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Probing topology by “heating”:
Quantized circular dichroism in ultracold atoms
Duc Thanh Tran,1 Alexandre Dauphin,2 Adolfo G. Grushin,3,4 Peter Zoller,5,6,7 Nathan Goldman1*

We reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of
matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic
two-dimensional (2D) Chern insulator subjected to a circular time-periodic perturbation. Because of the
system’s chiral nature, the depletion rate is shown to depend on the orientation of the circular shake; taking
the difference between the rates obtained from two opposite orientations of the drive, and integrating over a
proper drive-frequency range, provides a direct measure of the topological Chern number (n) of the populated
band: This “differential integrated rate” is directly related to the strength of the driving field through the quan-
tized coefficient h0 = n/ℏ2, where h = 2p ℏ is Planck’s constant. Contrary to the integer quantum Hall effect, this
quantized response is found to be nonlinear with respect to the strength of the driving field, and it explicitly
involves interband transitions. We investigate the possibility of probing this phenomenon in ultracold gases
and highlight the crucial role played by edge states in this effect. We extend our results to 3D lattices, establish-
ing a link between depletion rates and the nonlinear photogalvanic effect predicted for Weyl semimetals. The
quantized circular dichroism revealed in this work designates depletion rate measurements as a universal probe
for topological order in quantum matter.
INTRODUCTION
The quantization of physical observables plays a central role in our
understanding and appreciation of nature’s laws, as was already evi-
denced by the antique work of Pythagoras on harmonic series and,
many centuries later, by the identification of the Balmer series in
atomic physics (1). More recently, in condensed matter physics, the
observation of quantized conductance unambiguously demonstrated
the quantumnature ofmatter, in particular, the possibility for electronic
currents to flow according to a finite set of conducting channels (2, 3).
Although the quantized plateaus depicted by the conductance of meso-
scopic channels depend on the samples geometry (3), amore universal
behavior exists when a two-dimensional (2D) electron gas is immersed
in an intense magnetic field (2): In the noninteracting regime, the Hall
conductivity is then quantized according to the Thouless-Kohmoto-
Nightingale-Nijs (TKNN) formula (4), sH= (e2/h)n, where h is Planck’s
constant, e is the elementary charge, and n is a topological invariant—
the Chern number—associated with the filled Bloch bands (5, 6).
Since the discovery of this integer quantum Hall (QH) effect, the in-
timate connection between topology and quantized responses has
been widely explored in solid-state physics (7–9), revealing remarkable
effects such as the quantization of Faraday rotation in 3D topological
insulators (10).

Building on their universal nature, topological properties are cur-
rently studied in an even broader context (11), ranging from ultracold
atomic gases (12) and photonics (13, 14) to mechanical systems (15).
These complementary and versatile platforms offer the possibility of
revealing unique topological properties, such as those emanating from
engineered dissipation (16–18), time-periodic modulations (19–27),
quantum walks (28, 29), and controllable interactions (12, 30, 31). In
ultracold gases, the equivalent of the TKNN formula was explored by
visualizing the transverse displacement of an atomic cloud in response
to an applied force (25); the Chern number n and the underlying Berry
curvature (9) were also extracted through state tomography (32, 33),
interferometry (34), and spin polarization measurements (35). Besides,
the propagation of robust chiral edge modes was identified in a variety
of physical platforms (11–15).

Here, we demonstrate that the depletion rate of a Bloch band in a
quantum lattice system, which reflects the interband (dissipative) re-
sponse to a time-dependent perturbation, satisfies a quantization law
imposed by topological properties. This observation of depletion rate
quantization suggests that heating a system can be exploited to ex-
tract its topological order. Specifically, ourmethod builds on the chiral
nature of systems featuring Bloch bands with nonzero Chern number
(7, 8). First, we find that the depletion rate of a circularly shaken Chern
insulator, as captured by Fermi’s golden rule (FGR), crucially de-
pends on the orientation (chirality) of the drive (Fig. 1). Then, we
identify an intriguing quantization law for the differential integrated
rate (DIR), DGint, which is defined as the difference between the rates
obtained from opposite orientations of the drive, integrated over a
relevant frequency range. The quantization of the DIR can be simply
expressed as

DGint=Asyst ¼ h0E
2; h0 ¼ ð1=ℏ2Þ n ð1Þ

in terms of the drive amplitude E and the topological response co-
efficient h0; here, n denotes the Chern number of the populated band
andAsyst is the system’s area. This result agreeswith the intuition that the
response of a trivial insulator (n = 0) to a circular drive should not depend
on the latter’s orientation. The quantized response (Eq. 1) identified in
this work is nonlinear with respect to the strength of the driving field
E, and it explicitly involves interband transitions (36), indicating that
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this phenomenon is distinct in essence from the TKNN paradigm
(4), which is associated with linear transport and captured by single-
band semiclassics (9, 37). This quantized effect related to circular di-
chroism establishes depletion rate measurements as a versatile probe
for topological order.

In the following, we demonstrate how the depletion rate that is
associated with circularly driven Chern insulators can be related to the
topological Chern number n, and we identify the relevant response
coefficient in this context, h0 = n/ℏ2. We explain how this result re-
lates to the general concept of circular dichroism through the univer-
sal Kramers-Kronig relations (38). We then discuss how this effect
could be probed in realistic cold-atom systems, setting the focus on
how to avoid the detrimental contribution of edge states in this
framework. We then extend our results to 3D lattices, providing an
instructive connection between topological depletion rates and the
nonlinear photogalvanic effect (39) recently predicted for Weyl semi-
metals (40). Finally, concluding remarks and perspectives are
presented.
RESULTS
Topology and quantization of integrated depletion rates
We start by studying a noninteracting (spinless) gas in a generic 2D
lattice, as described by the single-particle Hamiltonian Ĥ0. Here, we
will assume that the lowest Bloch band (LB) of the spectrum, which is
separated from higher bands by a bulk gap, Dgap, is initially completely
filled with fermions; the following discussion can be straightforwardly
extended to other initial filling conditions. Considering systems with
broken time-reversal symmetry, the topological properties of this LB
Tran et al., Sci. Adv. 2017;3 : e1701207 18 August 2017
will be accurately captured by the Chern number (5–8), henceforth
denoted as nLB. Thus, subjecting this system to a constant electric
field E = Ey1y generates a total Hall current J = J x1x satisfying the
TKNN formula (4)

Jx=Asyst ¼ jx ¼ sHEy; sH ¼ ðq2=hÞ nLB ð2Þ

whereAsyst is the system’s area and q is the charge of the carriers (q = e
in an electron gas). In gases of neutral atoms, these transport equations
can be probed bymeasuring the flow of particles (37, 41–43) in response
to a synthetic electric field [for example, an optical gradient (25)]; this
latter situation corresponds to setting q = 1 in Eq. 2.

Here, however, we are interested in the depletion rate of this system
in response to a circular time-periodic perturbation, as described by
the total time-dependent Hamiltonian

Ĥ±ðtÞ ¼ Ĥ 0 þ 2E ½cosðwtÞx̂ ± sinðwtÞŷ� ð3Þ

where ± refers to the two possible orientations (chirality) of the drive,
x̂ and ŷ are the position operators (44), and w is a frequency used to
drive interband transitions. This circular shaking of 2D lattices can
be implemented in cold atoms trapped in optical lattices (45) using
piezoelectric actuators (24); the Hamiltonian in Eq. 3 equally describes
electronic systems subjected to circularly polarized light (40, 46–49).
The total number of particles scattered and extracted from the LB,
N±(w, t) ≈ G±(w)t, is associated with the depletion rate G± (Fig. 1),
which can be accurately evaluated using FGR (50)

G±ðwÞ ¼ 2p
ℏ
E2 ∑

e∉LB
∑
g∈LB

〈e x̂ ± iŷj jg〉j j2dðtÞðee � eg � ℏwÞ ð4Þ

where |g〉 (resp. |e〉) denotes all the initially occupied (resp. unoccupied)
single-particle states with energy eg (resp. ee) and d

(t) (e) = (2ℏ/pt) ×
sin2(et/2ℏ)/e2→d(e) in the long-time limit (51). The transitions to
initially occupied states (g) are excluded in Eq. 4, as required by Fermi
statistics, which is an important feature when many bands are initially
occupied. We also point out that the number of scattered particles
N±(w, t) canbe directly detected in cold atoms bymeasuring the dynamical
repopulation of the bands through band-mapping techniques, as was
demonstrated for nontrivial Chern bands by Aidelsburger et al. (25).

For the sake of pedagogy, let us first analyze the excitation rate (Eq. 4)
in a framewhere the totalHamiltonian (Eq. 3) is translationally invariant.
Performing the frame transformation generated by the operator

R̂± ¼ exp i
2E
ℏw

½sinðwtÞx̂ ∓ cosðwtÞŷ�
� �

ð5Þ

the time-dependent Hamiltonian (Eq. 3) is modified according to

Ĥ±ðtÞ ≈ Ĥ 0ðkÞ þ 2E
ℏw

sinðwtÞ ∂Ĥ 0ðkÞ
∂kx

∓ cosðwtÞ ∂Ĥ 0ðkÞ
∂ky

� �
ð6Þ

where we now adopted the momentum (k) representation and omitted
higher-order terms in E, in agreement with the perturbative approach
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Fig. 1. Topology through heating. (A) A 2D Fermi gas is initially prepared in the
lowest band (LB) of a lattice, with Chern number nLB, and it is then subjected to a
circular time-periodic modulation (Eq. 3). (B) The rate G associated with the de-
pletion of the populated band is found to depend on the orientation of the drive,
G+ ≠ G−, whenever the LB is characterized by a nontrivial Chern number nLB ≠ 0.
(C) Integrating the differential rate over a relevant drive-frequency range, DGint =
∫dw(G+ − G−)/2, leads to a quantized result, DGint/Asyst = (nLB/ℏ

2)E2, where E is the
strength of the drive and Asyst is the system’s area (Eq. 1).
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(50) inherent to the FGR in Eq. 4 and below. In this frame, the depletion
rate (Eq. 4) now takes the more suggestive form

G±ðwÞ ¼ ∑
k
G±ðk;wÞ

G±ðk;wÞ ¼ 2p
ℏ
∑
n>0

jV±
n0ðkÞj2dðtÞðenðkÞ � e0ðkÞ � ℏwÞ

V±
n0ðkÞ

�� ��2 ¼ ðE=ℏwÞ2 nðkÞ
� ���� 1i ∂Ĥ 0

∂kx
∓

∂Ĥ 0

∂ky

����
����0ðkÞ

�����
2

ð7Þ

Here, we introduced the initially populated Bloch states of the LB,
|g〉 ≡ |0(k)〉, of dispersion e0(k), as well as the initially unoccupied Bloch
states of the higher bands, |e〉 ≡ |n(k)〉, of dispersion en(k) and band
index n. We note that, in an ideal, translationally invariant noninter-
acting system, the interband transitions occurring at each k yield Rabi
oscillations (50), hence leading to a linear growth of the depletion
rates G±(k; w); we point out that this effect, which is naturally damped
in solid-state systems through disorder (40), is irrelevant when integrat-
ing the depletion rates over the drive frequency, as we now discuss.

Integrating the depletion rates G±(w) in Eq. 7 over all drive frequen-
ciesw≥ Dgap/ℏ, that is, activating all possible transitions between the
filled LB and the higher bands (52), and considering the difference
between these integrated rates,DGint ¼ ðGint

þ � Gint
� Þ=2, define the DIR,

which reads

DGint ¼ 4pðE=ℏÞ2 Im∑
n>0
∑
k

〈0 ∂kx Ĥ 0

�� ��n〉〈n ∂ky Ĥ 0

�� ��0〉
ðe0 � enÞ2

ð8Þ

Comparing the latter with the expression for the Chern number (9)

vLB ¼ 4p
Asyst

Im∑
n>0
∑
k

〈0 ∂kx Ĥ 0

�� ��n〉〈n ∂ky Ĥ 0

�� ��0〉
ðe0 � enÞ2

ð9Þ

we obtain the simple quantization law for theDIR per unit area in Eq. 1,
with n = nLB.

Remarkably, the integration inherent to the definition of the DIR
reveals theChern number of the ground band, whereas the properties of
excited states drop out through the summation over all final states. The
relation in Eq. 1 is reminiscent of the transport equation (Eq. 2) asso-
ciated with theQH effect: TheDIR per unit area is directly related to the
driving field E through a response coefficient h0 that only depends on
the topology of the populated band and on a universal constant (ℏ− 2).
We point out that, contrary to the linear transport equation (Eq. 2), the
quantized response in Eq. 1 is nonlinear with respect to the driving field,
which highlights its distinct origin. In particular, the differential aspect
of themeasurement, which directly probes the chirality of the system by
comparing its response to the two opposite shaking orientations, plays
an essential role in this distinct quantized effect. Besides, we note that
the latter explicitly involves interband transitions, ruling out the pos-
sibility of capturing it through a single-band semiclassical approach (9).
It is straightforward to generalize the result in Eq. 1 to situations where
many bands are initially populated, in which case, nLB should be replaced
by the sum over the Chern numbers associated with these bands.

In the case of two-band models (n = 1), we point out that the local
differential rate DG(k; w) = [G+(k; w) − G−(k; w)]/2 resulting from Eq. 7
is directly proportional to the Berry curvatureW(k) of the LB (9). Hence,
measuringDG(k;w) fromwave packets (prepared in the LB and centered
Tran et al., Sci. Adv. 2017;3 : e1701207 18 August 2017
around k) offers an elegant method to directly probe the geometrical
properties of Bloch bands, as captured by the local Berry curvature (9).
In addition, in that case, the allowed transitions are automatically
restricted to |0(k)〉 → |1(k)〉, irrespective of Fermi statistics.

Practically, we propose that the integrated rates could be experi-
mentally extracted from many individual depletion rate measurements
(25, 52), corresponding to sampled (fixed) values of w: Gint

± ≈
∑lG±ðwlÞDw , where the wl’s denote the many sampled frequencies
separated byDw. This scheme could also be facilitated by the use ofmul-
tifrequency drives [see the study of Schüler and Werner (53) for a very
recent application of our scheme based on short pulses].

We have validated the quantization law in Eq. 1, on the basis of a
numerical study of the two-bandHaldanemodel (54), in the topological
phase where nLB = − 1. The matrix elements,W± ¼ ð2p=ℏÞjV±

10ðkÞj2,
as defined in Eq. 7, were calculated for a honeycomb lattice of size
100 × 100, with periodic boundary conditions (PBC) (see Fig. 2). We
verified that the DIR (Eq. 8), as evaluated from this numerical data
and the density of states, yields DGint(ℏ2/AsystE

2) ≈ − 1.00, in perfect
agreement with the quantized prediction of Eq. 1 (see also the Sup-
plementary Materials).

Relation to circular dichroism and Kramers-Kronig relations
The result in Eq. 1 is deeply connected to the well-known Kramers-
Kronig relations (38), which are a direct consequence of the causal
nature of response functions (46, 55). Considering the conductivity
tensor sab, the Kramers-Kronig relations take the form (46)

sabR ðwÞ ¼ ð2=pÞ∫
∞

0

~wsab
I ð~wÞ

~w2�w2 d~w ð10Þ

wheresab ¼ sabR þ isabI has been separated into real and imaginary parts
and a, b= (x, y). In the limitw→ 0, the relation (Eq. 10) yields the sumrule

sH ≡ lim
w→0

sxyR ðwÞ ¼ ð2=pÞ∫∞0 ~w�1 sxyI ð~wÞ d~w ð11Þ
0 2 4 6 8 10 12
0

10–4

2 3 4

10–4

0

Fig. 2. Transition matrix elements for the driven two-band Haldane model
with 104 lattice sites and PBC. Specifically, the inset shows the matrix elements
W±¼ð2p=ℏÞjV ±

10ðkÞj2, as defined in Eq. 7, for all possible transitions, w = [e1(k) −
e0(k)]/ℏ; the main plot shows the averaged values 〈W±ðwÞ〉, defined within each in-
terval of width Dw = 0.1J/ℏ. The model parameters are set such that Dgap ≈ 2 J,
where J is the nearest-neighbor hopping amplitude; the strength of the drive
(Eq. 3) is E = 0.001J/d, where d is the lattice spacing. The DIR (Eq. 8) obtained from
this numerical data yields DGint(ℏ2/AsystE

2) ≈ −1.00, in agreement with Eq. 1 and the
theoretical prediction nLB = −1. The matrix elementsW± are expressed in units of
J2/ℏ, whereas the frequency w is given in units of J/ℏ.
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Besides, following Bennett and Stern (46), the power absorbed by a system
subjected to the circular time-dependent perturbation in Eq. 3 can be re-
lated to the conductivity tensor as

P±ðwÞ ¼ 4AsystE
2½sxxR ðwÞ ± sxyI ðwÞ� ð12Þ

where ± again refers to the orientation of the drive. Relating the depletion
rate to the absorbed power, G±(w) = P±(w)/ℏw, and introducing the dif-
ferential rate, DG = (G+ − G−)/2, then yields the useful relation

sxyI ðwÞ ¼ ℏwDGðwÞ=4AsystE
2 ð13Þ

Finally, inserting Eq. 13 into Eq. 11 allows one to directly relate the DIR
to the Hall conductivity sH of the probed system

DGint=Asyst ¼ ð1=AsystÞ∫
∞

0 DGðwÞ dw ¼ ð2pE2=ℏÞ sH ð14Þ

The general expression (Eq. 14) leads to the quantization law in Eq. 1,
when considering the TKNN formula for the Hall conductivity sH of a
Chern insulator (see Eq. 2). We note that other intriguing sum rules
have been identified in the context of circular dichroism (56) and that
these could be exploited to access useful ground-state properties (for
example, the orbital magnetization of insulators).

On the effects of boundaries
The derivation leading to Eq. 1 implicitly assumed translational in-
variance and PBC (that is, a torus geometry); in particular, this result
disregards the effects related to the presence of (chiral) edge states in
finite lattices (7, 8). Here, we reveal the important contribution of
edge states when considering more realistic systems with boundaries.

To analyze lattices with edges [and more generally, systems that do
not present translational symmetry, such as disordered systems (57) or
quasi-crystals (58)], it is instructive to expand the modulus squared in
the “real-space” formula (Eq. 4) and then to integrate the latter over
all frequencies w; this yields the integrated rates

Gint
± ¼ ð2p=ℏ2ÞE2 ∑

g∈LB
〈g P̂ðx̂ ∓ iŷÞQ̂ðx̂ ± iŷÞP̂�� ��g〉 ð15Þ

where we introduced the projector P̂ ¼ 1� Q̂ onto the LB. Thus, the
expression for the DIR (Eq. 8) now takes the form

DGint ¼ ðGint
þ � Gint

� Þ=2 ¼ ðE=ℏÞ2 Tr ℭ̂

ℭ̂ ¼ 4p Im P̂x̂Q̂ŷP̂
ð16Þ

where Tr(⋅) is the trace. When applying PBC, the quantity ð 1
Asyst

ÞTr Ĉ ¼
nLB is equal to the Chern number of the populated band (57, 59) such
that the result in Eq. 1 is recovered in this real-space picture; in partic-
ular, this demonstrates the applicability of Eq. 1 to systems without
translational symmetry.

The real-space approach allows for the identification of the strong
edge-state contribution to theDIRDGint, when (realistic) open bound-
ary conditions (OBC) are considered. To see this, let us recall that the
trace in Eq. 16 can be performed using the position (or Wannier
state) basis {|rj 〉}; in particular, inspired by Bianco and Resta (57)
Tran et al., Sci. Adv. 2017;3 : e1701207 18 August 2017
and Tran et al. (58), we decompose the DIR (Eq. 16) in terms of bulk
and edge contributions

DGint
OBC ¼ ðE=ℏÞ2 ∑

rj∈bulk
CðrjÞ þ ∑

rj∈edge
CðrjÞ

( )
ð17Þ

where we introduced the local marker CðrjÞ ¼ 〈rj ℭ̂
�� ��rj〉. As illustrated

in Fig. 3, the local markerC(rj)≈ nLB is almost perfectly uniformwithin
the bulk of the system; in the thermodynamic limit, the bulk contri-
bution ½∑rj∈bulkCðrjÞ→AsystnLB� leads to the quantized DIR predicted
by Eq. 1 for PBC. However, the distinct contribution of the edge states,
which is identified at the boundaries in Fig. 3, is found to exactly com-
pensate the bulk contribution [see also the studies of Souza andVanderbilt
(56) and Bianco and Resta (57)]. Consequently, the total DIR in Eq. 17
vanishes for OBC, DGint

OBC ¼ 0, which agrees with the triviality of the
underlying fiber bundle [the corresponding base space being flat
(60)]. This important observation shows the marked role played
by the boundary in the present context; in particular, it indicates that
the edge-state contribution must be annihilated to observe the quan-
tized DIR (Eq. 1) in experiments, as we further investigate in the para-
graphs below.

Before doing so, let us emphasize that the detrimental contribution
of the edge states cannot be simply avoided by performing a local mea-
surement in the bulk, far from the edges. Probing the DIR in some
region R would formally correspond to evaluating the quantity mR ¼
ð1=AsystÞTr ~C, where ~C ¼ 4pImðP̂R̂x̂Q̂R̂ŷP̂Þ and R̂ projects onto the
region R. Although the local Chern number (57), defined as nR ¼
ð4p=AsystÞTr ImðR̂P̂x̂Q̂ŷP̂Þ ≈ nLB, can provide an approximate value
for the Chern number of the LB, we find that mR strongly differs from
this local marker nR because ½R̂; P̂� ≠ 0.

Annihilating the edge-state contribution
We now introduce two protocols allowing for the annihilation of
the undesired edge-state contribution. The first scheme consists of
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Fig. 3. Local Chern marker C(rj) in a 2D lattice with boundaries (OBC) realizing
theHaldanemodel. Far from the boundaries, the marker is C(rj) ≈ −1, in agreement
with the Chern number of the populated band nLB = −1. Close to the edges, the local
marker is very large and positive (see the zoom shown in inset) such that the total
contribution of the edges exactly cancels the bulk contribution,∑rj CðrjÞ¼0: The DIR
in Eq. 17 vanishes in a system with boundaries. Here, d is the lattice spacing.
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measuring the rate associated with the dynamical repopulation of
the initially unoccupied bulk bands only, that is, disregarding the re-
population of edge states. In practice, this requires the knowledge of the
bulk band structure. Formally, the resulting DIR would probe the quan-
tityTr Ĉ in Eq. 16 but with the modified projector operator Q̂ → Q̂bulk
that excludes the edge states of the spectrum. We have estimated the
validity of this approach through a numerical study of the Haldane
model with OBC and found that the topological marker nbulk ¼
ð1=AsystÞTr Ĉbulk resulting from the modification Q̂ → Q̂bulk yields
the approximate value nbulk ≈ −0.85 for a lattice with 2500 sites
and nbulk ≈ −0.91 for a lattice with 104 sites; these results, which
are close to the ideal value nLB = −1, are found to be stable with
respect to the Fermi energy (that is, to the number of initially popu-
lated edge states) and improve as the system size increases. We then
validated this scheme through a complete numerical simulation of the
full-time evolution associated with the circularly driven Haldane model
with OBC: We found that the resulting response coefficient in Eq.
1 verified h0 ≈ nbulk/ℏ

2, as estimated from the modified topological
marker introduced above. This indicates how restricting the measure-
ment of the depletion rate to the repopulation of bulk states only
allows for a satisfactory evaluation of the quantized DIR in Eq. 1 under
realistic conditions.

We then explore a more powerful scheme, which does not rely on
the knowledge of the bulk band structure. Inspired by Dauphin and
Goldman (61), we propose to initially prepare the system in the pres-
ence of a tight confining trap and then to release the latter before
performing the heating protocol. In this case, edge states associatedwith
the full (unconfined) lattice remain unpopulated because they do not
couple to the time-evolving cloud upon the drive. We have validated
this scheme numerically through a complete time evolution simulation
of the circularly drivenHaldanemodel, andwe summarize the results in
Fig. 4. Figure 4A shows the depletion rates G±(wl), where thewl’s are the
many sampled frequencies; here, features of the sinc-squared
function are visible due to the finite observation time (Eq. 4). Figure
4B shows the value of the extracted Chern number nexpLB as a function
of the frequency sampling step Dw; these values were obtained by
comparing Eq. 1 to the numerical DIR, DGint = ∑l[G+(wl) −
G−(wl)]Dw/2. In this protocol, a residual deviation from the ideal
DIR quantization is still visible, even in the limit Dw → 0 (see the
saturation value nexpLB ≈ �0:9 in Fig. 4B). This is mainly due to the
finite population of the higher band upon abruptly releasing the trap;
we note that this weak effect is more pronounced for systems in
which the Berry curvature is peaked close to the bandgap (for exam-
ple, the Haldane model) and can be reduced by either increasing the
initial size of the cloud or softening the release of the trap. This nu-
merical study, based on a simulation of the full-time dynamics in real
space, demonstrates the validity and robustness of this trap release
protocol under reasonable experimental conditions, that is, an obser-
vation time of a few hopping periods and a limited number of
sampled frequencies wl (see also fig. S1).

We point out that the numerical results shown in Fig. 4 were ob-
tained by initially confining the cloud using an infinitely abrupt circular
trap, which can be designed in experiments (62). Besides, we stress that
similar results would be obtained in more standard setups featuring
smooth (harmonic) traps (63–65); in these configurations, the trap re-
lease protocol would then correspond to a significant change in the trap
frequency [see the study of Dauphin and Goldman (61), where bulk
topological responses were numerically investigated under this
protocol].
Tran et al., Sci. Adv. 2017;3 : e1701207 18 August 2017
Depletion rates and topology: Beyond 2D lattices
We now illustrate how differential depletion rates associated with a cir-
cular drive can probe topological matter in higher dimensions. We dis-
cuss two generic but distinct effects, which we concretely illustrate with
Weyl semimetal Hamiltonians (66–70).

The first effect stems from a direct generalization of the 2D analysis;
it relies on noting that the expression for DGint given in Eq. 8 does not
depend on dimensionality, provided that we consider spatial dimensions
D > 1, where a chiral time modulation is well defined. In general, how-
ever, the sum over k in Eq. 8 involves a D-dimensional first Brillouin
zone (FBZ), which leads to a nonquantized result. To see this, we
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Fig. 4. Depletion rates for the trap-release protocol and the related Chern number
measurement. (A) Depletion rates G±(w) extracted from a numerical simulation of the
circularly shaken Haldane model with OBC. The edge-state contribution has been an-
nihilated by initially confining the cloud in a disc of radius r = 20d and then releasing it
in a larger lattice of size 120 × 120, after which the heating protocol (circular drive) was
applied; other system parameters are the same as in Fig. 2. The rates G±(wl), which are
expressed in units of J/ℏ, were obtained by measuring the number of excited particles
after a time t = 4ℏ/J for fixed values of wl separated by Dw = 0.05J/ℏ. (B) Approximate
value for the Chern number of the populated band nexpLB , as extracted from the numer-
ical rates and Eq. 1, and represented as a function of the step Dw used to sample the
drive frequencies; note that the area Asyst entering Eq. 1 corresponds to the initial area
of the cloud in the trap release protocol. A satisfactory measure is reached when the
frequency sampling accurately probes the resonant peaks; we find Dw ≲ 0.5J/ℏ (that is,
at least 20 different values within the proper frequency range) for an observation
time t = 4ℏ/J. The saturation value nexpLB ≈ �0:9 is limited by the fraction of particles
populating the upper band, after abruptly removing the confinement, and can be
improved by further increasing the initial radius r (or by softening the trap release).
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generalize the drive operator in Eq. 3 as V̂ ±ðtÞ ¼ Eðâ ± ib̂Þeiwt þ h:c:,
where â and b̂ are the position operators defining the polarization plane.
Using these notations and considering the 3D case (D = 3), the DIR in
Eq. 8 can be written as

DGint=Vsyst ¼ h3DE
2; h3D ¼ K⋅ð1a � 1bÞ=2pℏ2 ð18Þ

whereVsyst is the volume andK is a vector with units ofmomentum. As
could have been anticipated from a 3D generalization of Eq. 14, the re-
sponse coefficient h3D is directly analogous to the general expression for
the Hall conductivity in 3D, sab = (e2/h)DabcKc/2p, where K is known to
contain information on the topology of the bands (71, 72). For instance,
in the simplest case of a stacking of 2DChern insulators, which is piled up
along z with interplane separation dz and is shaken by a circular drive
polarized in the x-y plane, we find the DIR in Eq. 18 with Kz = 2pnLB/
dz, where nLB is theChern number associatedwith eachplane. In the con-
text of time-reversal-breaking Weyl semimetals, a similar calculation
identifies K = ntotdW, where dW is a vector connecting the Weyl nodes
in k-space and ntot is the total Chern number of the occupied bands be-
tween these nodes (73–77).We recall that theseWeyl semimetals can be-
come 3DQH insulatorswhenever theWeyl nodesmeet at the edge of the
FBZ, inwhich case, theDIR inEq. 18 is characterizedbyK=ntotG

0,where
G0 is a primitive reciprocal lattice vector (72, 78). These results indicate
that, similar to the Hall conductivity in 3D, the DIR in Eq. 18 can probe
topological properties of the bands, aswell as nonuniversal properties (for
example, the Weyl node separation).

The considerations discussed above require a protocol involving an
integration over frequencies (Eq. 8). Our second protocol only involves
a single frequency w and ultimately leads to a quantized signature
stemming from the FGR in 3D lattices. It is based on a two-band anal-
ysis and builds on the observation that the differential current Dja ¼
ðjaþ � ja�Þ=2 is directly related to the local differential rate DG(k; w) =
[G+(k; w) − G−(k; w)]/2 (see Eq. 7) through

dDja

dt
¼∫

FBZ

d3k

ð2pÞ3 ðv
a
1 � va0ÞDGðk;wÞ ð19Þ

where va0;1 ¼ ∂ka ½e0;1ðkÞ� are the band velocities in the two bands and
where we set the charge q = 1. In this protocol, we take the polarization
plane of the drive to be perpendicular to the direction a. Then, noting
that the d-function in DG(k; w) (Eq. 7) defines a surface in k-space S
orthogonal to the gradient ∂kaðe1 � e0Þ leads to

∑
a¼x;y;z

dDja

dt
¼ E2

8p2ℏ2∫
S
dS ⋅W ¼ E2

4pℏ2∑
i
Ci ð20Þ

whereW denotes the Berry curvature vector (9) of the LB andwhere the
last sum extends over all themomentum spacemonopoles i enclosed by
the surface S with the integer charge Ci. If all monopoles in the FBZ lie
inside S, then ∑iCi = 0. However, if S encloses an uneven number of
positive and negative monopoles, for example, whenWeyl nodes of op-
posite chirality lie at different energies, the quantity in Eq. 20 is nonzero
and quantized. This result is an instance of the quantized nonlinear
photogalvanic effect (39), predicted by de Juan et al. (40) formirror-free
Weyl semimetals; this alternative FGR derivation highlights the deep
connection of this quantized phenomenon to the quantization law in
Tran et al., Sci. Adv. 2017;3 : e1701207 18 August 2017
Eq. 1. In particular, it suggests how this effect could be observed in a
cold-atom realization of Weyl semimetals (79): If the band velocities
va0;1 are known, measuring the local rate DG(k; w) from wave packets
can lead to a quantizedmeasurement through the integration in Eq. 19.
Alternatively, one could probe the current (43) or the related center-of-
mass velocity (25, 37, 61), directly giving access to the left-hand side of
Eq. 20. We note that similar Berry curvature effects have been recently
investigated in the context of circular dichroism in nodal-line semi-
metals (80).
DISCUSSION
We demonstrated that the depletion rate of filled Bloch bands can sat-
isfy a quantization law imposed by topology. This quantized effect
positions depletion rate measurements as a powerful and universal
probe for topological order in quantum matter. In this context, we
emphasized the crucial necessity to isolate the bulk response from any
detrimental effects associatedwith the edgemodes, which, as we argued,
can be realized by exploiting the highly controllable environment and
tools offered by ultracold-atom setups.

Here, we illustrated this phenomenon by considering the case of 2D
Chern insulators subjected to circular drives. However, we anticipate
that other drive protocols could lead to distinct quantized responses in
higher spatial dimensions D≥ 3, offering the possibility of revealing
other topological invariants [for example, higher-order Chern num-
bers (33, 81, 82)] through depletion rate measurements. We point
out that a circular perturbation (Eq. 3) applied to a gapped surface
of a 3D topological insulator (10) could reveal the half-integer QH effect,
an unambiguous manifestation of these 3D topological states (7, 8, 83),
through Eq. 14.

Moreover, we emphasize that the general result in Eq. 1 could be
generalized to interacting systems, as suggested not only by the real-space
approach (Eq. 16) but also by the general sum rule analysis leading to
Eq. 14,whichdirectly relates theDIR to theHall conductivity of the probed
system (and which does not make any assumption regarding the nature
of interactions in the latter). In this sense, the quantizedDIR introduced
in this work could be exploited to probe the topological order [for ex-
ample, the many-body Chern number (5)] of interacting systems, such
as fractional Chern insulators (84). For instance, the DIR could directly
reveal the fractional nature of the Hall conductivity, a striking signature
of fractional Chern insulators (84), through Eq. 14. Finally, we note that
similar schemes could also probe the chiral edge excitations of topological
phases (63), as well as the spin chirality of strongly correlated states, as
recently suggested by Kitamura et al. (85).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/8/e1701207/DC1
fig. S1. Depletion rates G±(w) as a function of the drive frequency w for the driven two-band
Haldane model with 104 lattice sites and PBC.
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