Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Aug 31;28(5):517–531. doi: 10.1007/s12264-012-1259-x

3-Nitropropionic acid modifies neurotrophin mRNA expression in the mouse striatum: 18S-rRNA is a reliable control gene for studies of the striatum

S Espíndola 1, A Vilches-Flores 1, E Hernández-Echeagaray 1,
PMCID: PMC5561911  PMID: 22961474

Abstract

Objective

The aim of the present study was to determine the changes in the mRNA levels of neurotrophins and their receptors in the striatal tissue of mice treated with 3-nitropropionic acid (3-NP).

Methods

At 1 and 48 h after the last drug administration, the mRNA expression of nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 as well as their receptors p75, TrkA, TrkB and TrkC, was evaluated using semi-quantitative (semi-Q) and real-time RT-PCR. β-actin mRNA and ribosomal 18S (18S rRNA) were tested as internal controls.

Results

3-NP treatment did not affect mRNA expression of all neurotrophins and their respective receptors equally. Also, differences in neurotrophin and receptor mRNA expression were observed between semi-Q and real-time RT-PCR. Real-time RT-PCR was more accurate in evaluating the mRNA expression of the neurotrophins than semi-Q, and 18S rRNA was more reliable than β-actin as an internal control.

Conclusion

Neurotrophins and their receptors expression is differentially affected by neuronal damage produced by inhibition of mitochondrial respiration with 3-NP treatment in low, sub-chronic doses in vivo.

Keywords: neurotrophins, striatum, neurodegenerative disease, PCR, 18S, 3-nitropropionic acid

Footnotes

These authors contributed equally to this work.

References

  • [1].Huang E.J., Reichardt L.F. Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736. doi: 10.1146/annurev.neuro.24.1.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [2].Connor B., Dragunow M. The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res Rev. 1998;27:1–39. doi: 10.1016/S0165-0173(98)00004-6. [DOI] [PubMed] [Google Scholar]
  • [3].Hofer M., Pagliusi S.R., Hohn A., Leibrock J., Barde Y.A. Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J. 1990;9:2459–2464. doi: 10.1002/j.1460-2075.1990.tb07423.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Canals J.M., Marco S., Checa N., Michels A., Pérez-Navarro E., Arenas E. Differential regulation of the expression of nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 after excitotoxicity in a rat model of Huntington’s disease. Neurobiol Dis. 1998;5:357–364. doi: 10.1006/nbdi.1998.0211. [DOI] [PubMed] [Google Scholar]
  • [5].Timmusk T., Belluardo N., Metsis M., Persson H. Widespread and developmentally regulated expression of neurotrophin-4 mRNA in rat brain and peripheral tissues. Eur J Neurosci. 1993;5:605–613. doi: 10.1111/j.1460-9568.1993.tb00526.x. [DOI] [PubMed] [Google Scholar]
  • [6].Lee P.D., Sladek R., Greenwood C.M., Hudson T.J. Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res. 2002;12:292–297. doi: 10.1101/gr.217802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Boda E., Pini A., Hoxha E., Parolisi R., Tempia F. Selection of reference genes for quantitative real-time RT-PCR studies in mouse brain. J Mol Neurosci. 2009;37:238–253. doi: 10.1007/s12031-008-9128-9. [DOI] [PubMed] [Google Scholar]
  • [8].Canals J.M., Checa N., Marco S., Michels A., Pérez-Navarro E., Alberch J. The neurotrophin receptors trkA, trkB and trkC are differentially regulated after excitotoxic lesion in rat striatum. Mol Brain Res. 1999;69:242–248. doi: 10.1016/S0169-328X(99)00130-8. [DOI] [PubMed] [Google Scholar]
  • [9].Hanbury R., Charles V., Chen E.Y., Leventhal L., Rosenstein J.M., Mufson E.J., et al. Excitotoxic and metabolic damage to the rodent striatum: role of the P75 neurotrophin receptor and glial progenitors. J Comp Neurol. 2002;444:291–305. doi: 10.1002/cne.10104. [DOI] [PubMed] [Google Scholar]
  • [10].Pickrell A.M., Fukui H., Wang X., Pinto M., Moraes C.T. The striatum is highly susceptible to mitochondrial oxidative phosphorylation dysfunctions. J Neurosci. 2011;31:9895–9904. doi: 10.1523/JNEUROSCI.6223-10.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Borlongan C.V., Koutouzis T.K., Randall T.S., Freeman T.B., Cahill D.W., Sanberg P.R. Systemic 3-nitropropionic acid: behavioral deficits and striatal damage in adult rats. Brain Res Bull. 1995;36:549–556. doi: 10.1016/0361-9230(94)00242-S. [DOI] [PubMed] [Google Scholar]
  • [12].Brouillet E., Conde F., Beal M.F., Hantraye P. Replicating Huntington’s Disease phenotype in experimental animals. Prog Neurobiol. 1999;59:427–468. doi: 10.1016/S0301-0082(99)00005-2. [DOI] [PubMed] [Google Scholar]
  • [13].Alston T., Mela L., Brig H.J. 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate deshidrogenase. Proc Natl Acad Sci U S A. 1977;74:3767–3771. doi: 10.1073/pnas.74.9.3767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Coles C.J., Edmondson D.E., Singer T.P. Inactivation of succinate deshydrogenase by 3-nitropropionate. J Biol Chem. 1979;254:5161–5167. [PubMed] [Google Scholar]
  • [15].Rodríguez E., Rivera I., Astorga S., Mendoza E., García F., Hernández-Echeagaray E. Uncoupling oxidative/energy metabolism with low sub chronic doses of 3-nitropropionic acid or iodoacetate in vivo produces striatal cell damage. Int J Biol Sci. 2010;6:199–212. doi: 10.7150/ijbs.6.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Hernández-Echeagaray E., González N., Ruelas A., Mendoza E., Rodríguez-Martínez E., Antuna-Bizarro R. Low doses of 3-nitropropionic acid in vivo induce damage in mouse skeletal muscle. Neurol Sci. 2011;32(2):241–254. doi: 10.1007/s10072-010-0394-2. [DOI] [PubMed] [Google Scholar]
  • [17].Hernández-Echeagaray E., De la Rosa-López G., Mendoza E. The use of the mitochondrial toxin 3-NP to uncover cellular dysfunction in Huntington’s disease. In: Tunali N. E., editor. Huntington’s Disease-Core Concepts and Current Advances. Rijeka, Croatia: InTech; 2012. pp. 347–360. [Google Scholar]
  • [18].Calvo A.C., Moreno-Igoa M., Manzano R., Ordovás L., Yagüe G., Oliván S., et al. Determination of protein and RNA expression levels of common housekeeping genes in a mouse model of neurodegeneration. Proteomics. 2008;8:4338–4343. doi: 10.1002/pmic.200701091. [DOI] [PubMed] [Google Scholar]
  • [19].Schmittgen T.D., Zakrajsek B.A. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods. 2000;46:69–81. doi: 10.1016/S0165-022X(00)00129-9. [DOI] [PubMed] [Google Scholar]
  • [20].Bonini P., Pierucci D., Cicconi S., Porzio O., Lauro R., Marlier L.N., et al. Neurotrophins and neurotrophin receptors mRNAs expression in pancreatic islets and insulinoma cell lines. JOP. 2001;2(3):105–111. [PubMed] [Google Scholar]
  • [21].Kawakami T., Wakabayashi Y., Isono T., Aimi Y., Okada Y. Expression of neurotrophin messenger RNAs during rat urinary bladder development. Neurosci Lett. 2002;329:77–80. doi: 10.1016/S0304-3940(02)00598-0. [DOI] [PubMed] [Google Scholar]
  • [22].Bustin S.A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol. 2002;29:23–39. doi: 10.1677/jme.0.0290023. [DOI] [PubMed] [Google Scholar]
  • [23].Nolan T., Hands R.E., Bustin S.A. Quantification of mRNA using real-time RT-PCR. Nat Prot. 2006;1(3):1558–1582. doi: 10.1038/nprot.2006.236. [DOI] [PubMed] [Google Scholar]
  • [24].Lee M.K., Kim H.R. Comparison between Real-Time PCR and agarose gel electrophoresis for DNA quantification. Korean J Lab Med. 2006;26:217–222. doi: 10.3343/kjlm.2006.26.3.217. [DOI] [PubMed] [Google Scholar]
  • [25].Flori P., Bellete B., Durand F., Raberin H., Cazorla C., Hafid J., et al. Comparison between real-time PCR, conventional PCR and different staining techniques for diagnosing Pneumocystis jiroveci pneumonia from bronchoalveolar lavage specimens. J Med Microbiol. 2004;53:603–607. doi: 10.1099/jmm.0.45528-0. [DOI] [PubMed] [Google Scholar]
  • [26].Huggett J., Dheda K., Bustin S., Zumla A. Real-time RT-PCR normalization: strategies and considerations. Genes Immunity. 2005;6:279–284. doi: 10.1038/sj.gene.6364190. [DOI] [PubMed] [Google Scholar]
  • [27].Rhinn H., Marchand-Leroux C., Croci N., Plotkine M., Scherman D., Escriou V. Housekeeping while brain’s storming Validation of normalizing factors for gene expression studies in a murine model of traumatic brain injury. BMC Mol Biol. 2008;9(62):1–12. doi: 10.1186/1471-2199-9-62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Selvey S., Thompson E.W., Matthaei K., Lea R.A., Irving M.G., Griffiths L.R. β-Actin- an unsuitable internal control for RT-PCR. Mol Cell Prob. 2001;15:307–311. doi: 10.1006/mcpr.2001.0376. [DOI] [PubMed] [Google Scholar]
  • [29].Zhang H.L., Eom T., Oleynikov Y., Shenoy S.M., Liebelt D.A., Dictenberg J.B., et al. Neurotrophin-induced transport of a beta-actin mRNP complex increases beta-actin levels and stimulates growth cone motility. Neuron. 2001;31:261–275. doi: 10.1016/S0896-6273(01)00357-9. [DOI] [PubMed] [Google Scholar]
  • [30].Zhu L.J., Altmann S.W. mRNA and 18S-RNA coapplication-reverse transcription for quantitative gene expression analysis. Analytical Biochem. 2005;345:102–109. doi: 10.1016/j.ab.2005.07.028. [DOI] [PubMed] [Google Scholar]
  • [31].Wong J.Y.F., Liberatore G.T., Donnan G.A., Howells D.W. Expression of brain-derived neurotrophic factor and TrkB neurotrophin receptors after striatal injury in the mouse. Exp Neurol. 1997;148:83–91. doi: 10.1006/exnr.1997.6670. [DOI] [PubMed] [Google Scholar]
  • [32].Shen H., Cheng J.M., Cheng K. Expression of neurotrophin mRNAs in the dorsal root ganglion after spinal nerve injury. Mol Brain Res. 1999;64:186–192. doi: 10.1016/S0169-328X(98)00314-3. [DOI] [PubMed] [Google Scholar]
  • [33].Shelton D.L., Reichardt L.F. Studies on the expression of the nerve growth factor (NGF) gene in the central nervous system: level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several distinct populations of neurons. Proc Natl Acad Sci U S A. 1986;83:2714–2718. doi: 10.1073/pnas.83.8.2714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [34].Mobley W.C., Woo J.E., Edwards R.H., Riopelle R.J., Longo F.M., Weskamp G., et al. Developmental regulation of nerve growth factor and its receptor in the rat caudate-putamen. Neuron. 1989;35:655–664. doi: 10.1016/0896-6273(89)90276-6. [DOI] [PubMed] [Google Scholar]
  • [35].Arévalo J.C., Wu S.H. Neurotrophin signaling: many exciting surprises! Cell Mol Life Sci. 2006;63:1523–1537. doi: 10.1007/s00018-006-6010-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Canals J.M., Pineda J.R., Torres-Peraza J.F., Bosch M., Martín-Ibañez R., Muñoz M.T., et al. Brain-Derived Neurotrophic Factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci. 2004;24(35):7727–7739. doi: 10.1523/JNEUROSCI.1197-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Ferrer I., Goutan E., Marin C., Rey M.J., Ribalta T. Brain-derived neurotrophic factor in Huntington disease. Brain Res. 2000;866:257–261. doi: 10.1016/S0006-8993(00)02237-X. [DOI] [PubMed] [Google Scholar]
  • [38].Zuccato C., Cattaneo E. Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol. 2007;81:294–330. doi: 10.1016/j.pneurobio.2007.01.003. [DOI] [PubMed] [Google Scholar]
  • [39].Wu C.L., Chen S.D., Hwang C.S., Yang D.I. Sonic hedgehog mediates BDNF-induced neuroprotection against mitochondrial inhibitor 3-nitropropionic acid. Biochem Biophys Res Comm. 2009;385:112–117. doi: 10.1016/j.bbrc.2009.04.145. [DOI] [PubMed] [Google Scholar]
  • [40].Dawbarn D., Allen S.J. Neurotrophins and neurodegeneration. Neuropathol Appl Neurobiol. 2003;29:211–230. doi: 10.1046/j.1365-2990.2003.00487.x. [DOI] [PubMed] [Google Scholar]
  • [41].Cui Q. Actions of Neurotrophic Factors and their signaling pathways in neuronal survival and axonal regeneration. Mol Neurobiol. 2006;33:155–179. doi: 10.1385/MN:33:2:155. [DOI] [PubMed] [Google Scholar]
  • [42].Hennigan A., O’Callaghan R.M., Kelly A.M. Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochem S Transac. 2007;35(2):424–427. doi: 10.1042/BST0350424. [DOI] [PubMed] [Google Scholar]
  • [43].Ardelt A.A., Flaris N.A., Roth K.A. Neurotrophin-4 selectively promotes survival of striatal neurons in organotypic slice culture. Brain Res. 1994;647:340–344. doi: 10.1016/0006-8993(94)91333-1. [DOI] [PubMed] [Google Scholar]
  • [44].Pérez-Navarro E., Canudas A.M., Akerund P., Alberch J., Arenas E. Brain-derived neurotrophin factor, neurotrophin-3 and neurotrophin-4/5 prevent the death of striatal projection neurons in a rodent model of Huntington’s disease. J Neurochem. 2000;75:2190–2199. doi: 10.1046/j.1471-4159.2000.0752190.x. [DOI] [PubMed] [Google Scholar]
  • [45].Zermeño V., Espíndola S., Mendoza E., Hernández-Echeagaray E. Differential expression of neurotrophins in postnatal C57BL/6 mice striatum. Int J Biol Sci. 2009;5:118–127. doi: 10.7150/ijbs.5.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [46].Tauszig-Delamasure S., Yu L.Y., Cabrera J.R., Bouzas-Rodriguez J., Mermet-Bouvier C., Guix C., et al. The TrkC receptor induces apoptosis when the dependence receptor notion meets the neurotrophin paradigm. Proc Natl Acad Sci U S A. 2007;104(33):13361–13366. doi: 10.1073/pnas.0701243104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [47].Kim J.Y., Sutton M.E., Lu D.J., Cho T.A., Goumnerova L.C., Goritchenko L., et al. Activation of neurotrophin-3 receptor TrkC induces apoptosis in medulloblastomas. Cancer Res. 1999;59:711–719. [PubMed] [Google Scholar]
  • [48].Bibel M., Hoppe E., Barde Y.A. Biochemical and functional interactions between the neurotrophin receptors Trk and p75NTR. EMBO J. 1999;18(3):616–622. doi: 10.1093/emboj/18.3.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [49].Nykjaer A., Willnow T.E., Petersen C.M. p75NTR — live or let die. Curr Opin Neurobiol. 2005;15:49–57. doi: 10.1016/j.conb.2005.01.004. [DOI] [PubMed] [Google Scholar]
  • [50].Underwood C.K., Coulson E.J. The p75 neurotrophin receptor. Int J Biochem Cell Biol. 2008;40:1664–1668. doi: 10.1016/j.biocel.2007.06.010. [DOI] [PubMed] [Google Scholar]
  • [51].Friedman W.J. Neurotrophins induce death of hippocampal neurons via the p75 receptor. J Neurosci. 2000;20(17):6340–6346. doi: 10.1523/JNEUROSCI.20-17-06340.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES