Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Oct 3;28(5):509–516. doi: 10.1007/s12264-012-1273-z

Sulforaphane protects primary cultures of cortical neurons against injury induced by oxygen-glucose deprivation/reoxygenation via antiapoptosis

Xuemei Wu 1, Jing Zhao 2,, Shanshan Yu 1, Yanlin Chen 1, Jingxian Wu 1, Yong Zhao 1,
PMCID: PMC5561925  PMID: 23054633

Abstract

Objective

To determine whether sulforaphane (SFN) protects neurons against injury caused by oxygenglucose deprivation/reoxygenation (OGD/R) and, if so, to investigate the possible mechanisms.

Methods

Primary cultures of neurons were prepared from the cerebral cortex of 1-day-old Sprague-Dawley rats. On days 5–6 in vitro, the neurons were exposed to OGD for 1 h, followed by reoxygenation for 24 h. Cells were treated with 0, 0.1, 0.2, 0.5, 1, 2.5, or 5 μmol/L SFN, with or without 10 μmol/L LY294002, a PI3K-specific inhibitor, during OGD/R (a total of 25 h). After 24-h reoxygenation, MTT was used to assess viability and injury was assessed by Hoechst 33258/propidium iodide (PI) staining; immunofluorescence staining and Western blot were performed to detect molecular events associated with apoptosis.

Results

The MTT assay showed that 1 μmol/L SFN significantly increased viability, and Hoechst 33258/PI staining showed that the numbers of injured neurons were reduced significantly in the SFN group. Furthermore, immunofluorescence staining and Western blot showed that SFN increased Bcl-2 and decreased cleaved caspase-3 levels. Moreover, LY294002 inhibited the phosphorylated-Akt expression evoked by SFN, decreased Bcl-2 expression and increased cleaved caspase-3 expression.

Conclusion

SFN protects neurons against injury from OGD/R and this effect may be partly associated with an antiapoptosis pathway.

Keywords: sulforaphane, oxygen-glucose deprivation, apoptosis, neuroprotection

Contributor Information

Jing Zhao, Phone: +86-23-68485789, FAX: +86-23-68485868, Email: blys01@163.com.

Yong Zhao, Phone: +86-23-68485238, FAX: +86-23-68485868, Email: yangyang741022@sina.com.

References

  • [1].Zhao J., Kobori N., Aronowski J., Dash P. Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neurosci Lett. 2006;393:108–112. doi: 10.1016/j.neulet.2005.09.065. [DOI] [PubMed] [Google Scholar]
  • [2].Qu Y., Mao M., Zhao F., Zhang L., Mu D. Proapoptotic role of human growth and transformation-dependent protein in the developing rat brain after hypoxia-ischemia. Stroke. 2009;40:2843–2848. doi: 10.1161/STROKEAHA.109.553644. [DOI] [PubMed] [Google Scholar]
  • [3].Zhang L., Qu Y., Tang J., Chen D., Fu X., Mao M., et al. PI3K/Akt signaling pathway is required for neuroprotection of thalidomide on hypoxic-ischemic cortical neurons in vitro. Brain Res. 2010;1357:157–165. doi: 10.1016/j.brainres.2010.08.007. [DOI] [PubMed] [Google Scholar]
  • [4].Kumar S. Caspase function in programmed cell death. Cell Death Differ. 2007;14:1432–1443. doi: 10.1038/sj.cdd.4402060. [DOI] [PubMed] [Google Scholar]
  • [5].Chan P. Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem Res. 2004;29:1943–1949. doi: 10.1007/s11064-004-6869-x. [DOI] [PubMed] [Google Scholar]
  • [6].Liu C., Wu J., Xu K., Cai F., Gu J., Ma L., et al. Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway. J Neurochem. 2010;112:1500–1512. doi: 10.1111/j.1471-4159.2009.06561.x. [DOI] [PubMed] [Google Scholar]
  • [7].Dash P., Zhao J., Orsi S., Zhang M., Moore A. Sulforaphane improves cognitive function administered following traumatic brain injury. Neurosci Lett. 2009;460:103–107. doi: 10.1016/j.neulet.2009.04.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Ping Z., Liu W., Kang Z., Cai J., Wang Q., Cheng N., et al. Sulforaphane protects brains against hypoxic-ischemic injury through induction of Nrf2-dependent phase 2 enzyme. Brain Res. 2010;1343:178–185. doi: 10.1016/j.brainres.2010.04.036. [DOI] [PubMed] [Google Scholar]
  • [9].Brandenburg L., Kipp M., Lucius R., Pufe T., Wruck C. Sulforaphane suppresses LPS-induced inflammation in primary rat microglia. Inflamm Res. 2010;59:443–450. doi: 10.1007/s00011-009-0116-5. [DOI] [PubMed] [Google Scholar]
  • [10].Heiss E., Herhaus C., Klimo K., Bartsch H., Gerhäuser C. Nuclear factor kappa B is a molecular target for sulforaphane-mediated antiinflammatory mechanisms. J Biol Chem. 2001;276:32008–32015. doi: 10.1074/jbc.M104794200. [DOI] [PubMed] [Google Scholar]
  • [11].Lin W., Wu R., Wu T., Khor T., Wang H., Kong A. Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway. Biochem Pharmacol. 2008;76:967–973. doi: 10.1016/j.bcp.2008.07.036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [12].Danilov C., Chandrasekaran K., Racz J., Soane L., Zielke C., Fiskum G. Sulforaphane protects astrocytes against oxidative stress and delayed death caused by oxygen and glucose deprivation. Glia. 2009;57:645–656. doi: 10.1002/glia.20793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Soane L., Li D. W., Fiskum G., Bambrick L. Sulforaphane protects immature hippocampal neurons against death caused by exposure to hemin or to oxygen and glucose deprivation. J Neurosci Res. 2010;88:1355–1363. doi: 10.1002/jnr.22307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Yang L., Zhu X., Tso M. Role of NF-kappaB and MAPKs in lightinduced photoreceptor apoptosis. Invest Ophthalmol Vis Sci. 2007;48:4766–4776. doi: 10.1167/iovs.06-0871. [DOI] [PubMed] [Google Scholar]
  • [15].Gamet-Payrastre L. Signaling pathways and intracellular targets of sulforaphane mediating cell cycle arrest and apoptosis. Curr Cancer Drug Targets. 2006;6:135–145. doi: 10.2174/156800906776056509. [DOI] [PubMed] [Google Scholar]
  • [16].Zhang Y., Talalay P., Cho C., Posner G. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A. 1992;89:2399–2403. doi: 10.1073/pnas.89.6.2399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Noyan-Ashraf M., Sadeghinejad Z., Juurlink B. Dietary approach to decrease aging-related CNS inflammation. Nutr Neurosci. 2005;8:101–110. doi: 10.1080/10284150500069470. [DOI] [PubMed] [Google Scholar]
  • [18].Bhuiyan M.I., Islam M.N., Jung S.Y., Yoo H.H., Lee Y.S., Jin C. I. nvolvement of ceramide in ischemic tolerance induced by preconditioning with sublethal oxygen-glucose deprivation in primary cultured cortical neurons of rats. Biol Pharm Bull. 2010;33:3311–3317. doi: 10.1248/bpb.33.11. [DOI] [PubMed] [Google Scholar]
  • [19].Brewer G. Serum-free B27/neurobasal medium supports differentiated growth of neurons from the striatum, substantia nigra, septum, cerebral cortex, cerebellum, and dentate gyrus. J Neurosci Res. 1995;42:674–683. doi: 10.1002/jnr.490420510. [DOI] [PubMed] [Google Scholar]
  • [20].Tauskela J., Brunette E., Monette R., Comas T., Morley P. Preconditioning of cortical neurons by oxygen-glucose deprivation: tolerance induction through abbreviated neurotoxic signaling. Am J Physiol Cell Physiol. 2003;285:C899–C911. doi: 10.1152/ajpcell.00110.2003. [DOI] [PubMed] [Google Scholar]
  • [21].Xiang J., Tang Y.P., Zhou Z.Y., Wu P., Wang Z., Mori M., et al. Apocynum venetum leaf extract protects rat cortical neurons from injury induced by oxygen and glucose deprivation in vitro. Can J Physiol Pharmacol. 2010;88:907–917. doi: 10.1139/Y10-069. [DOI] [PubMed] [Google Scholar]
  • [22].Wang Z.F., Zhou J., Tang X.C. Huperzine B protects rat pheochromocytoma cells against oxygen-glucose deprivation-induced injury. Acta Pharmacol Sin. 2002;23:1193–1198. [PubMed] [Google Scholar]
  • [23].Zhao J., Moore A., Redell J., Dash P. Enhancing expression of Nrf2- driven genes protects the blood brain barrier after brain injury. J Neurosci. 2007;27:10240–10248. doi: 10.1523/JNEUROSCI.1683-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [24].Wong W.W., Puthalakath H. Bcl-2 family proteins: the sentinels of the mitochondrial apoptosis pathway. IUBMB Life. 2008;60:390–397. doi: 10.1002/iub.51. [DOI] [PubMed] [Google Scholar]
  • [25].Green D., Reed J. Mitochondria and apoptosis. Science. 1998;281:1309–1312. doi: 10.1126/science.281.5381.1309. [DOI] [PubMed] [Google Scholar]
  • [26].Shacka J., Roth K. Regulation of neuronal cell death and neurodegeneration by members of the Bcl-2 family: therapeutic implications. Curr Drug Targets CNS Neurol Disord. 2005;4:25–39. doi: 10.2174/1568007053005127. [DOI] [PubMed] [Google Scholar]
  • [27].Kowaltowski A., Castilho R., Vercesi A. Mitochondrial permeability transition and oxidative stress. FEBS Lett. 2001;495:12–15. doi: 10.1016/S0014-5793(01)02316-X. [DOI] [PubMed] [Google Scholar]
  • [28].Ashe P.C., Berry M.D. Apoptotic signaling cascades. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:199–214. doi: 10.1016/S0278-5846(03)00016-2. [DOI] [PubMed] [Google Scholar]
  • [29].Guan Q.H., Pei D.S., Liu X.M., Wang X.T., Xu T.L., Zhang G.Y. Neuroprotection against ischemic brain injury by SP600125 via suppressing the extrinsic and intrinsic pathways of apoptosis. Brain Res. 2006;1092:36–46. doi: 10.1016/j.brainres.2006.03.086. [DOI] [PubMed] [Google Scholar]
  • [30].Zhao J., Yu S., Zheng W., Feng G., Luo G., Wang L., et al. Curcumin improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Neurochem Res. 2010;35:374–379. doi: 10.1007/s11064-009-0065-y. [DOI] [PubMed] [Google Scholar]
  • [31].Zhao J., Zhao Y., Zheng W., Lu Y., Feng G., Yu S. Neuroprotective effect of curcumin on transient focal cerebral ischemia in rats. Brain Res. 2008;1229:224–232. doi: 10.1016/j.brainres.2008.06.117. [DOI] [PubMed] [Google Scholar]
  • [32].Yu S., Zhao J., Zheng W., Zhao Y. Neuroprotective effect of 4- hydroxybenzyl alcohol against transient focal cerebral ischemia via anti-apoptosis in rats. Brain Res. 2010;1308:167–175. doi: 10.1016/j.brainres.2009.10.037. [DOI] [PubMed] [Google Scholar]
  • [33].Wen X., Huang Y., Wang J. Erythropoietin preconditioning on hippocampus neuronal apoptosis following status epilepticus induced by Li-pilocarpine in rats through anti-caspase-3 expression. Neurol India. 2006;54:58–63. doi: 10.4103/0028-3886.24708. [DOI] [PubMed] [Google Scholar]
  • [34].Li L., Qu Y., Mao M., Xiong Y., Mu D. The involvement of phosphoinositid 3-kinase/Akt pathway in the activation of hypoxiainducible factor-1alpha in the developing rat brain after hypoxiaischemia. Brain Res. 2008;1197:152–158. doi: 10.1016/j.brainres.2007.12.059. [DOI] [PubMed] [Google Scholar]
  • [35].Luo H., Hattori H., Hossain M., Hester L., Huang Y., Lee-Kwon W. A., et al. kt as a mediator of cell death. Proc Natl Acad Sci U S A. 2003;100:11712–11717. doi: 10.1073/pnas.1634990100. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES