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Abstract

Microarray studies generate a large number of p-values from many gene expression comparisons. 

The estimate of the proportion of the p-values sampled from the null hypothesis draws broad 

interest. The two-component mixture model is often used to estimate this proportion. If the data 

are generated under the null hypothesis, the p-values follow the uniform distribution. What is the 

distribution of p-values when data are sampled from the alternative hypothesis? The distribution is 

derived for the chi-squared test. Then this distribution is used to estimate the proportion of p-

values sampled from the null hypothesis in a parametric framework. Simulation studies are 

conducted to evaluate its performance in comparison with five recent methods. Even in scenarios 

with clusters of correlated p-values and a multicomponent mixture or a continuous mixture in the 

alternative, the new method performs robustly. The methods are demonstrated through an analysis 

of a real microarray dataset.

Keywords

distribution of p-values; microarray studies; mixture model; proportion from the null hypothesis

1. Introduction

Microarray studies generate a large number of p-values from comparisons of gene 

expression data. The p-values are usually generated using statistical tests. To give an 

example, Figure 10 shows the histogram of a typical set of such p-values. In the experiment, 

the expression of 12, 488 genes was measured on B lymphocytes. The B lymphocytes were 

harvested from two types of mice (factor 1); and the cells were either treated with an anti-

IgM antibody or not treated (factor 2). The p-values were obtained using the Kruskal-Wallis 

test (Kruskal and Wallis, 1952) for a group effect on the expression data. The group was 

defined by the two experimental factors. The test is asymptotically chi-squared with 3 
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degrees of freedom (df). The study that generated these p-values is described in detail in 

Section 5.

Based on the p-values, investigators want to infer which of the tested genes are impacted by 

the experiment factors using multiple testing procedures. In these procedures, such as those 

of Benjamini and Hochberg (2000), Efron, Tibshirani et al. (2001), Efron and Tibshirani 

(2002), among others, the proportion of the p-values which are from data under the null 

hypothesis plays an important role. We denote this proportion as π0. There has been great 

interest in how to estimate this proportion. Broberg (2005) reviews six methods and 

proposes two new methods to estimate this proportion. More recent developments are by 

Langaas, Lindqvist, and Ferkingstad, 2005; Cheng, 2006; Nettleton et al., 2006; 

Meinshausen and Rice, 2006; Tang, Ghosal, and Roy, 2007; Markitsis and Lai, 2010.

If the data are generated under the null hypothesis, then the p-values follow the uniform 

distribution. There has been little research on parametric distributions for the p-values 

generated from data under an alternative hypothesis. Nevertheless, the proportion π0 is often 

estimated using a two-component mixture model such as many of the methods in the above 

references. Specifically, let 100π0–percent (0 < π0 < 1) of the p-values be sampled from the 

uniform (0, 1) and the remaining 100(1 – π0)–percent be sampled from a distribution 

denoted by ψ(p). This is the distribution of the p-values sampled from data under an 

alternative. Then the mixed p-values have the marginal distribution with density function

(1)

There is literature on nonparametric methods to model the mixture of p-values. The mixing 

parameter π0 is generally not identifiable due to the simultaneously unknown ψ(p). In order 

to solve this identifiability problem, the methods of Langaas, Lindqvist, and Ferkingstad 

(2005), Tang, Ghosal, and Roy (2007) impose restrictions such as monotonically decreasing 

and ψ(1) = 0 on ψ(p). In Section 2 we show that the ψ(1) = 0 restriction may be a good 

approximation when the alternative hypothesis is far away from the null, but it is generally 

not true. Others, such as those summarized in Broberg (2005) and Cheng (2006), estimate an 

upper-bound of π0 instead of π0 itself; and Meinshausen and Rice (2006) estimate a lower-

bound of 1 – π0.

Among the eight methods in Broberg (2005) to estimate π0, only Pounds and Morris (2003) 

explicitly assume a parametric beta uniform mixture. Their objective is to extract a uniform 

component from the mixture density in order to estimate an upper-bound of π0. Markitsis 

and Lai (2010) further develop this beta uniform mixture model by censoring p-values less 

than a cutoff to improve the estimate. All the other seven methods in Broberg (2005) are 

non-parametric. Other limited parametric methods also mainly focus on beta or beta 

mixtures (Parker and Rothenberg, 1988; Allison, Gadbury et al., 2002; Xiang, Edwards, and 

Gadbury, 2006). Diaconis and Ylvisaker (1985) suggest that a distribution on the interval [0, 

1] can be modeled as a finite mixture of beta distributions. Parker and Rothenberg (1988) 

fitted this model to a set of 1, 113 p-values obtained using t-tests in sub-group analyses. 
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Allison, Gadbury et al. (2002) applied a similar idea of beta mixtures to model p-values 

obtained in microarray studies. Their goodness of fit indicates that the finite mixture of beta 

distributions provides a reasonable fit to the p-values. However, none of these works provide 

a theoretical basis as to why the distribution of p-values can be modeled as beta distributions 

or their mixtures.

In Appendix A, we derive a beta distribution for the p-values. It is derived only for the case 

that the distribution functions of the test statistic under the null and under the alternative 

differ by the Lehmann alternative through their survival functions. For some common tests 

such as the normal test and the t-test, their distribution ψ(p) of the p-values from data under 

an alternative is not beta.

Lack of understanding about the parametric form of the distribution of p-values from data 

under the alternative hypothesis tilts current research in estimating π0 almost entirely toward 

nonparametric methods (Broberg, 2005; Langaas, Lindqvist, and Ferkingstad, 2005; Cheng, 

2006; Nettleton et al., 2006; Meinshausen and Rice, 2006; Tang, Ghosal, and Roy, 2007). 

The aim of this work is to develop a parametric distribution for p-values sampled under the 

alternative hypothesis and use this distribution to estimate π0 for a specific test statistic. 

Pounds and Morris (2003) generated a sample of p-values using chi-squared tests. We 

develop the method for the chi-squared test and demonstrate the method on this dataset. The 

common model-based Wald test is asymptotically chi-squared test. The normal test can be 

transformed into chi-squared test, and the t-test can be transformed into asymptotic chi-

squared test when the degree of freedom is large. Thus, the methods we developed for the 

chi-squared test could be applied broadly in data analyses. Nevertheless, the method can be 

readily modified to other reference statistics.

The rest of the manuscript is organized as follows. In Section 2, we derive the distribution 

(3) for p-values obtained using the chi-squared test. In Section 3, under the two-component 

mixture model (1), we develop the MLE of π0 and the non-null component ψ(p) represented 

by the non-centrality parameter λ of the reference chi-squared distribution. We further 

present a gamma mixture model for a range of alternatives. Section 4 reports simulation 

studies for a variety of scenarios to evaluate our method in comparison with five recent 

methods. We revisit the data example analyzed by Pounds and Morris (2003) in Section 5. 

We conclude the manuscript by a discussion in Section 6.

2. The distribution of p-values from the chi-squared test

Consider a chi-squared test statistic X with ν df. Let its cumulative distribution function be 

denoted by F(·) and its density function is f(·) under the null hypothesis. Define xp as the p–

th percentile of the statistic X so F(xp) = p. The test with significance level p will reject the 

null hypothesis when X > x1–p.

If the data are generated under the alternative hypothesis, the test statistic asymptotically 

follows the non-central chi-squared distribution. Following Kruskal and Wallis (1952), this 

can be shown for the Kruskal-Wallis test with test statistic
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(2)

where group i (i = 1, 2, …, c; c ≥ 3) has ni subjects and an average rank R̄
i, and 

is the total sample size. The above test statistic (2) is essentially a sum of squared 

standardized deviations of random variables from their mean under the null. Thus 

asymptotically it follows the central or non-central chi-squared distributions under the null 

or the alternative hypothesis, respectively. The null centrality parameter depends on the 

specific alternative. A similar argument can be made for the traditional chi-squared test 

where the test statistic is defined as a sum of the squared standardized difference between 

the observed and the expected under the null. This distributional result is also true for some 

of the common model-based chi-squared tests, such as the score test and the Wald test.

Suppose the statistic has a non-central chi-squared distribution with non-centrality parameter 

λ > 0 and ν df. Let g(·) denote the corresponding non-central chi-squared probability 

density function. The distribution for p-values under the alternative can be derived as

Details of the derivation are in Appendix A. Specifically for the chi-squared test, the density 

function can be expressed as

(3)

where x1–p is the upper p–th quantile of F.

The intuitive interpretation of this distribution is that the density of the p-values is a 

weighted sum of the ratios of two central χ2 densities with ν + 2j and ν df, respectively, for 

j = 0, 1, …. The weights are the probabilities of a Poisson distribution with mean λ/2.

When λ = 0, corresponding to the null hypothesis, distribution (3) reduces to uniform [0, 1]. 

In Appendix A, we prove that the density (3) is monotonically decreasing on [0, 1]. It 

reaches its minimum at ψ(1) = e−λ/2. Density (3) can also be rewritten as a polynomial of 

the quantile

Yu and Zelterman Page 4

Comput Stat Data Anal. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where

When we compute (3), the summands diminish quickly for λ not large since the Poisson 

probability weight becomes small as j increases. In general, the limit of j needs to be 

sufficiently large relative to both ν and λ/2 so that the omitted terms are negligible. The 

numerical evaluation and simulations in Section 4 indicate that a limit of 30 for j is sufficient 

for a broad range of applications. We set the limit of j to 30 to cut down the simulation time. 

In a real data analysis setting, there is no reason the users can not choose a larger limit. We 

have included this as a variable in the R function so that users can have their own choice 

when they analyze their data. Similar considerations apply when we compute density (4).

Figure 1 displays the density function ψ(p) with ν = 1 for several values of λ. Under 

alternative hypotheses, Figure 1 shows that ψ(p) has a shift away from the uniform 

distribution, favoring smaller p-values that are associated with rejecting the null hypothesis. 

These curves show that ψ(1) = e−λ/2 is not zero, although ψ(1) may approach zero when λ 
→ ∞. However, large λ indicates that the alternative is far from the null and the case is not 

very interesting in hypothesis testing. We want to study situations when λ is small.

In reality it is likely that there are many different alternatives when testing multiple 

hypotheses such as in microarray studies. This can be accounted for by allowing the non-

centrality parameter λ to take a range of different values instead of a unique value as in the 

model (5). Here we introduce a model in which λ follows a continuous distribution to 

represent various alternatives.

We assume U = λ/2 in (3) follows a Gamma (k, θ) distribution with a density function

Then the compound distribution of P under the alternatives can be derived as

(4)

Note in (4), the weight in front of the ratio of the two central χ2 densities is the probability 

mass function of a negative binomial distribution NB (k, θ/(1 + θ)). In the data example of 

Section 5, we fit model (5) using (4) for the distribution of P under a range of alternatives.
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3. Estimate of π0

We first assume that the microarray comprises 100π0–percent samples from the null 

hypothesis and 100(1 – π0)–percent from a single alternative represented by λ. Then the 

distribution of the mixed p-values has marginal density

(5)

The density ψ(p | λ) of p under an alternative hypothesis determined by λ > 0 in chi-squared 

test is derived as (3). The combination of (3) and (5) solves the identifiability problem that 

has long been encountered in many of the nonparametric estimates of π0. Maximum 

likelihood methods can be used to estimate the two parameters π0 and λ.

(6)

For this specific setting, we are unable to obtain closed-form expressions for the MLE's of 

π0 and λ, so we have developed R programs to evaluate the log likelihood numerically to 

obtain the MLE's and their standard errors. The negative of log likelihood (6) is minimized 

using the optimization routine nlm in R. This routine uses a Newton-type algorithm and it 

also provides estimates of the Hessian matrix that was used to estimate standard errors 

reported in Table 1 for the example in Section 5. In the case we use model (4) to account for 

a range of alternatives, model (5) can be fit similarly to obtain (π̂
0, k̂, θ̂)′ with (4) as the 

non-null component if the mixture model is identifiable. We will discuss the identifiability 

issue of model (4) in Section 4.4. We next conduct simulation studies to evaluate the 

distribution mixture-based method in comparison with five recent methods. Then we 

demonstrate the methods on a real dataset analyzed by Pounds and Morris (2003).

4. Simulation studies

4.1. Methods included for comparison and simulation set-up

In simulation studies, we evaluated the performance of our estimate in comparison with five 

recent methods. Among these methods, the beta uniform mixture (BUM) model of Pounds 

and Morris (2003) and a modification of BUM by Markitsis and Lai (2010) are parametric 

models. The BUM model is the mixture of a uniform and a beta distribution. The mixture's 

probability density function is

(7)

for parameters 0 < ω < 1 and a > 0. Pounds and Morris (2003) set the second parameter in 

the beta distribution equal to one in order for fβ to be monotonically decreasing in 0 < p < 1. 
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They concluded that it was impossible to estimate the actual π0. However, their model 

provides an estimate of the upper bound of π0 as fβ(1 | ω̂, â) = ω̂ + (1 – ω̂) â. This upper 

bound was reported in the simulations. Markitsis and Lai (2010) propose a censored beta 

uniform mixture model (CBUM) by censoring p-values less than a cutoff point to improve 

the BUM estimate. This CBUM estimate of π0 was also included in the simulations.

A large number of non-parametric estimates of π0 are in the literature. We included some of 

the recent developments in the simulations: the threshold method of Storey and Tibshirani 

(2003), the histogram-based method (Nettleton et al. 2006), and a method to establish the 

lower confidence bound for 1 – π0 based on the empirical distribution of the p-values 

(Meinshausen and Rice, 2006).

We implemented our estimate in R. For the BUM and Nettleton methods, we downloaded 

the R programs from the author's website. The CBUM, Storey, and Meinshausen methods 

are in R packages pi0, qvalue, and howmany, respectively.

The simulations were set up to test the hypotheses H0 : λ = 0 versus Ha : λ > 0. The test 

statistic was sampled 100π0–percent from the central chi-squared distribution with ν = 10 df 

and 100(1 – π0)–percent from the non-central chi-squared distribution with ν = 10 df and 

the non-centrality parameter λ being 4, 9, or 16. The simulated range for π0 was between 

0.05 and 0.95 at increase of 0.05 for the independent case and at increase of 0.1 for the 

dependent case to cut down simulation time. As pointed out by a referee, our choice of ν = 

10 in the simulations is not consistent with the DF=3 in the data example of Section 5. Here 

the choice of ν = 10 was in consideration of the second simulation scenario in which the 

correlation among the tests was incorporated. ν = 10 gives us finer choices of correlations 

0.1, 0.2, …, 0.9. We also simulated the case of ν = 3 and the results are consistent with the 

case of ν = 10.

4.2. Simulation scenario 1: tests were independent from each other

We first simulated the independent case in which all the tests from either the null or the 

alternative hypothesis were independent from each other. Figures 2–3 present the estimate of 

π0 and its mean squared error (MSE) for the 6 methods. The estimates were averaged over 

200 simulation replicates each with a sample size N = 5,000. Figure 2 shows that the 

distribution mixture-based estimate (denoted as the mixture estimate) agrees with the true 

value better than the other methods. Figure 3 shows the MSE for these estimates. Except for 

λ = 4 and 0.8 < π0 < 0.95, the mixture estimate clearly performs better than the other five 

methods. In the top left panel of Figure 2 the dashed and dotted lines almost overlay the true 

value line indicating that the mixture estimate of π0 is almost identical with the true values 

for the two scenarios with λ = 6 or λ = 9. In addition, the mixture estimate provides an 

excellent estimate of λ (due to space limitation, the estimate of λ is not reported; it is 

available from the corresponding author upon request). Only for λ = 4 and 0.8 < π0 < 0.95, 

the other methods have comparable or slightly better performance than the mixture estimate. 

We next examine why our estimate seemed to overestimate π0 for these scenarios.

The estimates (average over 200 simulation replicates) of π0 for λ = 4 are shown in Figure 

4. A closer examination of the 200 estimates showed that the mixture estimate had difficulty 
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in estimating the small percentage from the alternative for a fraction of the simulated 

datasets. These datasets resulted to λ̂ = 0 and π̂
0 = 1. Unfortunately in these time-consuming 

simulations, we just had to take π̂
0 = 1 as the estimate for these simulation replicates and 

this caused the average to overestimate π0 and underestimate λ. Xiang, Edwards, and 

Gadbury (2006) encountered similar difficulties in their simulations. We only observed this 

for λ = 4, but not for λ = 9 or 16. Nevertheless, the mixture estimate was still comparable 

with the other estimates in this parameter range. This observation suggests the closeness of 

the alternative component to the uniform also plays a role in estimating the parameters.

In the simulations, we used 10 for λ and the estimate of π0 by the threshold method of 

Storey and Tibshirani (2003) as the initial values in our method. In real data analysis, we 

could start with these initial values. If the resulted estimates are λ̂ = 0 and π̂
0 = 1, it would 

suggest: 1) the fitted model will not fit well on the observed p-value histogram; and 2) π0 is 

close to 1 and λ is small. We can then choose the initial parameters and visually examine the 

“best-guess” mixture model against the observed p-value histogram as shown in Figure 10. 

R routine nlm conducts the minimization using a Newton-type algorithm. In the above 

scenario, the resulted λ̂ = 0 and π̂
0 = 1 also suggests the likelihood in the neighborhood of 

(λ = 0, π0 = 1) is fairly flat. In the nlm routine, we can adjust the argument gradtol, which 

specifies the tolerance at which the scaled gradient is considered close enough to zero to 

terminate the algorithm. In addition, one should always check the eigenvalues of the final 

Hessian matrix. Since nlm is to minimize the negative log likelihood, both eigenvalues 

should be positive. If there are zero or negative eigenvalues, it would suggest a questionable 

fit. By fine-tuning the arguments in the routine and using the “best-guess” initial values, we 

found the algorithm can converge to reasonable estimates of π0, i.e. away from the boundary 

π̂
0 = 1 that tends to overestimate π̂

0. R routine nlm has a set of arguments and detailed 

explanations can be found in the R help file and the original references cited therein if 

readers need to learn more about the algorithm to fit their data.

When π0 approaches 1, and the alternative is close to the null, e.g. λ = 4, the simulations 

seem to suggest the threshold method of Storey and Tibshirani (2003) provide a slightly 

better alternative to estimating π0 before our method could be fine-tuned as above to obtain 

the estimate. This is consistent with simulations conducted by Li, Bigler et al. (2005). There 

is a theoretical reason for this observation and we will comment on this further in the 

discussion section.

4.3. Simulation scenario 2: there are clusters of correlated tests

In real data analysis, correlations are often present in clusters of genes. We used the 

following additive property of the chi-squared distribution to introduce correlations within 

clusters of tests in the simulations. Suppose independent random variables X and Z follow 

non-central chi-squared distribution  and , respectively, their sum X + Z 

follows non-central chi-squared distribution  with non-centrality parameter 

λ1 + λ2 and n1 + n2 df. For the jth test within cluster i, let Yij = Xij + Zi where 

 are independent from each other and they are also independent from a 

cluster-level random effect . This set-up introduces a correlation
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among the test statistics within the cluster, where Xij′ follows  distribution.

Figures 5 and 6 present the estimates of π0 and their MSE for scenarios with modest 

correlation within clusters of 30 tests. To introduce the correlation, we set the cluster-level 

random effect Zi ∼ χ2(4) and  for tests in the null and in the alternative hypothesis, 

respectively. The distribution of Xij is set accordingly to maintain the test statistic Yij at ν = 

10 df with non-centrality parameter of λ = 4, 9, or 16 in the alternative. This results to a 

within-cluster correlation coefficient of 0.4 between the test statistics for tests under the null 

and correlation coefficients of 0.56, 0.36, 0.24 for tests under the alternative with λ = 4, 9, 

16, respectively. For each simulation, 30% of the tests are in clusters of size 30 and the other 

70% of the tests are independent from each other and from the tests in the clusters. Figures 5 

and 6 essentially show a similar pattern as that shown in the estimates for the independent 

case. In general, the mixture estimate performed better than the others. The MSE of the 

mixture estimate slightly increased in the presence of within-cluster correlations. However, it 

is still much smaller than the MSE of the other estimates for a broad range of π0. We also 

simulated scenarios with weaker or stronger within-cluster correlations. The estimates 

behaved similarly in those scenarios, and the results are not included in this report.

4.4. Simulation scenario 3: there are multiple components in the alternative

In the above simulations, we assumed there was one alternative hypothesis represented by 

the non-centrality parameter λ. In real data analysis, the alternative could be from a range of 

alternatives represented by different corresponding values of λ. This would naturally lead us 

to consider a multicomponent mixture model. However, estimating the number of 

components in a mixture is a difficult unresolved problem (McLachlan and Peel, 2000, page 

175). In the case of multiple hypotheses testing when the alternative hypothesis is true for 

many of them, each of the alternative hypotheses could be unique. This further increases the 

difficulty in modeling them as a mixture of a finite number of alternatives. In the p-value 

mixture model, this implies that we actually have a class of distributions ψ(p | λ) indexed by 

λ. When we fit the two-component mixture model (5), the non-null component is actually an 

average of the many ψ(p | λ)'s.

To evaluate the impact of this multicomponent mixture on the various estimates of π0, we 

conducted additional simulations. The simulation was set up with the similar correlation 

structure as the above single-alternative case but now the alternative was a mixture of three 

components (λ = 4, 6, 9) with weights (0.3, 0.3, 0.4). Then we fit the two-component 

mixture model (5) and we also estimated π0 using the other 5 methods. The estimates are 

presented in Figure 7. The estimate of π0 using our model was comparable with the other 

methods, demonstrating a similar robustness to the non-parametric methods.

We also conducted simulation studies to evaluate the estimate of π0 when model (4) is 

mixed with the uniform. This continuous mixture model represents a range of alternatives 

Yu and Zelterman Page 9

Comput Stat Data Anal. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with their corresponding λ sampled from Gamma (k, θ) distribution. We chose k = 4, 9, 16 

and θ = 0.5. Unfortunately we ran into an identifiability problem with model (4). We took a 

step back to fit the (mis-specified) two-component mixture of uniform and model (3). Along 

with the other 5 methods the estimates of π0 are presented in Figure 8 and their MSE are 

presented in Figure 9. These simulations show that our estimate has favorable performance 

than the other methods, parametric or nonparametric, in this setting. The estimated λ is 

generally slightly larger than twice of kθ, the mean of the Gamma (k, θ) distribution.

These identifiability difficulties are perhaps one of the main contributors to the current state 

that works in this area almost always assume there is one alternative even though a 

multicomponent alternative is more plausible. Yet in this simplified setting of misspecified 

models, the estimate based on the mixture of uniform and (3) offers a favorable performance 

in estimating π0. We attribute this gain to the application of the appropriately derived 

distribution (3) in the mixture model.

5. Example: Gene expression in anti-IgM antibody-treated MZ B cells in 

MALT lymphoma

The B-cell lymphoma/leukemia-10 (BCL10) protein is believed to have important 

tumorigenic effects on mucosa-associated lymphoid tissue (MALT) lymphomas (Zhang, 

Siebert et al., 1999 and Pounds and Morris, 2003). A microarray gene expression study was 

conducted at St. Jude Children's Hospital in Memphis, Tennessee. The marginal zone (MZ) 

B lymphocytes from two types of mice were purified, then either treated with an anti-IgM 

antibody or not treated; the not-treated served as controls. The mice are transgenic FVB 

strain mice engineered to over-express BCL10 in their B cells or wild-type FVB mice. Gene 

expressions were measured under the four experimental conditions defined by the two 

factors. Eight array measurements were obtained using the wild-type, non-anti-IgM-

activated MZ B-cells; ten from the BCL10-over-expressing, non-anti-IgM-activated MZ B 

cells; seven from the wild-type, anti-IgM-activated MZ B cells; and four from the BCL10-

over-expressing, anti-IgM-activated MZ B cells. The Kruskal-Wallis test was conducted to 

compare all four groups due to a lack of normality of the expression values. A p-value was 

obtained for each of the 12,488 probes using the chi-squared test with 3 df. The dataset of p-

values was generously provided to us by Dr. Stanley Pounds. More details about the study 

and an initial analysis can be found in Pounds and Morris (2003).

We applied the six methods evaluated in Section 4 to these 12,488 p-values. The histogram 

along with the fitted model (5) and the BUM model of Pounds and Morris (2003) are 

presented in Figure 10. Both models seem to fit well to the observed p-value histogram. 

Estimates of π0 from the six methods are in Table 1. The estimates of the parameters using 

the mixture model (5) are π̂
0 = 0.5358 (95% CI (0.5184, 0.5532)) and λ̂ = 6.99 (CI (6.74, 

7.25)). Simulation studies in Section 4 suggest that the mixture estimate of π0 should be 

preferred to other estimates for parameters in this range. None of the other 5 methods 

provides CI for π̂
0 in their R packages. We obtained the bootstrap CI for two of them and for 

the other three the CI is not calculated since the estimate itself is an upper-bound of π0. The 

mixture estimate π̂
0 has the narrowest CI among the three CI's reported in Table 1.

Yu and Zelterman Page 10

Comput Stat Data Anal. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We also fit model (5) using gamma mixture of Poisson model (4) for the distribution of P 
which accounts for a range of alternatives. We used four sets of initial values of (π0, k, θ) to 

numerically obtain their MLE's. The estimate π̂
0 was always 0.5357. The estimate k̂ was in 

the range of 4,034 to 164,284, and the corresponding estimate θ̂ was in the range of 8.67 × 

10−4 to 2.13 × 10−5, while the product k̂θ̂ remains a constant 3.495. These estimates indicate 

the negative binomial distribution NB (k, θ/(1 + θ)) has a constant mean k̂θ̂ = 3.495 as k̂ 

varies for different fit. Its variance is kθ(1 + θ) and the extremely small estimates of θ 
indicate barely any over-dispersion. In this dataset, the negative binomial distribution 

converges to Poisson (3.495). Note λ̂ = 6.99 using model (3) is twice of 3.495 since we 

assumed U = λ/2 follows the Gamma (k, θ) distribution. These fits result to almost identical 

distribution curves as that of the two-component mixture model (5) with π̂0 = 0.5358 and λ̂ 

= 6.99. These results suggest an identifiability issue for (k, θ) when fitting the continuous 

gamma mixture model (4) to this dataset. We conducted additional simulation studies that 

indicate the identifiability of k and θ is an issue for the gamma mixture of Poisson model 

(4). This identifiability issue reflects a long-standing difficulty in identifying multi-

component in mixtures, e.g. as in a comment by McLachlan and Peel (2000, page 175) that 

estimating the number of components in a mixture is a difficult unresolved problem. Further 

research on this topic is needed to help us move beyond the two-component mixtures, even 

though our method performs reasonably well in this misspecified setting as demonstrated in 

the simulation studies in Section 4.4.

The analysis results indicate that 53.6% of the p-values were from the null hypothesis. This 

means in 46.4% of the genes at least one of the four groups had a different mean expression. 

This 46.4% seems to be excessive, but it is the second lowest estimate among the six 

methods. The only lower estimate of 45.5% by the method of Meinshausen and Rice (2006) 

is actually a lower bound of the proportion of differentially expressed genes. All these 

estimates seem to be high, however, as Pounds and Morris (2003) point out, “this fraction 

includes any gene that is even slightly differentially expressed in any of the four treatments.” 

Our estimate of λ̂ = 6.99 provides an estimate of the magnitude of the difference. More 

comments on how to interpret the proportion of a seemingly excessively large number of 

genes under the alternative can be found in Pounds and Morris (2003) and Efron (2004).

6. Discussion

Estimating the proportion π̂
0 has attracted a significant amount of research, especially in the 

nonparametric framework (Broberg, 2005; Langaas, Lindqvist, and Ferkingstad, 2005; 

Cheng, 2006; Nettleton et al., 2006; Meinshausen and Rice, 2006; Tang, Ghosal, and Roy, 

2007). These methods attempt to estimate π0 without using a parametric distribution for the 

p-values under the alternative, ψ(p), in the two-component mixture model (1). Identifiability 

of π0 has been a long-standing difficulty.

We approach the problem from a different angle by deriving a parametric distribution for p-

values under the alternative. The derived distribution enables us to fit the two-component 

mixture model (1) to the observed p-values. The second component depends on the specific 

test that is used to obtain the p-values. As long as the non-null component ψ(p) is not 

reproduced when mixed with the uniform, the mixing proportion π0 and the non-null 
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component ψ(p) can be estimated using the maximum likelihood method. Langaas, 

Lindqvist, and Ferkingstad (2005) and Tang, Ghosal, and Roy (2007) set restrictions such as 

ψ(1) = 0 to solve the identifiability problem. For the chi-squared test, our derived ψ(p) 

shows that ψ(1) = e−λ/2 is not zero.

In simulation studies, our method performed favorably in comparison with 5 recent methods 

for a broad range of scenarios including scenarios with clusters of correlated tests, 

multicomponent alternative mixtures, and continuous alternative mixture in which λ follows 

Gamma(k, θ) distribution. However, as one would expect, when π0 approached one and the 

alternative was close to the null, our method also had difficulty estimating the proportion. In 

this situation, it appeared that the threshold method of Storey and Tibshirani (2003) slightly 

outperformed the other methods. In Appendix B, we derive the bias in the estimate of the 

threshold method. The bias can be expressed as m(1 – π0)[1 – Ψ(α)]/(1 – α), where Ψ(·) is 

the cumulative distribution function for ψ given in (9) and m is the total number of 

hypotheses being tested. This bias goes to zero when π0 approaches one. Thus, we 

recommend that users may want to use the threshold method to estimate π0 in this situation. 

However, the threshold method loses the ability to estimate the non-null effect λ. The 

method was developed to exploit the fact that p-values under the null are uniformly 

distributed, and the distribution of the truly alternative p-values can not be specified (Storey 

and Tibshirani, 2003, page 9442). The estimate of λ informs us where on average the 

alternative is when we interpret π̂
0. It provides useful information especially when 1 – π̂

0 

appears to be excessive as in the example in Section 5.
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Appendix A. Derivation of distribution ψ

Under the null hypothesis H0, for any 0 < p < 1 the reported “p-value” of the statistical test 

based on X has cumulative distribution

This is the well known result that the p-value has a uniform distribution under the null 

hypothesis.

Under a specified alternative hypothesis Ha suppose the test statistic X follows the 

cumulative distribution G(·) with density function g(·). Then for any0 < p < 1
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(8)

Let ψ(p) = ψ(p | Ha) denote the density function corresponding to the distribution at (8). 

Then

(9)

or the likelihood ratio evaluated at the upper p–th quantile of F.

The density function of a non-central chi-squared distribution with ν df and non-centrality 

parameter λ ≥ 0 can be expressed as a weighted sum of a central chi-squared density with 

the probabilities of a Poisson distribution with mean λ/2 as the weights

(c.f. Johnson, Kotz, and Balakrishnan, 1995, p436, and Fisher, 1928) from which (9) 

evaluates to

(10)

where x1–p is the upper 1 – p quantile of a (central) chi-squared random variable with ν df.

It is trivial to prove that the likelihood ratio f(x1–p; ν + 2j)/f(x1–p; ν) in (10) satisfies the 

monotone likelihood ratio property (MLRP) (see Ferguson, 1967, page 208, for example). 

Along with the derivative (∂/∂p)x1–p = –f(x1–p), this MLRP guarantees ψ(p) is a monotone 

decreasing function in p. This is a desired property and it has been assumed by Langaas, 

Lindqvist, and Ferkingstad (2005) and Tang, Ghosal, and Roy (2007) in their nonparametric 

modeling of distributions for p-values.

Next we consider a reference statistic that results in a beta distribution for ψ. Suppose F(·) 

and G(·) differ by a Lehmann alternative through their survival functions. This class includes 
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the exponential distribution as a special case and also proportional hazards models, but not 

all of the distributions in the exponential family. Specifically, let S(x) = 1 – F(x) denote the 

survival function corresponding to F under the null hypothesis and suppose 1–G(x) = 

{S(x)}1–δ for some 0 < δ < 1 under the alternative.

Then ψ at (9) satisfies

This is a beta density with parameters α = 1 – δ and β = 1.

Appendix B. Bias in the estimate of π0 by the threshold method of Storey 

and Tibshirani (2003)

We use the same notations as those used by Benjamini and Hochberg (1995) in a multiple 

hypotheses testing problem. Table 2 illustrates the model.

Let R(α) be the number of rejections at significance level α. Given that the right margin in 

Table 2 is fixed, the random variables V and S follow binomial distributions. V ∼ Bin(m0, α) 

and S ∼ Bin(m1, Ψ(α)), where Ψ(α) is the cumulative distribution function for ψ given in 

(9). We have R = V + S with expectation

Then we have

Schweder and Spjoetvoll (1982) use the least squares estimate of the slope in regression

to estimate m0. The slope has an expectation of m0 + m1[1 – Ψ(a)]/(1 – a). This slope 

estimate of m0 has a bias m1[1 – Ψ(α)]/(1 – α) = m(1 – π0)[1 – Ψ(α)]/(1 – α). The bias 

decreases as Ψ(α) → 1 or when m1 is small relative to m0.
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Figure 1. 
Density function (3) of p-values from a 1 df chi-squared test against a 1 df non-central chi-

squared alternative hypothesis with non-centrality parameter λ = .5, 1, 4, 9 as solid, dashed, 

dotted, and dash-dotted lines, respectively.
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Figure 2. 
Estimated π0 using the 6 different methods versus the true π0. The solid, dashed, and dotted 

lines are for λ value of 4, 9, and 16 in the alternative, respectively. The tests are independent 

from each other. Note, the mixture estimate is almost identical with the true π0 for λ value 

of 9 and 16.
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Figure 3. 
MSE of the estimated π0 versus the true π0 for the 6 different methods. The solid, dashed, 

and dotted lines are for λ value of 4, 9, and 16 in the alternative, respectively. The tests are 

independent from each other.
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Figure 4. 
Estimated π0 using the 6 different methods versus the true π0 for λ = 4 in the alternative. 

Top graph: the solid, dashed, and dotted lines are for the mixture, Storey, and BUM 

estimates, respectively; Bottom graph: the solid, dashed, dotted, and dash-dotted lines are for 

the mixture, CBUM, Meinshausen, and Nettleton estimates, respectively.
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Figure 5. 
Estimated π0 using the 6 different methods versus the true π0. The solid, dashed, and dotted 

lines are for λ value of 4, 9, and 16 in the alternative, respectively. The correlation 

coefficient is 0.4 between test statistics within a cluster for tests under the null and the 

correlation coefficients are 0.56, 0.36, 0.24 for tests under the alternative with λ = 4, 9, 16, 

respectively.
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Figure 6. 
MSE of the estimated π0 versus the true π0 for the 6 different methods. The solid, dashed, 

and dotted lines are for λ value of 4, 9, and 16 in the alternative, respectively. The 

correlation coefficient is 0.4 between test statistics within a cluster for tests under the null 

and the correlation coefficients are 0.56, 0.36, 0.24 for tests under the alternative with λ = 4, 

9, 16, respectively.
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Figure 7. 
Estimated π0 from the 6 different methods versus the true π0 for a mixture in the alternative. 

Top graph: the solid, dashed, and dotted lines are for the mixture, Storey, and BUM 

estimates, respectively; Bottom graph: the solid, dashed, dotted, and dash-dotted lines are for 

the mixture, CBUM, Meinshausen, and Nettleton estimates, respectively.
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Figure 8. 
Estimated π0 using the 6 different methods versus the true π0. The solid, dashed, and dotted 

lines are for λ sampled from Gamma (k, θ) with k = 4, 9, 16, respectively, and θ = 0.5 in the 

alternative.
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Figure 9. 
MSE of the estimated π0 versus the true π0 for the 6 different methods. The solid, dashed, 

and dotted lines are for λ sampled from Gamma (k, θ) with k = 4, 9, 16, respectively, and θ 
= 0.5 in the alternative.
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Figure 10. 
Two fitted parametric models to the MALT dataset analyzed in Pounds and Morris (2003). 

The solid line is the fitted mixture model (5) with (3) as the non-null component ψ for the 

chi-squared test. The dashed line represents the fitted beta uniform mixture model of Pounds 

and Morris (2003).
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Table 2

Testing m hypotheses among which m0 null hypotheses and m1 alternative hypotheses are true.

Truth

Reject H0

totalNo Yes

H0 U V m0

Ha T S m1

m–R R m
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