scholar]
- [10].Pickrell A.M., Fukui H., Wang X., Pinto M., Moraes C.T. The striatum is highly susceptible to mitochondrial oxidative phosphorylation dysfunctions. J Neurosci. 2011;31:9895–9904. doi: 10.1523/JNEUROSCI.6223-10.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [11].Borlongan C.V., Koutouzis T.K., Randall T.S., Freeman T.B., Cahill D.W., Sanberg P.R. Systemic 3-nitropropionic acid: behavioral deficits and striatal damage in adult rats. Brain Res Bull. 1995;36:549–556. doi: 10.1016/0361-9230(94)00242-S. [DOI] [PubMed] [Google Scholar]
- [12].Brouillet E., Conde F., Beal M.F., Hantraye P. Replicating Huntington’s Disease phenotype in experimental animals. Prog Neurobiol. 1999;59:427–468. doi: 10.1016/S0301-0082(99)00005-2. [DOI] [PubMed] [Google Scholar]
- [13].Alston T., Mela L., Brig H.J. 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate deshidrogenase. Proc Natl Acad Sci U S A. 1977;74:3767–3771. doi: 10.1073/pnas.74.9.3767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [14].Coles C.J., Edmondson D.E., Singer T.P. Inactivation of succinate deshydrogenase by 3-nitropropionate. J Biol Chem. 1979;254:5161–5167. [PubMed] [Google Scholar]
- [15].Rodríguez E., Rivera I., Astorga S., Mendoza E., García F., Hernández-Echeagaray E. Uncoupling oxidative/energy metabolism with low sub chronic doses of 3-nitropropionic acid or iodoacetate in vivo produces striatal cell damage. Int J Biol Sci. 2010;6:199–212. doi: 10.7150/ijbs.6.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [16].Hernández-Echeagaray E., González N., Ruelas A., Mendoza E., Rodríguez-Martínez E., Antuna-Bizarro R. Low doses of 3-nitropropionic acid in vivo induce damage in mouse skeletal muscle. Neurol Sci. 2011;32(2):241–254. doi: 10.1007/s10072-010-0394-2. [DOI] [PubMed] [Google Scholar]
- [17].Hernández-Echeagaray E., De la Rosa-López G., Mendoza E. The use of the mitochondrial toxin 3-NP to uncover cellular dysfunction in Huntington’s disease. In: Tunali N. E., editor. Huntington’s Disease-Core Concepts and Current Advances. Rijeka, Croatia: InTech; 2012. pp. 347–360. [Google Scholar]
- [18].Calvo A.C., Moreno-Igoa M., Manzano R., Ordovás L., Yagüe G., Oliván S., et al. Determination of protein and RNA expression levels of common housekeeping genes in a mouse model of neurodegeneration. Proteomics. 2008;8:4338–4343. doi: 10.1002/pmic.200701091. [DOI] [PubMed] [Google Scholar]
- [19].Schmittgen T.D., Zakrajsek B.A. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods. 2000;46:69–81. doi: 10.1016/S0165-022X(00)00129-9. [DOI] [PubMed] [Google Scholar]
- [20].Bonini P., Pierucci D., Cicconi S., Porzio O., Lauro R., Marlier L.N., et al. Neurotrophins and neurotrophin receptors mRNAs expression in pancreatic islets and insulinoma cell lines. JOP. 2001;2(3):105–111. [PubMed] [Google Scholar]
- [21].Kawakami T., Wakabayashi Y., Isono T., Aimi Y., Okada Y. Expression of neurotrophin messenger RNAs during rat urinary bladder development. Neurosci Lett. 2002;329:77–80. doi: 10.1016/S0304-3940(02)00598-0. [DOI] [PubMed] [Google Scholar]
- [22].Bustin S.A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol. 2002;29:23–39. doi: 10.1677/jme.0.0290023. [DOI] [PubMed] [Google Scholar]
- [23].Nolan T., Hands R.E., Bustin S.A. Quantification of mRNA using real-time RT-PCR. Nat Prot. 2006;1(3):1558–1582. doi: 10.1038/nprot.2006.236. [DOI] [PubMed] [Google Scholar]
- [24].Lee M.K., Kim H.R. Comparison between Real-Time PCR and agarose gel electrophoresis for DNA quantification. Korean J Lab Med. 2006;26:217–222. doi: 10.3343/kjlm.2006.26.3.217. [DOI] [PubMed] [Google Scholar]
- [25].Flori P., Bellete B., Durand F., Raberin H., Cazorla C., Hafid J., et al. Comparison between real-time PCR, conventional PCR and different staining techniques for diagnosing Pneumocystis jiroveci pneumonia from bronchoalveolar lavage specimens. J Med Microbiol. 2004;53:603–607. doi: 10.1099/jmm.0.45528-0. [DOI] [PubMed] [Google Scholar]
- [26].Huggett J., Dheda K., Bustin S., Zumla A. Real-time RT-PCR normalization: strategies and considerations. Genes Immunity. 2005;6:279–284. doi: 10.1038/sj.gene.6364190. [DOI] [PubMed] [Google Scholar]
- [27].Rhinn H., Marchand-Leroux C., Croci N., Plotkine M., Scherman D., Escriou V. Housekeeping while brain’s storming Validation of normalizing factors for gene expression studies in a murine model of traumatic brain injury. BMC Mol Biol. 2008;9(62):1–12. doi: 10.1186/1471-2199-9-62. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [28].Selvey S., Thompson E.W., Matthaei K., Lea R.A., Irving M.G., Griffiths L.R. β-Actin- an unsuitable internal control for RT-PCR. Mol Cell Prob. 2001;15:307–311. doi: 10.1006/mcpr.2001.0376. [DOI] [PubMed] [Google Scholar]
- [29].Zhang H.L., Eom T., Oleynikov Y., Shenoy S.M., Liebelt D.A., Dictenberg J.B., et al. Neurotrophin-induced transport of a beta-actin mRNP complex increases beta-actin levels and stimulates growth cone motility. Neuron. 2001;31:261–275. doi: 10.1016/S0896-6273(01)00357-9. [DOI] [PubMed] [Google Scholar]
- [30].Zhu L.J., Altmann S.W. mRNA and 18S-RNA coapplication-reverse transcription for quantitative gene expression analysis. Analytical Biochem. 2005;345:102–109. doi: 10.1016/j.ab.2005.07.028. [DOI] [PubMed] [Google Scholar]
- [31].Wong J.Y.F., Liberatore G.T., Donnan G.A., Howells D.W. Expression of brain-derived neurotrophic factor and TrkB neurotrophin receptors after striatal injury in the mouse. Exp Neurol. 1997;148:83–91. doi: 10.1006/exnr.1997.6670. [DOI] [PubMed] [Google Scholar]
- [32].Shen H., Cheng J.M., Cheng K. Expression of neurotrophin mRNAs in the dorsal root ganglion after spinal nerve injury. Mol Brain Res. 1999;64:186–192. doi: 10.1016/S0169-328X(98)00314-3. [DOI] [PubMed] [Google Scholar]
- [33].Shelton D.L., Reichardt L.F. Studies on the expression of the nerve growth factor (NGF) gene in the central nervous system: level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several distinct populations of neurons. Proc Natl Acad Sci U S A. 1986;83:2714–2718. doi: 10.1073/pnas.83.8.2714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [34].Mobley W.C., Woo J.E., Edwards R.H., Riopelle R.J., Longo F.M., Weskamp G., et al. Developmental regulation of nerve growth factor and its receptor in the rat caudate-putamen. Neuron. 1989;35:655–664. doi: 10.1016/0896-6273(89)90276-6. [DOI] [PubMed] [Google Scholar]
- [35].Arévalo J.C., Wu S.H. Neurotrophin signaling: many exciting surprises! Cell Mol Life Sci. 2006;63:1523–1537. doi: 10.1007/s00018-006-6010-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [36].Canals J.M., Pineda J.R., Torres-Peraza J.F., Bosch M., Martín-Ibañez R., Muñoz M.T., et al. Brain-Derived Neurotrophic Factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci. 2004;24(35):7727–7739. doi: 10.1523/JNEUROSCI.1197-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [37].Ferrer I., Goutan E., Marin C., Rey M.J., Ribalta T. Brain-derived neurotrophic factor in Huntington disease. Brain Res. 2000;866:257–261. doi: 10.1016/S0006-8993(00)02237-X. [DOI] [PubMed] [Google Scholar]
- [38].Zuccato C., Cattaneo E. Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol. 2007;81:294–330. doi: 10.1016/j.pneurobio.2007.01.003. [DOI] [PubMed] [Google Scholar]
- [39].Wu C.L., Chen S.D., Hwang C.S., Yang D.I. Sonic hedgehog mediates BDNF-induced neuroprotection against mitochondrial inhibitor 3-nitropropionic acid. Biochem Biophys Res Comm. 2009;385:112–117. doi: 10.1016/j.bbrc.2009.04.145. [DOI] [PubMed] [Google Scholar]
- [40].Dawbarn D., Allen S.J. Neurotrophins and neurodegeneration. Neuropathol Appl Neurobiol. 2003;29:211–230. doi: 10.1046/j.1365-2990.2003.00487.x. [DOI] [PubMed] [Google Scholar]
- [41].Cui Q. Actions of Neurotrophic Factors and their signaling pathways in neuronal survival and axonal regeneration. Mol Neurobiol. 2006;33:155–179. doi: 10.1385/MN:33:2:155. [DOI] [PubMed] [Google Scholar]
- [42].Hennigan A., O’Callaghan R.M., Kelly A.M. Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochem S Transac. 2007;35(2):424–427. doi: 10.1042/BST0350424. [DOI] [PubMed] [Google Scholar]
- [43].Ardelt A.A., Flaris N.A., Roth K.A. Neurotrophin-4 selectively promotes survival of striatal neurons in organotypic slice culture. Brain Res. 1994;647:340–344. doi: 10.1016/0006-8993(94)91333-1. [DOI] [PubMed] [Google Scholar]
- [44].Pérez-Navarro E., Canudas A.M., Akerund P., Alberch J., Arenas E. Brain-derived neurotrophin factor, neurotrophin-3 and neurotrophin-4/5 prevent the death of striatal projection neurons in a rodent model of Huntington’s disease. J Neurochem. 2000;75:2190–2199. doi: 10.1046/j.1471-4159.2000.0752190.x. [DOI] [PubMed] [Google Scholar]
- [45].Zermeño V., Espíndola S., Mendoza E., Hernández-Echeagaray E. Differential expression of neurotrophins in postnatal C57BL/6 mice striatum. Int J Biol Sci. 2009;5:118–127. doi: 10.7150/ijbs.5.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [46].Tauszig-Delamasure S., Yu L.Y., Cabrera J.R., Bouzas-Rodriguez J., Mermet-Bouvier C., Guix C., et al. The TrkC receptor induces apoptosis when the dependence receptor notion meets the neurotrophin paradigm. Proc Natl Acad Sci U S A. 2007;104(33):13361–13366. doi: 10.1073/pnas.0701243104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [47].Kim J.Y., Sutton M.E., Lu D.J., Cho T.A., Goumnerova L.C., Goritchenko L., et al. Activation of neurotrophin-3 receptor TrkC induces apoptosis in medulloblastomas. Cancer Res. 1999;59:711–719. [PubMed] [Google Scholar]
- [48].Bibel M., Hoppe E., Barde Y.A. Biochemical and functional interactions between the neurotrophin receptors Trk and p75NTR. EMBO J. 1999;18(3):616–622. doi: 10.1093/emboj/18.3.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [49].Nykjaer A., Willnow T.E., Petersen C.M. p75NTR — live or let die. Curr Opin Neurobiol. 2005;15:49–57. doi: 10.1016/j.conb.2005.01.004. [DOI] [PubMed] [Google Scholar]
- [50].Underwood C.K., Coulson E.J. The p75 neurotrophin receptor. Int J Biochem Cell Biol. 2008;40:1664–1668. doi: 10.1016/j.biocel.2007.06.010. [DOI] [PubMed] [Google Scholar]
- [51].Friedman W.J. Neurotrophins induce death of hippocampal neurons via the p75 receptor. J Neurosci. 2000;20(17):6340–6346. doi: 10.1523/JNEUROSCI.20-17-06340.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]