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Abstract

The basic helix-loop-helix (bHLH) transcription factors exert multiple functions in mamma-

lian cerebral cortex development. The aryl hydrocarbon receptor (AhR), a member of the

bHLH-Per-Arnt-Sim subfamily, is a ligand-activated transcription factor reported to regulate

nervous system development in both invertebrates and vertebrates, but the functions that

AhR signaling pathway may have for mammalian cerebral cortex development remains elu-

sive. Although the endogenous ligand involved in brain developmental process has not

been identified, the environmental pollutant dioxin potently binds AhR and induces abnor-

malities in higher brain function of laboratory animals. Thus, we studied how activation of

AhR signaling influences cortical development in mice. To this end, we produced mice

expressing either constitutively active-AhR (CA-AhR), which has the capacity for ligand-

independent activation of downstream genes, or AhR, which requires its ligands for activa-

tion. In brief, CA-AhR-expressing plasmid and AhR-expressing plasmid were each trans-

fected into neural stems cells in the developing cerebrum by in utero electroporation on

embryonic day 14.5. On postnatal day 14, mice transfected in utero with CA-AhR, but not

those transfected with AhR, exhibited drastically reduced dendritic arborization of layer II/III

pyramidal neurons and impaired neuronal positioning in the developing somatosensory cor-

tex. The effects of CA-AhR were observed for dendrite development but not for the commis-

sural fiber projection, suggesting a preferential influence on dendrites. The present results

indicate that over-activation of AhR perturbs neuronal migration and morphological develop-

ment in mammalian cortex, supporting previous observations of impaired dendritic structure,

cortical dysgenesis, and behavioral abnormalities following perinatal dioxin exposure.
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Introduction

The mammalian cerebral cortex consists of six layers, each of which harbors subsets of neurons

distinguished by morphology and synaptic organization: each layer has specific pyramidal

neurons that are endowed with characteristic dendritic arborization and axonal projection pat-

terns [1, 2]. Development of the cortex consists of a series of processes that are characterized

by sequential progenitor proliferation, neuronal migration, and dendritic and axonal growth,

leading to the establishment of functional cortical circuits required for higher brain function.

These developmental processes are regulated by molecular signaling pathways that consist of

ligand-receptor interactions and transcription factor activation [3, 4].

The basic helix-loop-helix (bHLH) transcription factors possess multiple functions in mam-

malian brain development. They can be divided into three main subfamilies: (1) the bHLH

domain only (bHLH only), (2) bHLH domain contiguous with a leucine zipper (bHLH-Zip),

and (3) bHLH domain contiguous with a Per-Arnt-Sim (PAS) domain (bHLH-PAS) [5, 6].

Members of these subfamilies exhibit region- and cell type-specific effects on progenitor prolif-

eration, neuronal differentiation, and corticogenesis. The bHLH only subfamily contains

members, such as neurogenin (Ngn), neurogenic differentiation (Neurod), and hairy and

enhancer of split (Hes). Phosphorylated Ngn2 regulates the migration and dendritic morphol-

ogy of mammalian cortical neurons [7, 8]. Neurod1-null mice show histological degeneration

of the hippocampus and cerebellum [9]. Hes1 and Hes5 are highly expressed in neural stem

cells, and inhibit differentiation into mature neurons [10, 11]. c-Myc and N-Myc, which

belong to the bHLH-Zip subfamily, control cellular proliferation in the cerebrum and cerebel-

lum [12, 13]. Sim1 and Sim2, members of the bHLH-PAS subfamily, have been reported to

regulate neuronal subtype specification in the hypothalamus [14, 15]. Hence, clarification of

the mechanism of mammalian cortical development requires a complete understanding of the

functions of the bHLH family genes.

The aryl hydrocarbon receptor (AhR), which belongs to the bHLH-PAS subfamily, is

expressed in the mammalian brain, including the cerebral cortex in the developing and

adult stages [16–18], and acts as a receptor for ligands to induce downstream signaling. The

liganded AhR is activated by cofactors and translocated from the cytoplasm to the nucleus,

where it enhances the transcription of target genes such as Cyp1a1, Cyp1b1, and Ahr repres-
sor (Ahrr) [19, 20]. Although the endogenous AhR ligand that contributes to neurodevelop-

ment has not been identified, loss- or gain-of-function experiments have demonstrated

important roles of AhR in nervous system development. In Caenorhabditis elegans, ahr-1, a

homolog of the mammalian AhR, regulates neuronal migration, axonal branching, and neu-

ronal subtype specification [21, 22]. Spineless, the Drosophila homolog of the mammalian

AhR, controls the complexity of dendritic arborization in sensory neuron subtypes [23]. In

the mouse cerebellum, AhR has been shown to regulate granule cell neurogenesis [24].

Thus, it is plausible that AhR-mediated signaling regulates neuronal differentiation and

maturation in the mammalian cerebral cortex.

Dioxin, a persistent and highly toxic environmental contaminant, is an extremely potent

exogenous AhR ligand, and activation of AhR signaling by dioxin has been shown to induce a

variety of toxic effects, such as cancer, reproductive toxicity, and immunotoxicity [25]. Studies

on AhR-null mice have demonstrated that the AhR is necessary for these toxic effects of dioxin

[26–28]. In addition, adult rodent offspring born to dams exposed to dioxin during gestation

exhibit cognitive and behavioral abnormalities, such as spatial memory [29], fear conditioning

[30, 31], operant responses [32, 33], paired-association learning [34], and impaired flexibility

and social behavior [35]. Additionally, in utero and lactational dioxin exposure induces the

expression of AhR target genes [36] and disrupts dendritic morphology in the developing
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mouse brain [37]. These exposure experiments suggest that AhR signaling is indeed involved

in mammalian corticogenesis.

Accordingly, we hypothesized that activation of AhR signaling is linked to cortical develop-

mental in mice. In order to test this hypothesis, we selected a constitutively active (CA)-AhR-

expressing transfection animal, because it was demonstrated that CA-AhR translocates into

the nucleus and induces AhR target genes without ligands [37, 38] and that CA-AhR model

animals manifest signs of dioxin toxicity, such as thymic involution, liver enlargement, and

stomach cancer [39–41]. Thus, in this study, we used in utero electroporation [42, 43] to trans-

fect CA-AhR in cortical projection neurons in the mouse brain and studied the significance of

AhR signaling for cerebral cortical development.

Materials and methods

Reagents

Reagents were special grade and purchased from Wako Pure Chemicals (Osaka, Japan), unless

otherwise stated.

Animals

All animal experiments were performed using protocols approved by the Animal Care and

Use Committee of the University of Tokyo (No. P12-41, PI = C. Tohyama) and that of Keio

University [08065-(10), PI = K. Nakajima] in accordance with Institutional Guidelines on Ani-

mal Experimentation at the both universities as well as the Japanese Government Law con-

cerning the Protection and Control of Animals and Japanese Government Notification of

Feeding and Safekeeping of Animals. All efforts were made to reduce the total number of ani-

mals used and their suffering. Timed-pregnant C57BL/6N mice were purchased from Japan

SLC (Shizuoka, Japan) for in utero electroporation experiments. These mice were housed in an

animal facility maintained at 22˚C−24˚C and 40%−60% humidity under as 12/12 h light/dark

cycle (lights on from 08:00 to 20:00). Laboratory rodent chow (Lab MR Stock; Nosan, Yoko-

hama, Japan) and distilled water were provided ad libitum.

Vector construction

The AhR protein harbors several domains, including bHLH, PAS, ligand-binding, and Q-rich

domains, comprising 805 amino acid residues, whereas CA-AhR lacks 142 amino acid residues

spanning positions 277 to 418, a region including much of the ligand-binding domain (Fig

1A). Plasmid vectors pCAGGS1-AhR and pCAGGS1-CA-AhR were identical to those used in

our previous study [37]. Briefly, a full-length AhR cDNA fragment was obtained from a mouse

liver cDNA library by nested polymerase chain reaction (PCR) using two primer pairs: 5'-cc
tccgggacgcaggtg-3'/5'-agcatctcaggtacgggttt-3',and 5'-ctcgaggcggg
caccatgagcagcggcgcca-3'/5'-ctcgagtcaactctgcaccttgct-3'.A CA-AhR

cDNA fragment was obtained by PCR amplification using pQCXIN-CA-AhR-EGFP as a tem-

plate (a kind gift from Dr. Yoshiaki Fujii-Kuriyama, then at University of Tsukuba and Dr.

Tomohiro Ito at the National Institute for Environmental Studies) and the specific primers

5'-ctcgaggcgggcaccatgagcagcggcgcca-3'and 5'-ctcgagtcaactctgca
ccttgct-3'.The AhR and CA-AhR fragments were ligated into the pCRII-TOPO vector

using the TOPO TA Cloning kit (Thermo Fisher Scientific, Carlsbad, CA, USA), amplified,

and then excised by XhoI digestion for insertion into the XhoI site of pCAGGS1 to generate

pCAGGS1-AhR and pCAGGS1-CA-AhR plasmids, respectively. These plasmids were subse-

quently used for in utero electroporation to induce AhR and CA-AhR expression in cortical
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pyramidal neurons. In a previous study, transfection of pCAGGS1-CA-AhR induced expres-

sion of the AhR targeted Cyp1a1 in neurons while pCAGGS1-AhR did not [37], suggesting

that CA-AhR efficiently activates AhR downstream signaling in the absence of ligand.

In utero electroporation

Pregnant mouse surgery and embryo manipulation in utero were performed as previously

described [42–44]. Briefly, on gestational day (GD) 14.5, pregnant C57BL/6N mice were anes-

thetized with sodium pentobarbital (50 mg/kg b.w., ip) and laparotomized to expose the uter-

ine horns. Embryos were divided into the following three groups depending on transfection

condition: (1) a control group was transfected with a plasmid solution containing pCAGGS1-

tdTomato, pCALNL-EGFP, and pCAG-M-Cre, (2) an AhR group with a plasmid solution con-

taining pCAGGS1-tdTomato, pCALNL-EGFP, pCAG-M-Cre, and pCAGGS1-AhR, and (3) a

CA-AhR group transfected with a plasmid solution containing pCAGGS1-tdTomato, pCALN-

L-EGFP, pCAG-M-Cre, and pCAGGS1-CA-AhR. The concentrations of pCAGGS1-tdTo-

mato, pCAGGS1-AhR, pCAGGS1-CA-AhR, and pCALNL-EGFP were 1 mg/mL, and that of

pCAG-M-Cre was 1 μg/mL.

For transfection of plasmid vectors, a total volume of 1−2 μL plasmid solution was injected

into the lateral telencephalon ventricle using a glass micropipette and electroporated by plac-

ing a cathode adjacent to the neocortex. Using an electroporator (CUY21E; Nepa Gene, Chiba,

Japan), electric pulses (30 V; 50 ms) were charged four times at every 950-ms interval. Injec-

tion of the plasmid vectors into the lateral telencephalon ventricle was monitored by including

0.1% Fast Green in the plasmid solution, and only embryos successfully injected were used in

the present study. After electroporation, the uterine horns were placed back into the abdomi-

nal cavity to allow further embryonic growth and development.

Preparation of brain tissues from electroporated mice

On postnatal day (PND) 14, mice transfected in utero were transcardially perfused with 4%

paraformaldehyde (PFA; Nacalai Tesque, Kyoto, Japan) in 0.1 M phosphate-buffered saline

(PBS, pH 7.4) under anesthesia with sodium pentobarbital. Brains were then collected, fixed in

4% PFA overnight, immersed in a series of solutions containing 5%, 15%, and 30% sucrose in

0.1 M PBS, frozen in Tissue-Tek O.C.T. compound (Sakura Finetek; Tokyo, Japan), and stored

at −80˚C. Frozen brains were sliced in the coronal plane through the somatosensory cortex

using a cryostat (Model 3050S, Leica Microsystems, Tokyo, Japan). The somatosensory cortex

of adult mouse brain is located between +0.26 mm and −1.94 mm from bregma [45]. Referring

to this precedential information as well as our own morphology observations, the somatosen-

sory cortex in 14-day-old mice was identified. Coronal sections of somatosensory cortex were

cut at 150 μm thickness for dendritic morphology and at 50 μm thickness for neuronal

Fig 1. Sporadic expression of EGFP in pyramidal neurons of cerebral cortex using the Cre-LoxP

recombination system. (A) Schematic diagrams of AhR and CA-AhR protein structures. Numbers represent

amino acid positions. (B) Schematic diagram of Cre-mediated recombination with two kinds of plasmids

(pCALNL-EGFP and pCAG-M-Cre) to obtain a plasmid that expresses EGFP. In the absence of pCAG-M-Cre,

pCALNL-EGFP remains but does not express EGFP because of a SV40 polyadenylation (stop) sequence

between the two loxP sites. To reduce the probability of recombination, a low ratio of pCAG-M-Cre to pCALNL-

EGFP (1:1,000) was used, resulting in sparse EGFP-positive neurons among numerous tdTomato-positive

neurons expressing AhR or CA-AhR for precise morphological analysis. (C) Representative photographs of

fluorescent protein-expressing neurons in 14-day-old mouse somatosensory cortex transfected in utero

(GD14.5). Scale bar = 200 and 100 μm at low and high magnification, respectively. bHLH, basic helix-loop-helix;

LB, ligand-binding domain; PAS, Per-Arnt-Sim domain; Q-rich, glutamate-rich domain.

https://doi.org/10.1371/journal.pone.0183497.g001
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positioning analyzes. Each tissue slide was covered with Vectashield, counterstained with

DAPI (Vector Laboratories, Burlingame, CA, USA), and sealed under a cover glass.

Dendritic morphology analysis

To reveal complete dendritic morphology under fluorescence microscopy (Model DM6000 B,

Leica Microsystems), all transfection solutions contained high concentrations of pCALN-

L-EGFP and pCAGGS1-tdTomato (1 mg/mL each) and a low concentration of pCAG-M-Cre

(1 μg/mL) for sporadic EGFP expression throughout the entire dendritic structure within a

larger field of tdTomato-stained neurons (Fig 1B). Indeed, numerous tdTomato-expressing

neurons and a small number of Cre-dependent EGFP-expressing neurons were observed in

cortical layer II/III of the electroporated mouse brain (Fig 1C). Dendritic morphology of

EGFP-expressing neurons was analyzed using the Neurolucida tracing system (MicroBright-

Field, Colchester, VT, USA). A single neuron was traced under a microscope equipped with a

specific objective lens (Leica DM6000 B, HCX PL APO, 40×, NA = 0.75; Leica Microsystems)

by an observer blinded to the transfection group. Three-dimensional dendritic morphology

was quantified using NeuroExplorer software (MicroBrightField). Reconstructed dendrites

were analyzed for arbor complexity, length, and number of branching points. The complexity

of dendrites in control, AhR, and CA-AhR group neurons was determined by Sholl analysis;

counting the number of intersections with concentric rings (Sholl rings) defined every 10 μm

between 20 and 200 μm from the cell body. For each mouse, 15 to 20 neurons were subject to

Sholl ring analysis for a total of 54 control, 47 AhR, and 66 CA-AhR group neurons from 3–4

mice/group.

Neuronal positioning analysis

Neuronal positioning in the cerebral cortex was evaluated using bin analysis as described pre-

viously [46]. Briefly, the cortex image was equally divided into 10 bins, with the bins closest to

the ventricle and pia mater defined as bin 1 and bin 10, respectively. In each bin, the number

of tdTomato-expressing neurons was estimated as a percentage of the total number in all 10

bins using ImageJ software (National Institute of Health, Bethesda, MD, USA). The percentage

of neuronal distribution in each bin was compared between the control and CA-AhR groups

(n = 3 and 5 mice group, respectively).

Gene expression analysis

Brain slices collected from successfully transfected mice on PND 14 were placed on steel-

framed PPS membrane slides (Leica Cat. No. 11505268). The tdTomato-positive areas of the

somatosensory cortex were chosen as regions of interests (ROIs), and excised from slices using

a laser microdissection (LMD) microscope (Model LMD7000, Leica Microsystems). Excised

samples of somatosensory cortex were 50 μm thick and ranged from 922,821 to 2,683,471 μm2

in surface area. Samples were prepared for RNA quantification as described previously [47]. In

brief, total RNA was extracted using a CellAmp Direct RNA Prep Kit lysis buffer (Takara Bio,

Kusatsu, Japan) containing proteinase K (0.3 U, Takara Bio). This solution was incubated at

50˚C for 30 min, and subjected to sonication for 1 min. Proteinase K was inactivated by incu-

bation of RNA extract solution at 75˚C for 5 min. Extracts were then treated with DNase (0.05

U, Takara Bio) at 37˚C for 5 min, followed by incubation at 75˚C for 5 min for DNase inactiva-

tion. RNAs were reverse-transcribed using PrimeScript (Takara Bio) with both oligo-dT and

random N6 primers according to the manufacturer’s instructions. RNA extracts from three

control and five CA-AhR group mice were subjected to quantitative real-time RNA expression

analysis. The quantitative detection of cDNAs was performed by SYBR Green I-based real-
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time PCR using a Light Cycler instrument (Roche Molecular Biochemicals, Manheim, Ger-

many) and Thunderbird SYBR qPCR mix (Toyobo, Osaka, Japan). Negative controls for

qPCR were analyzed concomitantly to confirm that the samples were not cross-contaminated.

The expression levels of RNAs (mRNAs and rRNA) are presented as crossing number normal-

ized to 18S rRNA expression levels, as it has been demonstrated that the amount of 18S rRNA
linearly correlates with the size of the ROI. Primer pairs for real-time qPCR are shown in

Table 1.

Statistical analysis

Dendritic length and branching point numbers were compared between transfection groups

using one-way analysis of variance (ANOVA) followed by Tukey–Kramer post hoc test for

pair-wise comparisons. Sholl and bin analysis data were statistically examined using two-way

ANOVA followed by Tukey–Kramer post hoc test and Student’s t-test, respectively. Gene

expressions were statistically analyzed using Student’s t-test. In all tests, P-values <0.05 were

considered statistically significant.

Results

CA-AhR overexpression reduces the morphological complexity of

cortical pyramidal neuron dendrites

The apical and basal dendrites of EGFP-expressing pyramidal neurons in cortical layer II/III

were traced in 14-day-old mice that were electroplated in utero with AhR or CA-AhR plasmid.

Dendritic complexity was compared among control, AhR, and CA-AhR groups using five met-

rics: number of intersections with concentric rings (Sholl rings) surrounding the soma, entire

dendritic length, number of branching points, and the length and number of the first- to fifth-

order branches.

Dendritic arborization was markedly reduced in the CA-AhR group compared to control

and AhR groups (Fig 2A). In both apical and basal dendrites, two-way repeated measures

ANOVA indicated significant main effects of vector-transfection group (F(2, 133) = 115,

p = 8.80 × 10−30; F(2, 133) = 83.7, p = 2.93 × 10−24, respectively) and distance from the cell

body (F(18, 133) = 15.9, p = 6.38 × 10−25; F(18, 133) = 84.2, p = 1.69 × 10−63, respectively), and

a significant interaction between these factors (F(36, 133) = 1.71, p = 0.0158; F(36, 133) = 6.20,

p = 3.33 × 10−15, respectively). The number of apical dendrite intersections of the CA-AhR

group was significantly lower at each Sholl ring between 70 and 160 μm from the cell body

than that of the control group (p< 0.05) and between 60 and 130 μm from the cell body than

that of the AhR group (p< 0.05; Fig 2B). Similarly, the number of basal dendrite intersections

of the CA-AhR group was significantly lower at each Sholl ring between 30 and 110 μm from

the cell body than that of the control group (p< 0.05) and between 20 and 90 μm from the cell

body than that of the AhR group (p< 0.05; Fig 2C).

Table 1. Primer sequences for LMD-RT-qPCR.

Gene symbol Forward primer Reverse primer

Cyp1a1 5'-caccgtattctgccttggat-3' 5'-cagcatgtgaccaatgaagg-3'

Cyp1b1 5'-ggacaaggacggcttcatta-3' 5'-gcgaggatggagatgaagag-3'

Ahrr 5'-cagggcagacattgtggtta-3' 5'-ctccattgctctttcctgct-3'

Gapdh 5'-acccagaagactgtggatgg-3' 5'-cacattgggggtaggaacac-3'

18S rRNA 5'-ggaccagagcgaaagcatttg-3' 5'-ttgccagtcggcatcgtttat-3'

https://doi.org/10.1371/journal.pone.0183497.t001
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One-way ANOVA also indicated significant differences in entire apical and basal dendritic

lengths among groups (F(2, 7) = 5.48, p = 0.0369; F(2, 7) = 7.01, p = 0.0213, respectively). Api-

cal dendritic length was significantly shorter in the CA-AhR group than in the control group

(p< 0.05; Fig 2D). Moreover, basal dendrite length was significantly shorter in the CA-AhR

group than in both control and AhR groups (p< 0.05 and 0.05, respectively; Fig 2E). One-way

ANOVA indicated significant differences in the number of branching points along both apical

and basal dendrites among groups (F(2, 7) = 11.3, p = 0.00646; F(2, 7) = 7.52, p = 0.0181,

respectively). The number of apical dendrite branching points was significantly lower in the

CA-AhR group than in the control and AhR groups (p< 0.01 and 0.05, respectively; Fig 2F).

Similarly, the number of basal dendrite branching points in the CA-AhR group was signifi-

cantly lower than that in the control and AhR groups (p< 0.05 and 0.05, respectively; Fig 2G).

To analyze the length and number of branches of apical and basal dendrites, we used the

first- to fifth-order branches, because the number of branching points in the CA-AhR-trans-

fected neurons was found to be significantly reduced, which caused a drastic decrease in

higher-order branches. In apical dendrites, one-way ANOVA indicated significant differences

between groups in the lengths of the first- (F(2, 7) = 6.23, p = 0.0279), second- (F(2, 7) = 9.28,

p = 0.0107), and third-order (F(2, 7) = 20.0, p = 0.00127) branches, but not the fourth- (F(2, 7)

= 0.934, p = 0.437) and fifth-order (F(2, 7) = 2.81, p = 0.127) branches (S1 Fig). The first-order

branches of the CA-AhR group were significantly longer than that of the control group

(p< 0.05), while the second- and third-order branches were significantly longer than those of

both the control (p< 0.05 and 0.01, respectively) and AhR groups (p< 0.05 and 0.01, respec-

tively). Conversely, in basal dendrites, one-way ANOVA also indicated significant differences

in the second- (F(2, 7) = 55.0, p = 5.24 × 10−5) and fifth-order (F(2, 7) = 10.4, p = 0.00793)

branches, but not in the first- (F(2, 7) = 4.11, p = 0.660), third- (F(2, 7) = 0.298, p = 0.752), and

fourth-order (F(2, 7) = 2.05, p = 0.198) branches (S1 Fig). The second-order branches of the

CA-AhR group were significantly longer than those of the control (p< 0.01) and AhR groups

(p< 0.01), and the fifth-order branches were significantly shorter than those of the control

(p< 0.05) and AhR groups (p< 0.01). Next, we analyzed and compared the first- to fifth-

order branch numbers among the control, AhR, and CA-AhR groups. One-way ANOVA indi-

cated significant differences among groups in the third- (F(2, 7) = 7.65, p = 0.0173), fourth- (F
(2, 7) = 7.87, p = 0.0162), and fifth-order (F(2, 7) = 13.4, p = 0.00406) apical branches, but not

the first- and second-order branches. The first-order apical branch is always single, and the

second-order apical branch has usually two or occasionally three branches in the all three

groups (S1 Fig). The numbers of the third-, fourth-, and fifth-order apical branches were sig-

nificantly lower in the CA-AhR group than in the control (p< 0.05, 0.05, and 0.01, respec-

tively) and AhR (p< 0.05, 0.05, and 0.05, respectively) groups. One-way ANOVA indicated

significant differences among groups in the numbers of the first- (F(2, 7) = 8.31, p = 0.0142),

second- (F(2, 7) = 6.66, p = 0.0240), third- (F(2, 7) = 14.4, p = 0.00328), and fourth-order (F(2,

Fig 2. Overexpression of constitutively active-AhR (CA-AhR) reduces the morphological complexity

of somatosensory cortex layer II/III pyramidal cell dendrites. (A) Representative drawings of EGFP-

expressing pyramidal neurons in cortical layer II/III of 14-day-old mice. Neurons with the characteristic

morphology of CA-AhR, AhR, and control groups were randomly chosen for display (n = 3–4/group). A distinct

reduction in dendritic arborization in the CA-AhR group was observed compared to control mice and mice

transfected with AhR. (B−G) Quantification of dendritic complexity (B, C), length (D, E), and number of

branching points (F, G) of apical (B, D, F) and basal (C, E, G) dendrites. Values are mean ± S.E.M. from 3

control, 3 AhR, and 4 CA-AhR group mice. Asterisks denote significant differences between the control and

CA-AhR groups, whereas sharps indicate significant differences between the AhR and CA-AhR groups.

Single (*, #) and double (**) symbols denote significance by Tukey–Kramer post hoc test at p < 0.05 and

0.01, respectively. Scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0183497.g002
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7) = 6.09, p = 0.0294) basal branches, but not the fifth-order (F(2, 7) = 3.16, p = 0.105) basal

branches (S1 Fig). The numbers of the third- and fourth-order basal branches were signifi-

cantly lower in the CA-AhR group compared to the control group (p< 0.01 and 0.05, respec-

tively). In addition, the numbers of the first-, second-, and third-order basal branches was

significantly lower in the CA-AhR group compared to the AhR group (p< 0.05, 0.05, and

0.05, respectively). These results suggest that CA-AhR transfection impairs the process of den-

dritic branching formation and then elicits a decrease in the entire length and number of den-

drites (Fig 2D–2G). Although the entire dendrite length was significantly decreased in the

CA-AhR group, branch lengths of apical (the first, second, and third orders) and basal (the sec-

ond order) dendrites were increased (S1 Fig). These increases are considered to be caused by

the loss of dendritic branching points at specified-order branches.

In contrast, no conspicuous differences in the projection pattern of commissural fibers was

observed in the CA-AhR group compared with the control and AhR groups, suggesting that

CA-AhR preferentially impairs dendritic growth rather than axonal elongation (Fig 3).

CA-AhR overexpression affects neuronal positioning

To further investigate effects of CA-AhR on development of the cerebral cortex, we examined

the positions of tdTomato-expressing neurons in the cortical gray matter by bin counting

CA-AhR

Control

AhR

Fig 3. Axonal projection is unaffected by CA-AhR. Representative photographs of commissural fibers of

tdTomato-expressing pyramidal neurons in cortical layer II/III of 14-day-old mice. No difference in axonal

projection pattern was observed among the control, AhR, and CA-AhR groups. Arrowheads (left, middle, and

right) indicate commissural fibers in the transfected hemisphere, medial line, and contralateral hemisphere,

respectively. Scale bar = 1.0 mm.

https://doi.org/10.1371/journal.pone.0183497.g003
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analysis. Transfection of CA-AhR, but not AhR, caused distinct abnormalities in dendritic

morphology, so we examined neuronal distribution from the cortical surface (bin 10) to the

ventricular wall (bin 1) only for the control and CA-AhR groups (Fig 4A). Two-way repeated

measures ANOVA indicated a significant difference in neuronal distribution in each bin (F(9,

60) = 159, p = 1.95 × 10−38) and a significant interaction of vector-transfection with neuronal

distribution in bins 1−10 (F(9, 60) = 11.3, p = 3.87 × 10−10). Student’s t-test indicated that the

percentage of tdTomato-expressing neurons in the CA-AhR group was significantly higher in

bin 8 (F(1, 6) = 29.0, p< 0.01) and lower bin 9 (F(1, 6) = 8.23, p< 0.05) and 10 (F(1, 6) = 36.6,

p< 0.001) compared to the control group (Fig 4B). These results suggest that CA-AhR causes

a defect in neuronal positioning during cortical development.

CA-AhR induces expression of AhR target genes in transfected cortex

To confirm that CA-AhR activates AhR signaling pathways in this model, expression levels of

the AhR target genes Cyp1a1, Cyp1b1, and Ahrr were measured in tdTomato-positive cortical

regions isolated from somatosensory cortex of the CA-AhR and control groups by LMD

microscopy (Fig 5A). The expression levels of Cyp1a1 (F(1, 6) = 34.5), Cyp1b1 (F(1, 6) = 41.1),

and Ahrr (F(1, 6) = 61.9) mRNA levels were significantly increased in the CA-AhR group com-

pared with the control group (Student’s t-test, p< 0.01, 0.001, and 0.001, respectively; Fig 5B).

Alternatively, there was no significant difference in expression of Gapdh, a housekeeping gene
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used as a negative control, between the control and CA-AhR groups (F(1, 6) = 0.553,

p = 0.485). These results suggest that CA-AhR can function as a transcription factor to induce

AhR signaling in transfected neurons.

Discussion

In the present study, we demonstrate that constitutively activated AhR signaling impairs den-

dritic growth and positioning of pyramidal neurons in mouse cortical layer II/III (Fig 2, S1

Fig). While bHLH family members (including bHLH only, bHLH-Zip, and bHLH-PAS mem-

bers) have been implicated in the proliferation, migration, dendritic growth, and neuronal dif-

ferentiation during mammalian brain development [7–15], physiological functions of AhR in

developing mammalian cortex have been obscure. Previous studies have linked AhR signaling

to neuronal differentiation, neuronal migration, axonal branching, and dendritic arborization

in C. elegans and Drosophila [21–23] as well as to the regulation of dendritic morphology in

subneocortical hippocampal pyramidal and olfactory granule neurons [37, 48] and to cerebel-

lar neurogenesis [24]. Expression of AhR transcripts has been reported in rodent brain regions,

including the cerebral cortex and hippocampus [16, 17]. Abnormal dendritic morphology of

hippocampal CA1 neurons was shown in both TCDD-exposed and CA-AhR-transfected mice

[37], suggesting that AhR is expressed in hippocampal pyramidal neurons and that its signal-

ing is associated with dendritic growth. The present study also shows abnormal dendritic mor-

phology in CA-AhR-transfected pyramidal neurons in the cerebral cortex (Fig 2; S1 Fig);

therefore, it is plausible that AhR may be expressed in not only the hippocampus but also the

cerebral cortex. In the present study, we further revealed that AhR signaling regulates dendritic

arborization and neuronal positioning in mammalian neocortex and suggest that these effects

may explain the behavioral impairments caused by dioxin. CA-AhR transfection in the present

study may mimic AhR over-activation by dioxin. Animals born to dioxin-exposed dams exhib-

ited abnormalities in higher brain function [29–35], possibly due to impaired dendritic mor-

phology [37], cortical layer malformation [49], and/or impaired cerebellar neurogenesis [50].

It is plausible that impaired dendritic growth and migration of cortical pyramidal neurons also

contributes to these cognitive and behavioral abnormalities in dioxin-exposed animals. This

speculation is parallel to the previous findings in which CA-AhR mouse models develop stom-

ach tumor [39], liver enlargement [40], and thymic involution [41]. In the present study,

expression of AhR target genes was drastically elevated in CA-AhR-transfected cortex (Fig 5),

suggesting that CA-AhR-transfected model mimics the situation of high-dose exposure to

AhR agonist. In accordance with this notion, significant increase in Cyp1a1 transcripts has

been shown in several brain regions, including the cerebral cortex in TCDD-exposed rats [51].

On the other hand, in our previous study, no significant alteration in Cyp1a1 expression was

observed in the cerebral cortex of mouse offspring born to dams administered TCDD [36].

Therefore, CA-AhR is considered to be a useful model to elucidate molecular mechanisms of

AhR signaling in cellular physiology; however, a limitation of CA-AhR transfection study is

that it is not possible to regulate the expression level of AhR in target neurons, and that the

quantity of activated AhR in the CA-AhR mouse models may be far higher than the level in

the AhR transfection group. In addition, there was no obvious alteration in axonal elongation

in the CA-AhR group (Fig 3), suggesting that dendritic growth is more susceptible to AhR sig-

naling activation rather than axonal elongation.

CA-AhR group mice. Asterisks (** and ***) denote significant differences by Student’s t-test at p < 0.01 and

0.001, respectively.

https://doi.org/10.1371/journal.pone.0183497.g005

Disrupted dendritic growth and neuronal positioning by AhR signal activation

PLOS ONE | https://doi.org/10.1371/journal.pone.0183497 August 18, 2017 13 / 18

https://doi.org/10.1371/journal.pone.0183497.g005
https://doi.org/10.1371/journal.pone.0183497


Dendritic growth of pyramidal neurons is regulated by a complex signaling pathway in a

cortical layer-specific manner. Neurotrophins such as BDNF and NT-3 enhanced the growth

of both apical and basal dendrites in ferret cortical layer IV to VI [52], while in rodents, BDNF

and NT-3 promote branching of basal dendrites, but not apical dendrites, in cortical layer II/

III [53]. Insulin-like growth factor 1 (IGF-1) increases branching of both apical and basal den-

drites in rat cortical layer II/III [53]. Additionally, Sema3A has been reported to elongate apical

dendrites, but not basal dendrite, of pyramidal neurons in layer V of the rodent cortex [54].

Among these molecules, it is most likely that CA-AhR disrupts IGF-1-mediated signaling

because morphological changes by CA-AhR were observed in both apical and basal dendrites

in cortical layer II/III neurons (Fig 2, S1 Fig). Indeed, exposure to dioxin has been reported to

inhibit the IGF-1 signaling pathway [55].

In the present study, CA-AhR transfection disrupted neuronal positioning in the cerebral

cortex (Fig 4). Because AhR-transfected hippocampal neurons were found not to alter neuro-

nal positioning [56], it is feasible to speculate that neuronal positioning in the cerebral cortex

could not be altered in the AhR group. In cortical projection neurons, “late-born” neurons

migrate radially toward the brain surface and pass “early-born” neurons, which forces the

early-born neurons to be aligned in the deeper layers, the phenomenon of which is expressed

as an “inside-out” manner [57]. Percentage of transfected neurons in the CA-AhR group was

increased in deeper layers (Fig 4), suggesting that cell division was initiated early by AhR sig-

naling. In addition, cell cycle exit was promoted in cortical layer V-VI neurons of mice perina-

tally exposed to TCDD [49]. Hence, it is plausible that AhR signaling may affect neuronal

migration through perturbed neurogenesis in the developing cortex.

Since CA-AhR disrupted fine structure of both apical and basal dendrites (Fig 2, S1 Fig), it

is plausible that AhR signaling is involved in some processes fundamental to the growth of all

dendrites, such as cytoskeletal dynamics. Indeed, AhR loss- and gain-of-function experiments

have shown that AhR regulates polymerization and depolymerization of actin fibers. Further,

an in vitro study showed increased actin fibers in AhR-null fibroblasts [58]. Exposure to dioxin

also promoted actin remodeling in MCF7 and HepG2 cells [59, 60], and CA-AhR expression

enhanced actin remodeling in MCF7 cells [59]. These results suggest a substantial role for AhR

signaling in actin dynamics, while over-activation may disrupt normal cytoskeletal function,

resulting in impaired morphological development and migration. During migration, cell

shape and motility are controlled by secreted and intracellular molecules that regulate actin

dynamics. For example, Reelin is a secreted protein that regulates neuronal migration during

cortical development [61], presumably via cofilin-mediated actin stabilization [62]. In addi-

tion, Disc1 acts as a scaffold protein and regulates tangential migration of inhibitory neurons

in the developing cerebral cortex via stabilization of actin filaments [63]. Taken together, over-

activation of AhR signaling by CA-AhR may perturb cytoskeleton regulation, which subse-

quently disrupts dendritic growth and/or migration of cortical pyramidal neurons during

development.

Supporting information

S1 Fig. Differences in specific order branch numbers and lengths in neurons overexpres-

sing CA-AhR. Lengths (A, B) and number (C, D) of the first- to fifth-order branches of apical

(A, C) and basal (B, D) dendrites. Values are mean ± S.E.M. from 3 control, 3 AhR, and 4

CA-AhR group mice. (E) Scheme of impaired dendritic growth of CA-AhR-transfected neu-

rons. Symbols (asterisks and sharps) denote significant differences between the control and

CA-AhR groups, and between the AhR and CA-AhR groups, respectively. Single (�, #) and

double (��, ##) symbols denote significant difference by Tukey–Kramer post hoc test at

Disrupted dendritic growth and neuronal positioning by AhR signal activation

PLOS ONE | https://doi.org/10.1371/journal.pone.0183497 August 18, 2017 14 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183497.s001
https://doi.org/10.1371/journal.pone.0183497


p< 0.05 and 0.01, respectively.
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