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Abstract. Osteosarcomas (OS), especially those with 
metastatic or unresectable disease, have limited treatment 
options. The greatest advancement in treatments occurred 
in the 1980s when multi-agent chemotherapy, including 
doxorubicin, cisplatin, high-dose methotrexate, and, in some 
regimens, ifosfamide, was demonstrated to improve overall 
survival compared with surgery alone. However, standard 
chemotherapeutic options have been limited by poor response 
rates in patients with relapsed or advanced cases. It has been 
reported that VEGFR expression correlates with the outcome 
of patients with osteosarcoma and circulating VEGF level 
has been associated with the development of lung metastasis. 
At present, it seems to us that progress has not been made 
since Grignani reported a phase II cohort trial of sorafenib 
and sorafenib combined with everolimus for advanced osteo-
sarcoma, which, in a sense, have become a milestone as a 
second-line therapy for osteosarcoma. Although the recogniza-
tion of muramyltripepetide phosphatidyl-ethanolamine has 
made some progress based on its combination with standard 
chemotherapy, its effect on refractory cases is controversial. 
Personalized comprehensive molecular profiling of high-risk 
osteosarcoma up to now has not changed the therapeutic pros-
pect of advanced osteosarcoma significantly. Thus, how far 
have we moved forward and what therapeutic strategy should 
we prefer for anti-angiogenesis therapy? This review provides 
an overview of the most updated anti-angiogenesis therapy in 
OS and discusses some clinical options in order to maintain or 
even improve progression-free survival.
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1. Introduction

Osteosarcoma is a malignant tumor of mesenchymal origin 
and primarily occurs in children, adolescents, and young 
adults. This pleiomorphic tumor of the bone, based on animal 
model systems (1), depends on new blood vessel development, 
also known as angiogenesis, for tumor growth and metastasis. 
Although modern multimodality treatment has significantly 
improved tumor resectability and the long-term outcome of 
these patients, 25-35% of patients with initially non-metastatic 
disease subsequently develop metastasis and this remains 
the major cause of death (2). At the same time, axial skeletal 
osteosarcoma preliminarily responds poorly to chemotherapy 
and has been proven to have an even more dismal prognosis (3). 
From the review of van Maldegem et al (2) and Lagmay et al (4), 
we concluded that in the past two decades, published phase I/II 
clinical trials on chemotherapy for osteosarcoma failed to make 
significant progress in refractory cases. With the study of onco-
genesis and pathobiological behavior of osteosarcoma (1), we 
know that new blood vessel formation (angiogenesis) is funda-
mental to tumor growth, invasion, and metastatic dissemination.

Several groups have evaluated tumor micro-vessel density 
and outcome in osteosarcoma  (5-7). Expression of VEGF 
has been suggested as a means of evaluating the prognostic 
importance of angiogenesis in osteosarcoma (8). Monotherapy 
with second-generation broad-spectrum VEGF receptor 
tyrosine kinase inhibitors (TKIs) in sarcoma has now become 
an area of active research and application beyond gastrointes-
tinal stromal tumors (GISTs). Within all of those preclinical 
experiments and clinical trials (6, 9-13), the milestone of the 
treatment on advanced osteosarcoma should count on the 
application of anti-angiogenesis TKIs sorafenib on refractory 
cases from the Italian Sarcoma Group (13), which officially 
raised the 4-month progression-free survival (PFS) from 
<30-46% for the first time. However, things had seemed not to 
change as dramatically as was expected since then. The main 
hurdle that researchers need to get over should be sensitivity 
and drug-resistance (14).
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The goals of this review are: a) to review representative 
agents in in vitro and in vivo experiments that showed promise 
for osteosarcoma based on anti-angiogenesis therapy; b)  to 
summarize the current phase I and II trials of anti-angiogenensis 
therapies that have been explored in advanced osteosarcoma 
patients; and c) to focus on targeting the action towards VEGFR 
and to discuss current hurdles and future perspectives.

2. Tumor angiogenesis and anti-angiogenesis therapy in 
osteosarcoma

Tumor angiogenesis and optional treatments. Angiogenesis is 
the process of new blood vessel development, which is critical 
in both physiological development and pathological processes, 
such as tumor progression, wound healing, and cardiovas-
cular, inflammatory, ischemic, and infectious diseases (15). 
In response to hypoxia, tumor tissues produce and release 
angiogenic growth factors, such as vasculo-endothelial growth 
factor (VEGF), the acidic and basic fibroblast growth factors 
(aFGF and bFGF), and the platelet-derived endothelial cell 
growth factor (PD-ECGF) to recruit new blood vessels by 
angiogenesis and vasculogenesis (16). It is now widely accepted 
that both mutations of oncogenes and tumor suppressor genes 
lead to the switch into an angiogenic tumor. According to 
Gorlick  et  al  (1), osteosarcoma has complex unbalanced 
karotypes and with alterations of the p53 and retinoblastoma 
pathways in most cases, thus the vasculature playing an inti-
mate role in the progression of the pathologic development of 
osteosarcoma.

VEGF is a key tumor-derived angiogenic factor that has 
multiple functions, including stimulation of angiogenesis, 
vasculogenesis, inflammation, and vascular permeability, 
which constitutes the most important signaling pathways in 
tumor angiogenesis (7). According to Niu et al (16), the whole 
VEGF family has been identified to comprise 8 members with 
a common VEGF homology domain: VEGF-A, VEGF-B, 
VEGF-C, VEGF-D, VEGF-E, VEGF-F, and placenta 
growth factor (PIGF)-1 and -2. As shown in Fig. 1, VEGFs 
signal through 3 tyrosine kinase receptors, known as Flt-1 
(VEGFR‑1), Flk-1/KDR (VEGFR-2), and VEGFR-3  (17), 
which were previously thought to be predominantly expressed 
by endothelial cells, but in actual fact are also in sarcoma cell 
lines with limited study (18-21). It has been reported that both 
VEGFR-1 and -2 can promote angiogenesis and VEGFR-3 
stimulation leads to lymphangiogenesis (22).

There is a general consensus that VEGFR-2 is the domi-
nant receptor in mediating the pro-angiogenic functions of 
VEGF-A and this pathway has been prioritized for the devel-
opment of antiangiogenic therapies (16, 23). Though VEGFR-1 
has a 10-fold higher binding affinity for VEGF-A, its activa-
tion has less impact on the activation of intracellular signaling 
intermediates than VEGFR-2 (23).

Recognition of the VEGF pathway as a key regulator of 
angiogenesis has led to the development of several VEGF-
targeted agents, including agents that prevent VEGF-A binding 
to its receptors (24), antibodies that directly block VEGFR‑2 (25), 
and small molecules that inhibit the kinase activity of VEGFR-2 
thereby block growth factor signaling (26). Some of them have 
been approved by the FDA of the US for clinical applications (16). 
Previous representative anti-angiogenic compounds (10,27-39) 

are summarized in Table I with median inhibition concentration 
(IC50) noted for comparison.

Moreover, Broadhead et al  (40-43) repeatedly reported 
that pigment epithelium-derived factor (PEDF), co-localized 
with VEGF in tumor tissue, was probably important in the 
fine-tuning of tumor vasculature and aggression. However, 
the clinical application of this agent is under investigation 
(NCT00702494).

Fundamental study of angiogenesis in osteosarcoma and other 
related cellular signaling pathways. Geller and Gorlick (44) 
reviewed HER-2 targeted treatment of osteosarcoma. The 
results showed that HER-2 expression as a prognostic factor 
in osteosarcoma remained controversial and a comparison 
of the results is difficult because of variables, including the 
handling and preparation of material, tissue heterogeneity, 
fixation techniques, storage conditions, antibody charac-
teristics, scoring scheme, and staining interpretation due to 
single-institution, retrospective studies that were limited in 
size. Abdeen et al (45) stated in 2009 that there was a nega-
tive correlation between VEGFR-3 and both overall survival 
and event-free survival of osteosarcoma, and VEGF-B was 
correlated with a poor histologic response to chemotherapy. In 
2011, Yang et al (46) reported that vascular endothelial growth 
factor (VEGF) pathway genes collectively were amplified, 
and alterations of this pathway were validated by fluorescence 
in  situ hybridization (FISH) and immunohistochemistry 
analyses in 58 formalin-fixed, paraffin-embedded osteosar-
coma archival tissues that had clinical follow-up information. 
Lammli et  al  (47) in 2012 demonstrated that there was a 
significant positive correlation between VEGF expression 
and tumor stages among these cases (P<0.01). The data also 
suggested a higher cancer recurrence and more frequent cases 
of remote metastasis in the high-VEGF group compared to the 
low-VEGF group. The expression of VEGF has been used as a 
more objective means of evaluating the prognostic importance 
of angiogenesis in osteosarcoma. One group found that 63% 
of osteosarcoma samples demonstrated VEGF immunohisto-
chemical staining in tumor cells (8).

Figure 1. Common subtypes of VEGF and VEGFR and their main function.
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In 2013, Chen et al  (48) completed a meta-analysis of 
published studies and performed a systematic review to 
provide a comprehensive assessment of the prognostic role 
of VEGF expression. They included 12 studies with a total 
of 559 osteosarcoma patients in the systematic review and 
meta-analysis. Compared with osteosarcoma patients with 
low or negative VEGF expression, patients with high VEGF 
expression were obviously associated with lower disease-free 
survival (OR=0.25, 95% CI 0.11-0.58, P=0.001, I2=56.4%). 
In addition, patients with high VEGF expression were obvi-
ously associated with lower overall survival (OR=0.22, 95% 
CI 0.13-0.35, P<0.001, I2=0.0 %). Therefore, the findings from 

this systematic review suggested that VEGF expression was an 
effective biomarker of prognosis in patients with osteosarcoma. 
However, different from soft tissue sarcoma (49), osteosarcoma 
has not been classified by which subtypes of VEGFR expres-
sion correlate with prognosis. Kampmann et al (49) reported 
in 2015 that the high expression of VEGFR1-3 and PDGFR-β 
was significantly correlated with higher grading (G2 vs. G3, 
P<0.05), and high VEGFR-2 was significantly correlated with 
decreased patient survival (P<0.001).

According to Aurby et al  (50), angiogenesis inhibitors 
can be divided into 2 classes: direct inhibitors and indirect 
inhibitors. Direct inhibitors target endothelial cells by 

Table I. Summary of the mechanisms of action of the anti-angiogenic compounds in preclinical experiments of osteosarcoma.

Compound	 Mechanism	 Target (IC50, nM)	 Refs.

Endostatin	 Internal fragment of	 A broad-spectrum	 (62,74)
	 the carboxy-terminus	 endogenous
	 of collagen XVIII	 antiangiogenic molecule
MMPs	 A family of enzymes that	N on-specific	 (74)
	 proteolytically degrade various
	 components of the ECM
PEDF	 A secreted glycoprotein that	N on-specific	 (47-52,74)
	 is a non-inhibitory member
	 of the serine protease inhibitor
Bevacizumab	 A humanized anti-VEGF antibody	VE GF-A(ED50 = 50 ng/ml)	 (31,35,40,98,114-116)
Pegaptanib	 An anti-VEGF RNA aptamer	 VEGF165 (0.75-1.4)	 (66)
VEGF Trap	 A soluble receptor to VEGF	VE GF-A and VEGF-B (0.001),	 (67)
(Aflibercept)		  placental growth factor (0.045)
Sorafenib	 TKIs	VE GFR-2 (90), Raf-1 (6), B-Raf (22), 	 (15,16,35,70,71,86)
		  c-kit (68), FGFR-1 (580), FLT-3 (58)
Sunitinib	 TKIs	VE GFR-1 (2), VEGFR-2 (80), 	 (43,45,92)
		  VEGFR-3 (17), PDGFR-β (2)
Cediranib	 TKIs	VE GFR-2 (<1), VEGFR-1 (5), 	 (13,42)
Pazopanib	 TKIs	VE GFR-3 (≤3), VEGFR-1 (10), 	 (37-39,72)
		  VEGFR-2 (30), VEGFR-3 (47), 
		  PDGFR-β (84), c-kit (140), FGFR (74),
Ramucirumab	 A fully humanized	 c-fms (146), VEGFR-2 (0.05)	 (73)
	 MAb targeting to the
	 extracellular VEGF-binding
	 domain of VEGFR-2
Dasatinib	 TKIs	 BCR/ABL (<1), c-kit (79), Src (0.8)	 (14)
Regorafenib	 TKIs	VE GFR-1 (13), VEGFR-2 (4.2), 	 (74)
		  VEGFR-3 (46), PDGFR-β (22),
		  c-kit (7), RET (1.5), Raf-1 (2.5)
Everolimus	 mTOR signaling pathways	F KBP12 (1.6-2.4)	 (15,87,124)
Imatinib	 TKIs	 v-Abl (600), c-kit (100), PDGFR (100)	 (54)

IC50, median inhibition concentration; concentration that reduces the effect by 50%. MMPs, metalloproteinases; PEDF, pigment epithelium-
derived factor; ECM, extracellular matrix; TKIs, tyrosine kinase inhibitors; mTOR, mammalian target of rapamycin.
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arresting proliferation and migration of these cells or by 
inducing their apoptosis. Indirect angiogenesis inhibitors act 
on the signaling pathways induced by angiogenic stimuli, 
by sequestering the angiogenic factors secreted by tumor 
cells, or by blocking the signal transduction pathways that 
are activated when binding factors meet their receptors on 
endothelial cells. The first direct inhibitor was endostatin, 
which was an internal fragment of the carboxy-terminus of 
collagen XVIII (51). It is a paradigm of a broad-spectrum 
endogenous anti-angiogenic molecule, through which the 
results of in vitro experiments are satisfactory. However, 
methods of resolubilization gave very low yields of active 
proteins, which makes it hard to be a mature pharmaceutical 
and obstructs its further development. Bevacizumab  (52) 
neutralizes all isoforms of human VEGF and inhibits VEGF-
induced proliferation of endothelial cells in vitro with an 
ED50 of approximately 50 ng/ml. It was tested in combination 
with several chemotherapeutic drugs, such as doxorubicin, 
topotecan, paclitaxel, and docetaxel, showing an additive 
antitumor effect (28,53,54). However, as for osteosarcoma, 
clinical application did not prove as effective as the experi-
ments (53). With innovation from the VEGF-A aptamer (55) 
to VEGF trap (56), more focus has been given to the VEGFR 
tyrosine kinase inhibitors (TKIs) (7,16).

Protein kinases are key enzymes in the regulation of 
various cellular processes that catalyse transfer of a phos-
phate group from ATP to a hydroxyl group of a serine or a 
threonine. Among the 90 identified genes encoding proteins 
with tyrosine kinase activity, 58 encode receptors divided 
into 20  subfamilies  (57). Of these, EGFR/ErbB (class  I), 
the receptor for insulin (class  II), PDGF (class  III), FGF 
(class IV), VEGF (class V), and HGF (MET, class VI) are 
strongly associated with oncological diseases (58). Unlike 
bevacizumab, VEGF Trap, and pegaptanib, which target 
extracellular VEGF, TKIs target the intracellular signaling 
pathways of VEGF receptors as well as a variety of recep-
tors that rely on a tyrosine kinase component to function 
properly, including PDGF receptor, FMS-like tyrosine 
kinase 3 (FLT3), RAF, and c-KIT receptors (16). In Table I, 
we summarize the classic TKIs compounds in preclinical 
experiments for osteosarcoma and their main targeted 
region. Sunitinib and sorafenib share a similar mechanism of 
action and primarily target tumor angiogenesis by inhibiting 
a variety of tyrosine kinases (36,59,60). Pazopanib is an oral, 
second-generation multi-targeted tyrosine kinase inhibitor 
targeting VEGF-1, -2, and -3 receptors, PDGF-α and-β recep-
tors, and c-kit, which exhibited good potency against all of 
the human VEGFRs and closely related tyrosine receptor 
kinases in vitro (30,31,61). Besides TKIs, antibodies blocking 
VEGFR2 have also been developed (62).

In addition to anti-angiogenesis drugs, there are some other 
cellular signaling pathways that should be mentioned as they 
are always used in combination with anti-angiogenesis target 
drugs in clinical trials of osteosarcoma. A signal transduction 
pathway through insulin-like growth factor (IGF) receptor 
signaling, which is also an attractive therapeutic target for 
the treatment of osteosarcoma, is the mammalian target of 
the rapamycin (mTOR) pathway  (63). mTOR technically 
does not belong to anti-angiogenesis therapy according to 
Hanahan et al (64). Under conditions favorable for cell growth, 

mTOR activates ribosomal protein translation (via S6K1) and 
cap-dependent translation (via eIF4E), allowing G1 to S phase 
cell cycle progression. This signal pathway was not originally 
activated in most sarcoma patients (65), but after using anti-
angiogenesis TKIs for a while, many sarcomas show secondary 
activated pathway, which makes this target as a supplement to 
TKIs for long-term use (66). At the same time, the involvement 
of the IGF/IGF1-R axis in tumorigenesis makes it an attrac-
tive target for anticancer therapeutics, especially in Ewing's 
sarcoma  (65). A human IgG1 type monoclonal antibody 
directed against the human IGF-IR, has been developed to 
antagonize IGF-IR signaling (67,68).

3. Clinical trials of anti-angiogenesis of osteosarcoma

Current status of second-line chemotherapy for osteosar-
coma. After failing standard first-line chemotherapy for 
osteosarcoma, patients who relapse present a more chal-
lenging treatment dilemma. In general, recurrence portends 
an extremely poor long-term prognosis  (1). In some cases, 
through aggressive surgical resection of all gross disease, 
patients can still acquire long-term survival (69,70). The choice 
of second-line chemotherapy and the use of investigational 
drugs are not standardized and the outcomes are dismal (4). 
van Maldegem et al (2) carried out a comprehensive analysis 
of published phase I/II clinical trials between 1990‑2010 in 
osteosarcoma and Ewing's sarcoma, and it turned out that the 
results were not convincing for benefit and most of the time 
disappointing. From osteosarcoma trials they found only 
8% CR, 2.8% PR, and 4% SD. The phase II trials were mainly 
on second-line chemo-drugs, which contained high-intensity 
ifosfamide-based therapy with or without autologous peripheral 
blood stem cell support transplantation, etoposide, topotecan, 
epirubicin, and even cyclophosphamide. Lagmay et al  (4) 
reviewed the outcome of patients with recurrent osteosar-
coma enrolled in 7 phase II trials through Children's Cancer 
Group, Pediatric Oncology Group, and Children's Oncology 
Group and found that in each included trial, the drugs tested 
were determined to be inactive on the basis of radiographic 
response rates. The event-free survival for 96 patients with 
osteosarcoma with measurable disease was 12% at 4 months 
(95% CI, 6% to 19%), with treatments that included drugs such 
as docetaxel, topotecan, irinotecan, rebeccamycin, oxaliplatin, 
xabepilone, and even imatinib, aerosolized granulocyte-
macrophage colony-stimulating factor (GM-CSF) from 1997 
to 2007 (4). From these data, we can establish a baseline of the 
expected time for disease progression in patients with relapsed 
osteosarcoma.

Phase I and  II trials of target therapy for osteosarcoma. 
In actual fact, it is difficult to carry out trials in advanced 
osteosarcoma, mainly because of the problems of recruiting 
enough eligible patients for the trials. In search of phase I 
and II anti-angiogenesis trials of osteosarcoma, we identified 
35 phase I/II trials for osteogenic sarcoma that were published 
between 2005 and 2016. Unfortunately, the phase I trials for 
general sarcoma may not be complete because many trials 
do not distinguish between different subtypes of osteogenic 
sarcoma. However, different kinds of sarcomas have totally 
different biological behaviors, such as osteosarcoma, Ewing's 
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sarcoma, and chondrosarcoma, which all originate from bone 
but show totally different sensitivity to chemo-drugs. Thus, we 
will just focus on the results of clinical trials that specialized 
in osteosarcoma so as to make the comparison more mean-
ingful. With an internet search of MEDLINE, the Embase 
database, the Cochrane Central Register of Controlled Trials 
database, the American Society of Clinical Oncology (ASCO), 
and the European Society for Medical Oncology (ESMO), we 
summarize the list of phase I and II trials in Tables II and III, 
which only include the data of osteosarcoma and the clinical 
results (11-13,27-33,35‑39,53,61,67,68,71-78).

Abundant active agents had been tested for osteosarcoma 
patients in a small number for their availability. Geller and 
Gorlick (44) proposed the use of HER-2 directed therapy for a 
subset of patients with osteosarcoma, which in theory was an 
appealing idea assuming HER-2 expression was in fact associ-
ated with poor prognosis, since expression can be accurately 
and reproducibly identified. However, a phase II clinical trial 
initiated by Children's Oncology Group of trastuzumab, in 
addition to standard chemotherapy for patients with newly 
diagnosed metastatic osteosarcoma (Table III), has proven 
to be without significant difference when compared with the 
control group (30 months-EFS 32%; 30 months-OS 50%) (53). 
From the list of phase I trials (Table II), although there is a small 
number of patients, it seems to us that the EGFR inhibitor and 
the antibody against type 1 insulin-like growth factor receptor 
(IGF-IR) did not show similar activity in osteosarcoma as in 
Ewing's sarcoma (67,68,74). 

Most anti-angiogenesis TKIs can only keep the tumor 
stable rather than make it obviously shrunken, while only 

cediranib, which is a TKIs targeted particularly towards 
VEGFR2 (IC50 especially low, shown in Table I), had 1 refrac-
tory osteosarcoma partial response (35). Another phase I study 
that combined cediranib with gefitinib showed antitumor 
activity in patients with advanced solid tumors, including one 
osteosarcoma patient (37). Since we could not get detailed 
information for this osteosarcoma patient, it was not included 
in Table II. The authors also demonstrated changes in VEGF 
and soluble VEGFR-2 levels following treatment. These initial 
subgroup results, which were not as responsive as we expected, 
might lead to many pharmaceutical companies stopping 
further investigation of their phase II trials for osteosarcoma. 
This may be why we seem to stagnate after the sorafenib trial 
reported by Grignani et al (12,13).

As for phase II trials, the greatest progress belonged to 
Italian Sarcoma Group, which held 2 cohort phase II trials 
with advanced osteosarcoma patients with an object response 
rate (ORR) of 14 and 10%, respectively (12,13). Although the 
addition of everolimus did not obviously change the response 
rate, the combination of sorafenib and everolimus significantly 
prolonged the duration of response from 4 months in sorafenib 
alone to 5  months, which has been stated to be the best 
treatment results in the second-line drug therapy history of 
osteosarcoma. However, this 45% 6-month PFS (combination 
therapy) was less than the pre-specified threshold of activity 
(6 month PFS of 50% or greater) to be deemed worthy of 
a phase III trial. In addition, the toxic effects seemed to be 
more severe than sorafenib alone (13). Children's Oncology 
Group (COG) has conducted several phase  II trials with 
cixutumumab (68), which is the insulin-like growth factor-I 

Table II. Clinical results of phase I trial with currently available anti-angiogenesis therapy on osteosarcoma.

		  Combined	 The first
		  with	 author's	Y ear of	 Trial	 Clinical
Drug	 Targets	 chemotherapy	 surname	 publication	 sponsor	 results	 Refs.

Gefitinib	E GFR	N o	 Daw	 2005	 COG	 6/6 PD	 (44)
Everolimus;	 mTOR;	N o	 Quek	 2010	N ovartis	 3/3 SD	 (87)
Figitumumab	 IGF-IR				    and Pfizer
Cediranib	 VEGFR1-3	 No	 Fox	 2010	 NIH, NCI	 1/4 PR	 (42)
R1507	 IGF-IR	N o	 Bagatell	 2010	N IH	 2/3 SD	 (46)
Sunitinib	 VEGFR; PDGFR;	 No	 Dubios	 2011	 COG	 1/2 SD	 (43)
	 c-kit; Flt3, CSF-1
	 receptor, and RET
Cixutumumab	 IGF-IR	 No	 Malempati	 2012	 COG	 3/3 PD	 (36)
Pazopanib	VE GFR1-3; PDGFR	N o	 Bender	 2013	 COG	 1/4 SD	 (39)
Sorafenib; 	 VEGFR-2, Raf-1,	 Low-dose	 Navid	 2013	 Novartis	 2/2 SD	 (35)
Bevacizumab	 B-Raf, c-kit, FGFR-1,	 cyclophosphamide			   and Pfizer
	 FLT-3; VEGF-A

Clinical responses were defined as described in the referred studies. CBR, clinical benefit response; CR, complete response; PR, partial 
response; MR, minor response; SD, stable disease (for at least 8 weeks); PD, progressive disease (no response). COG, Children's Oncology 
Group; NIH, National Institutes of Health; NCI, National Cancer Institute; EGFR, epidermal growth factor receptor; mTOR, mammalian target 
of rapamycin signaling pathways; IGF-IR, type 1 insulin-like growth factor receptor; VEGFR, vascular endothelial growth factor receptor.
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receptor (IGF-IR), since preclinical data suggested that 
inhibition of the IGF-IR might constitute an important thera-
peutic target in a variety of pediatric solid tumors, including 
rhabdomyosarcoma, neuroblastoma and Wilms tumor. For 
refractory solid tumors, there was only a sub-group analysis 
for osteosarcoma with the number of patients 11 in both the 
cixutumumab single-drug trial (67), and in combination with 
cixutumumab and temsirolimus in a trial (68). However, for 
pediatric advanced osteosarcoma, the ORR was 0% for both 
of the trials. With PFS and OS data unextractable in both 
of these trials, only 1 patient using cixutumumab alone had 
stable disease for 140 days (67). In 2013, Memorial Sloan-
Kettering Cancer Center (MSKCC) proceeded with a similar 
trial with a combination of cixutumumab and temsirolimus on 
refractory osteosarcoma, which showed an ORR of 13% with 

a median PFS of 6 weeks (74). The number of patients was 24, 
which showed a little more than the same trial conducted by 
COG of 11 (68). MSKCC included patients older than 16 years 
while COG included all solid tumor patients aged from 1-30 
years. Due to the small sample size, we could not speculate 
why their results were so different. This combination therapy 
may need further study with a larger sample size in a random-
ized controlled trial to identify its effectiveness. The Sarcoma 
Alliance for Research Through Collaboration Study has 
also completed 2 trials on advanced osteosarcoma, which 
were respectively IGF-IR R1507 and TKI dasatinib (11,77). 
R1507 did not seem to be effective with an ORR of 2.5% 
and 12-week-PFS of 17%, while dasatinib showed an ORR 
of 6.5% and duration of response of 5.7 months, which indi-
cated that BCR/ABL, c-kit, and src might not be the target 

Table III. Summary of Phase II trial results of currently available anti-angiogenesis therapy for osteosarcoma.

	 Combined		  The first
	 with		  author's	Y ear of	 Trial	N o. of	 Clinical
Drug	 chemotherapy	 Stage	 last name	 publication	 sponsor	 patients	 outcome	 Refs.

Sorafenib	 No	 Advanced	 Grignani	 2011	 Italian	 35	 4 months-PFS 46%;	 (16)
					     Sarcoma		  DR 4 months;
					     Group		  ORR 14%
Trastuzumab	 Cytotoxic	 Newly	 Ebb	 2012	 COG	 41	 30 months-EFS 32%; 	 (64)
	 chemotherapy	 diagnosed,					     30 months-OS 50%;
		  high-grade					     without significant
		  metastatic					     difference comparing
							       with control group
Sirolimus	 Cyclo-	 Advanced	 Schuetze	 2012	 Michigan	   5	 ORR 0%; 	 (82)
	 phosphamide				U    niversity		  4 months-PFS 30%
							       (combined with
							       other sarcoma)
Cixutumumab	N o	 Advanced	 Schwartz	 2013	 MSKCC	 24	O RR 13%; 	 (85)
and temsirolimus					     fund		  median PFS 6 weeks
Cixutumumab	N o	 Advanced	 Weigel	 2014	 COG	 11	O RR 0%; 	 (36)
							       1/11 SD for
							       140 days
R1507	 No	 Advanced	 Pappo	 2014	 SARC	 38	 ORR 2.5%;  	 (88)
							       DR: 12 weeks;
							       12 weeks-PFS 17%
Sorafenib; 	 No	 Advanced	 Grignani	 2015	 Italian	 38	 6 months-PFS 45%;	 (15)
Everolimus					     Sarcoma		  DR 5 months;
					     Group		  ORR 10%
Cixutumumab;	N o	 Advanced	 Wagner	 2015	 COG	 11	O RR 0% 	 (79)
Temsirolimus
Dasatinib	 No	 Advanced	 Schuetze	 2016	 SARC	 46	 ORR 6.5%; 	 (14)
							       DR 5.7 months;
							       2 years-OS 15%

PFS, progression-free survival; OS, overall survival; ORR, overall response rate, defined as complete responses (CRs) + partial responses 
(PRs) + MRs; DR, duration of response; COG, Children's Oncology Group; ACS, American Cancer Society; SARC, Sarcoma Alliance for 
Research Through Collaboration Study; MSKCC, Memorial Sloan-Kettering Cancer Center.
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for osteosarcoma. The Bayesian design allowed for the early 
termination of accrual in osteosarcoma subtypes because of 
the lack of drug activity (11).

4. Moving forward, what stops us

Resistance. For advanced osteosarcoma patients, drug sensi-
tivity is pivotal at the beginning of therapy to help patients to 
establish the confidence to continue using it; however, from the 
observation through phase I trials, these TKIs hardly seemed 
to reduce the tumor size, which usually stopped investigators 
to open a phase II trial to explore the activity towards osteo-
sarcoma. From the perspective of Versleijen-Jonkers et al (6), 
unlike chemotherapeutic agents, angiogenesis inhibitors slow 
or stop tumor growth rather than cause tumor shrinkage.

Up to now there was no direct evidence on which kind of 
TKIs have more potency to be sensitive, but we may boldly 
speculate that cediranib  (35), which is the only drug that 
made refractory osteosarcoma smaller in size in a phase I 
trial, might be more sensitive than other TKIs for its low 
IC50 value towards VEGFR, especially VEGFR-2. There is 
a general consensus that VEGFR-2 is the dominant receptor 
in mediating the pro-angiogenic functions of VEGF-A, and 
this pathway has been prioritized for the development of anti-
angiogenic therapies (16). Clinical trial expression analysis of 
different subtypes of tyrosine kinases as predictive biomarkers 
is still not a standard approach. Furthermore, only limited 
studies have investigated the expression of different subtypes 
of tyrosine kinase receptors on the protein level, especially 
on osteosarcoma (45-47,79-82). We do not know what kinds 
of TKIs showed more sensitivity and what kind of TKIs have 
more long-term lasting effectiveness based on those clinical 
trials. We may need to focus more on the IC50 values of 
specific subtypes of VEGFR and carry out more detailed work 
to choose appropriate targets for clinical use.

Twenty-five TKIs are currently FDA-approved and 
>130 are being evaluated in clinical trials  (14). Increasing 
evidence suggests that drug exposure of TKIs may significantly 
contribute to drug resistance independently of somatic varia-
tion of TKI target genes. Membrane transport proteins may 
limit the amount of TKI reaching the target cells. In the early 
study of sunitinib on solid tumors, a decrease in the expression 
level of soluble VEGFR has been consistently reported (83). 
Conversely, an increased level of VEGF seems to occur and 
may have a role in the flare-up of tumor growth that may 
occur after sunitinib discontinuation (83). In addition, activa-
tion of alternative signaling pathways may overcome VEGFR 
inhibition. According to Loges et al (84), this reality depends 
on the mechanisms of refractoriness and evasive escape and 
the lack of well-validated biomarkers to monitor efficacy as 
well as optimal dosing or predict toxicity or resistance to 
VEGF-targeted therapy. Mutation of VEGFR/PDGFR or 
altered receptors or polymorphisms may also have a role in the 
resistance to anti-VEGF/VEGFR therapy (85). The resistance 
of this peripheral rim of viable tumor cells may be overcome 
by combination TKIs with targeted agents directed against 
kinases, such as mTOR, mitogen-activated protein kinases 
(MAPKs), and protein kinase C (PKC) or the addition of 
cytotoxic drugs to destroy sub-clones evading multi-targeted 
agents (65).

In addition to morphological differences, tumor endothe-
lial cells have distinct gene expression profiles, which may also 
contribute to the resistance to antiangiogenic treatment strate-
gies (6). Furthermore, the heterogeneity of cancer has often 
been a subject of interest and concern. DNA sequencing in a 
single tumor biopsy of 1 patient was not uniformly detectable 
throughout the sampling region (86). Such dynamic genomic 
changes in cancer cells are also expected to induce resis-
tance in response to anti-angiogenesis drugs (87). The above 
explains why sorafenib only has the duration of response 
of 4 months while a combination with everolimus makes it 
5 months (12,13), which does not yet seems to be satisfactory 
for advanced patients. From these mechanisms, we can expect 
that combination therapy or sequencing therapy may benefit 
more people, which will be discussed later.

Toxicity. Compared with conventional chemotherapy, the 
toxicity and side effects of anti-angiogenesis TKIs are mild 
and can be tolerated by most heavily pre-treated advanced 
osteosarcoma patients. The most common toxicities are hyper-
tension (grade 3 in approximately 10% patients), hand and foot 
syndrome, fatigue, proteinuria (usually grade 1-2), hemor-
rhage, arterial and venous thrombotic events (88), impaired 
wound healing, and occasionally gastrointestinal perfora-
tion (89), which was mostly observed in the initial phase II 
bevacizumab trials in ovarian cancer. VEGFR TKIs have also 
been associated with clinical hypothyroidism, which could be 
caused by the inhibition of iodine uptake in the thyroid (90). 
Some of those syndromes were reported to be related with 
better response and can be relieved gradually after months 
of therapy (88). However, combination therapy with multiple 
anti-angiogensis agents were considered to have more severe 
toxicity than some patients could tolerate (12). How to manage 
toxicity and efficiency is still a problem.

Evaluation systems. In addition to the challenge of identifying 
the most promising agents for clinical trials in osteosarcoma, 
obstacles inherent to this disease further complicate the 
successful design and completion of trials. In evaluating the effi-
cacy of all the trials we have mentioned, the standard approach 
is to use imaging response criteria, such as response evaluation 
criteria in solid tumors 1.1 (RECIST 1.1) to compare the size 
and/or volume of lesion pretreatment and at regular intervals 
post-treatment (91). For a patient eligible for a trial using this 
approach, he or she must have measurable disease. However, as 
we mentioned before, angiogenesis inhibitors slowed or stopped 
tumor growth rather than causing the tumor's shrinkage (16).

Referring to most successful TKI therapy examples, such 
as renal cell carcinoma, GIST, or even soft tissue sarcoma, and 
considering with the characteristics of anti-angiogenesis TKIs, 
various new clinical evaluation systems have turned up, such 
as Choi (2009) (92), mChoi (2010) (93), SACT (2010) (94), 
and MASS (2010) (94). Nevertheless we cannot indiscrimi-
nately copy this evaluation. Because for unresectable primary 
osteosarcoma, which is located at the axial skeleton, for 
example, lesions mainly manifest as a bone lesion combined 
with or without soft tissue mass, which may not be evaluable 
according to these criteria. The lesion's shrinkage is originally 
not so obvious as other solid tumors. Besides, osteosarcoma 
is an osteogenic tumor that should not be evaluated by the 
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M.D. Anderson system (95), which was developed to evaluate 
metastatic osteolytic lesions. All the above makes it even more 
complicated to assess the condition.

There are a few potential biomarkers in the blood that 
can be used to determine in vivo efficacy of anti-angiogenic 
treatment, i.e., VEGF-A, VEGF-B, and PIGF (96), circulating 
endothelial cells (97,98), and even neutrophil-to-lymphocyte 
ratio  (99). However, these biomarkers need to be studied 
further before they can be used in the clinic. In addition, 
functional imaging might be beneficial for evaluation, such 
as dynamic contrast-enhanced magnetic resonance imaging 
(DCE-MRI) (100), positron emission computed tomography 
(PET/CT) (101), and so on, which are under study and could 
make the prediction and monitoring of response more sensitive 
and ultimately lead to personalized anti-angiogenic treatment.

5. Strategy for advanced osteosarcoma in the era of 
targeted therapy

With the development of precision medicine, tremendous 
improvement has happened to traditional pathology. From 
the linking genomic and immunotherapy approaches to 
molecular subtype theory of Lim et al (102), we got to know 
that osteosarcoma has a more increased mutation burden than 
Ewing's sarcoma or synovial sarcoma, which is why it has not 
benefited from comprehensive molecular profiling (103,104). 
Gerlinger et al (86) proposed the theory of intratumor hetero-
geneity and branched evolution of tumor cells in 2012, which 
made it even more difficult for the targeted therapy to maintain 
a long-term effect. Facing the intratumor heterogeneity at the 
genomic, epigenomic, and micro-environmental levels, the 
question is what is the optimal therapeutic option for these 
refractory groups.

Combination therapy, what we can do. The combination of 
anti-angiogenesis drugs with chemotherapy has been proposed 
for quite a while and has been verified in clinical trials of 
osteosarcoma with unfavorable results (53,71) (Table III). It is 
a sound deduction that a treatment aimed at reducing the blood 
supply of a tumor would also reduce the delivery of any other 
therapy, such as chemotherapy, which is also important for 
radiotherapy for anti-angiogenesis agents and may reduce the 
oxygen supply necessary for a response to radiotherapy (16). 
However, synergism of anti-angiogenetics and chemothera-
peutics has been observed in patients with colon cancers (105), 
non-small cell lung cancers (106), and breast cancers (107,108). 
One explanation is that with the blockage of VEGF signaling, 
anti-angiogenetics induces a normalization of newly formed 
vessels, and thus, reduces the interstitial tissue pressure (ITP) 
within tumors, allowing enhanced delivery of chemotherapy 
to the tumors (7). However, advanced osteosarcoma usually 
has shown resistance to conventional chemotherapy. Second-
line chemotherapy did not have much of an effect on these 
tumors, which makes the combination therapy not reasonable.

From the experience of Grignani et al  (12), the multi-
targeted approach with TKIs or a combination of different 
pathway inhibitors seemed to have advantages in synergistic 
therapeutic effect and to overcome drug resistance. A disadvan-
tage of using multi-targeted agents was that it might increase 
the toxicity and be difficult to determine which particular 

kinase inhibition results in an antitumor effect. Anyway, the 
prolonged time seemed not to be long enough to continue with 
a phase III trial (12). How to pick the appropriate drugs for 
combination therapy is still pending.

Sequencing therapy, timing, and strategy. Sequencing TKI 
therapy is a new concept for osteosarcoma. However, as for renal 
cell carcinoma (RCC) (109) and non-small cell lung cancer (110), 
it has been under discussion for a long time. At present, there is 
a strong rationale for sequencing targeted therapy for metastatic 
clear cell renal cancer (111), but the timing of the switch and the 
best agent to switch to remains unclear. Sunitinib and pazopanib 
are approved treatments in first-line therapy for patients with favor-
able or intermediate-risk clear cell RCC (112). Temsirolimus has 
been proven to be beneficial over interferon-α (IFN-α) in patients 
with non-clear cell RCC (non-ccRCC) (113). Until recently, with 
regard to choosing the second-line treatment after the failure 
of therapy with VEGFR-TKIs, the continued inhibition of the 
VEGF/VEGR pathway or the switch to a mTOR inhibitor was 
controversial (114). These two options are characterized by partly 
different targets with completely different toxicity, but a compa-
rable efficacy. This scenario changed dramatically, after the 
publication of 2 randomized, controlled, phase III trials, in which 
cabozantinib (115) and nivolumab (116) proved to be superior 
compared to everolimus. Regarding third-line treatment, where 
a sequence of 2 VEGFR-TKIs has been used beforehand, the 
choice is represented by the mTOR inhibitor everolimus, while 
if a VEGFR-TKI followed by everolimus is chosen, a return to 
VEGF pathway inhibition is suggested (112), which indicates the 
activation of different pathways might change during sequencing 
therapy and using targeted therapy back and forth may benefit 
drug-resistance patients and prolong survival. In the perspective 
of Maute et al (117), possible sequences include TKI-mTOR-TKI 
or TKI-TKI-mTOR with the upcoming checkpoint inhibitors in 
perspective, which might establish a new standard of care after 
previous TKI therapy.

However, for GIST, long-term follow-up results of the 
B2222 study and updated results of the BFR14 trial demonstrate 
that continuous imatinib treatment in patients with advanced 
GIST is associated with reduced risk of progression (118). For 
patients progressing on or intolerant of imatinib, continuing 
therapy with TKIs sunitinib followed by regorafenib is recom-
mended (118), which seems to us a totally different strategy. 
For non-small cell lung cancer (NSCLC) therapy, the revers-
ible epidermal growth factor receptor (EGFR) TKIs gefitinib 
and erlotinib have been proven to be the first-line therapy 
for NSCLC harboring activating EGFR mutations  (119). 
Acquired resistance to EGFR TKIs is mainly mediated 
through 3 pathways: 1) activated EGFR family proteins and 
ligands, 2) activated various growth factor receptors, and 3) 
activated downstream signaling molecules (110). To explore 
the various proposed mechanisms of acquired resistance 
to EGFR-TKI therapy, agents that target secondary driving 
gene mutation as well as signaling pathways downstream of 
EGFR are being studied in molecularly selected advanced 
NSCLC (110), which, in a certain sense, formulates a more 
logical therapeutic strategy for advanced solid tumors. A 
degree of cross-resistance appears to exist between all of these 
current agents and has resulted in a drive toward the develop-
ment of new therapies with novel modes of action (14).
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6. Conclusion

For advanced osteosarcoma, due to its increased mutation 
burden and intratumor heterogeneity, therapy based on compre-
hensive molecular profiling has not been successfully proven. 
At present, anti-angiogenesis TKIs showed promising initial 
results for this group of patients compared to other second-line 
chemotherapy, but the results are still not satisfactory. Based 
on the limited options of effective agents, the algorithm of 
choosing optimal target drugs is still understudied. The anti-
angiogenesis TKIs therapy of other solid tumors may shed 
light on the treatment for advanced OS.
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