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While the cause of dopaminergic neuronal cell death in Parkinson’s disease (PD) is not yet understood, many 
endogenous molecules have been implicated in its pathogenesis. β-phenethylamine (β-PEA), a component of 
various food items including chocolate and wine, is an endogenous molecule produced from phenylalanine in 
the brain. It has been reported recently that long-term administration of β-PEA in rodents causes neurochemical 
and behavioral alterations similar to that produced by parkinsonian neurotoxins. The toxicity of β-PEA has been 
linked to the production of hydroxyl radical (.OH) and the generation of oxidative stress in dopaminergic areas 
of the brain, and this may be mediated by inhibition of mitochondrial complex-I. Another signifi cant observation 
is that administration of β-PEA to rodents reduces striatal dopamine content and induces movement disorders 
similar to those of parkinsonian rodents. However, no reports are available on the extent of dopaminergic 
neuronal cell death after administration of β-PEA. Based on the literature, we set out to establish β-PEA as 
an endogenous molecule that potentially contributes to the progressive development of PD. The sequence 
of molecular events that could be responsible for dopaminergic neuronal cell death in PD by consumption of 
β-PEA-containing foods is proposed here. Thus, long-term over-consumption of food items containing β-PEA 
could be a neurological risk factor having significant pathological consequences.
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Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative 
disorder characterized by the loss of dopamine-containing 
neurons in the substantia nigra pars compacta (SNc), 
resulting in four cardinal behavioral abnormalities: tremor, 
rigidity, akinesia and postural instability[1,2]. While the 
cause of dopaminergic neurodegeneration in PD is not 
well understood, excessive production of reactive oxygen 
species[3] and the resulting mitochondrial complex-I 
dysfunction[4] are generally regarded as the underlying 
causes. It is now considered that PD is caused not only by 
exogenous substances such as rotenone[5] and 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)[5,6], but also 

by endogenous molecules such as homocysteine[7], 
6-hydroxydopamine (6-OHDA)[8-11] and dopamine itself[12,13].

β-Phenethylamine (β-PEA)

β-PEA is a naturally-occurring plant-derived biogenic 
amine found in cocoa beans[14] and its products[15], and is 
also an endogenous amine produced by decarboxylation 
of phenylalanine in the mammalian brain[16,17]. β-PEA is 
present in trace amounts in various food items such as 
chocolate[18,15,19], cheese[20] and wine[21,22], with the highest 
being reported in chocolate[18,19]. Although β-PEA is 
distributed throughout the mammalian brain, its concentration 
in dopaminergic areas such as the caudate-putamen is 
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relatively high[23,24]. 

Physiological Role of β-PEA in Brain — Is It Similar 

to Parkinsonian Neurotoxins? 

Generation of .OH Radical
The mechanism of action of parkinsonian neurotoxins has 
been linked to the production of hydroxyl radical (.OH) and 
the generation of oxidative stress in dopaminergic areas of 
the brain, mainly mediated by the inhibition of mitochondrial 
complex-I[25-27]. It has been reported recently that long-
term administration of β-PEA to rodents causes oxidative 
stress[28-30], similar to that produced by parkinsonian 
neurotoxins such as MPTP[5], rotenone[5,25] and 6-OHDA[6,8]. 
β-PEA-induced oxidative stress has been linked to its 
ability to inhibit mitochondrial complex-I[28], directly leading 
to the generation of cytotoxic .OH in a dose-dependent 
manner[28]. In addition, β-PEA has also been reported to 
inhibit mitochondrial O2 consumption, suggesting that the 
generation of cytotoxic .OH is the underlying cause[29]. 
Moreover, β-PEA itself has been reported to generate .OH 
in vitro and in isolated mitochondrial fractions[30,28]. Thus, 
these reports suggest that β-PEA generates .OH either by 
inhibiting mitochondrial complex-I or by producing .OH by 
itself. 
Neurochemical and Behavioral Alterations
Another signifi cant observation was that administration of 
β-PEA in rodents reduces striatal dopamine content and 
induces disorders such as akinesia, catalepsy and other 
motor abnormalities[28,31,32], similar to those of parkinsonian 
rodents[6]. However, no reports are available on the extent 
of dopaminergic neuronal cell death after administration 
of β-PEA. In contrast, several reports have suggested 
that β-PEA acts like a dopaminergic agonist and regulates 
the activity of nigrostriatal dopaminergic pathways[33,34]. 
β-PEA, when administered intraventricularly, increases the 
extracellular dopamine levels in the striatum[35], and acute 
administration results in increases in locomotor activity and 
stereotypic behavior in rodents[31,32]. Importantly, only long-
term administration or high doses of β-PEA induces loss of 
dopamine in the nigrostriatum leading to motor disabilities 
similar to those of PD, whereas acute or sub-acute doses 
of β-PEA in rodents increase dopamine levels and induce 
hypermotility[32]. Thus, β-PEA may be comparable with 

parkinsonian neurotoxins such as MPP+, which when 
unilaterally infused into the SNc, initially results in release of 
dopamine into the striatum causing contralateral rotational 
bias[36]. 
β-PEA as a Specifi c Dopaminergic Neurotoxin
Although the distribution of β-PEA in the mammalian brain 
is heterogeneous, the highest concentrations are reported 
to occur in dopaminergic regions e.g., in mesolimbic and 
caudate-putamen regions[23,24]. The rates of synthesis 
and turnover of β-PEA in brain are also similar to that 
of dopamine[23,24], which has been reported to cause 
neurotoxicity because of its ability to produce endogenous 
toxins such as 6-OHDA[9-12]. As the concentration of 
β-PEA in dopamine-rich region is relatively high, it may 
be proposed here that these regions are particularly 
vulnerable to toxic insult from β-PEA. Thus, consumption of 
β-PEA-containing food items over a long time would cause 
preferential dopaminergic neurodegeneration like other 
endogenous parkinsonian neurotoxins[7,8,10-12] and may 
contribute to the development of PD in humans.

Probable Molecular Mechanism of Action of β-PEA 

in Brain

Mitochondrial dysfunction has been implicated to play 
a central role in PD pathogenesis[37-39]. Mitochondrial 
dysfunction and the resulting oxidative stress have been 
reported to promote α-synuclein aggregation or Lewy body 
formation[40-42] that culminates in the loss of dopaminergic 
neurons through impairment of the ubiquitin-proteasome 
system (UPS)[43]. The aggregated α-synuclein has been 
shown to inhibit the UPS system by interacting with 
the proteasomal subunits[44,45]. Moreover, a decrease in 
cellular energy or ATP generation as a consequence of 
mitochondrial complex-I inhibition results in α-synuclein 
aggregation[40-42,46,47]. Rotenone, a parkinsonian neurotoxin 
and a specific mitochondrial complex-I inhibitor[48], has 
been implicated in the formation of Lewy bodies[49] and 
UPS dysfunction in rodents[50]. Likewise, other parkinsonian 
neurotoxins such as Paraquat and MPTP also contribute to 
α-synuclein aggregation and UPS dysfunction[51,52]. Thus, 
a molecule that causes mitochondrial oxidative stress may 
cause α-synuclein aggregation and UPS dysfunction in 
the brain. On the other hand, UPS dysfunction alone has 
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the potential to cause α-synucleinopathies[53,54] and can 
also reciprocally inhibit mitochondrial functions[55]. Most 
importantly, aggregated α-synuclein through its ability to 
impair UPS and mitochondrial dysfunctions may contribute 
to dopaminergic neurodegeneration[56]. Meanwhile, 
dopaminergic neurodegeneration by the apoptotic mode of 
cell death as a consequence of mitochondrial dysfunction[57] 
and α-synucleinopathies has been implicated in the 
pathogenesis of PD. 

Similar to other parkinsonian neurotoxins, β-PEA 

inhibits mitochondrial complex-I, causes oxidative stress, 
and induces parkinsonian symptoms in rodents[28]. 
Thus, β-PEA-induced mitochondrial dysfunctions and 
the resulting oxidative stress may promote -synuclein 
aggregation or Lewy body formation in dopaminergic 
areas that may cause proteasome dysfunction, resulting 
in dopaminergic neurodegeneration[56] by apoptosis[57]. The 
sequence of molecular events that could be responsible 
for dopaminergic neuronal death and the behavioral 
abnormalities, as a result of consumption of β-PEA-

Fig. 1. Molecular mechanisms underlying β-phenethylamine (β-PEA)-induced dopaminergic neurodegeneration. High levels of β-PEA 
generate hydroxyl radicals (.OH) either by inhibiting mitochondrial complex I or by producing .OH itself and contribute to oxidative 
stress. Mitochondrial complex-I inhibition and the resulting oxidative stress promote α-synuclein aggregation or Lewy-body 
formation which inhibits the ubiquitin proteasome system (UPS) by interacting with the proteasomal subunits. Decreased cellular 
energy or ATP generation as a consequence of mitochondrial complex-I inhibition also inhibits the UPS. Alterations or diminution 
of UPS functions enhances α-synuclein aggregation and reciprocally inhibits mitochondrial functions. The mitochondrial 
dysfunctions and the resulting oxidative stress that trigger the accumulation of α-synuclein aggregates together with UPS 
dysfunction to culminate in dopaminergic neurodegeneration by apoptosis. 
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containing food items, is proposed in Fig. 1.

Is Consumption of Chocolate Suffi cient to Cause 

PD in Humans?

If a person takes 100 g of chocolate per day, the total β-PEA 
intake would be 0.36–0.83 mg/day depending on the type 
of chocolate[58]. Since β-PEA is an integral component of 
many food items, a “chocolate addict” would be exposed 
to a much higher dose. It has recently been demonstrated 
that acute (one day) and chronic (7 days) intraperitoneal 
administration of β-PEA, both at doses of 0.63 mg/day 
and 1.25 mg/day, are sufficient to cause parkinsonian 
symptoms in adult mice[28]. These results suggest that the 
amount of chocolate that a person takes normally might be 
toxic to dopaminergic neurons. 

However, chocolate and wine also contain various 
antioxidants such as polyphenols[59], which have been 
reported to be protective against many diseases including 
PD[60,61]. The polyphenol constituents of cocoa, such as 
epicatechin and catechin, have been reported to attenuate 
MPTP-induced dopaminergic neurodegeneration in 
rodent models of PD[60,61]. Few reports are available on 
their adverse effects[62,63]. Although the reports on the 
neuroprotective effect of polyphenols are promising, 
adverse effects of polyphenols on human health have 
yet to be ascertained. Thus, it may be suggested that 
the toxic effect of β-PEA on dopaminergic neurons may 
be attenuated by polyphenols like cathechins or other 
antioxidants. Moreover, the attenuation of β-PEA-induced 
neurotoxicity may depend on the quality and/or quantity of 
polyphenols present in the chocolate or wine consumed.

Conclusion

To date, the cause of PD in humans is a mystery. Although 
β-PEA has mood-enhancing effects, long-term over-
consumption of foods containing β-PEA could be a 
neurological risk factor having significant pathological 
consequences such as PD. The proposed mechanism 
tries to explain the molecular events that might lead to 
dopaminergic neuronal loss in PD by consumption of 
β-PEA-containing food items. The neurotoxic potential 
of β-PEA in the development of PD has been discussed 
and limited consumption of these foods is recommended. 

As consumption of some β-PEA-enriched food items 
has become an addiction in modern life, our proposed 
mechanism is of enormous significance and impact. 
Although reports on the neurotoxic effects of β-PEA and the 
neuroprotective effects of polyphenols are promising, their 
roles in human health need further investigation.
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