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Abstract

We present the Simulation Enabled Estimation of Kinetic Rates (SEEKR) package, a suite of 

open-source scripts and tools designed to enable researchers to perform multi-scale computation 

of the kinetics of molecular binding, unbinding, and transport using a combination of molecular 

dynamics, Brownian dynamics, and milestoning theory. To demonstrate its utility, we compute the 

kon, koff, and ΔGbind for the protein trypsin with its noncovalent binder, benzamidine, and examine 

the kinetics and other results generated in the context of the new software, and compare our 

findings to previous studies performed on the same system. We compute a kon estimate of 

2.1±0.3•107 M−1s−1, a koff estimate of 83±14 s−1, and a ΔGbind of −7.4±0.2 kcal•mol−1, all of 

which compare closely to the experimentally measured values of 2.9•107 M−1s−1, 600±300 s−1, 

and −6.7 kcal•mol−1, respectively.
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Introduction

Elucidating the kinetics and thermodynamics of binding and unbinding processes between a 

biomolecule and a substrate remains an important challenge in the field of molecular 

biophysics. Countless processes within the cell involve the association of a biomolecule with 

a metabolite, signaling molecule, toxin, drug, or another biomolecule.1–2 Many of these 

interactions have important kinetic considerations: for instance, the speed of reactions or the 

residence time of an intermolecular encounter.2–3

Significant effort has been expended to accurately estimate the thermodynamics of binding 

using a variety of methods, particularly in the field of drug discovery, where the 

identification of a tight binder is an integral step towards obtaining a potential drug molecule 

that would accomplish a desired medical result.4–8 While the thermodynamics of binding, 

encapsulated in the quantity of the free energy ΔGbind of receptor-ligand complex formation, 

is an important factor in the binding process, a comprehensive understanding of the binding 

process requires consideration of binding kinetics and reaction rates.

Many theoretical approaches and simulation methods have been used to estimate both the 

thermodynamics and kinetics of binding. For instance, specialized machinery and long 

molecular dynamics (MD) simulations can be used in a ‘brute force’ approach, although it is 

relatively costly compared to other methods.9–12 Markov models13–19 can also be used to 

investigate the kinetics of binding,20–22 as can milestoning.7 Additional clever 

methodologies can be used to speed the computation using MD.6, 8, 23–25 Brownian 

dynamics (BD) can also be used to approach the problem of binding kinetics,5, 26–29 as can 

Smoluchowski equation solvers.30

Our past work31–33 has focused on using a multi-scale combination of MD and BD, unified 

through the theoretical framework of milestoning. In our previous study, we presented a 

hybrid MD/BD/milestoning methodology to conduct our investigations into the kinetics of 

binding between superoxide dismutase and its natural substrate, the superoxide anion, and 

between troponin C and its natural substrate, the calcium ion.31 Here, we make available a 

software package, SEEKR, that implements this method with significant improvements in 

automation, usability, and analysis. We demonstrate the utility of SEEKR by applying it to 

estimate the kon, the koff, and ΔGbind between the serine protease trypsin and its ligand, 

benzamidine. In addition to the SEEKR software to perform milestoning calculations on any 

receptor-ligand system, we also make available a user guide, tutorial, and workflow to allow 

users to repeat our simulations and analysis for the trypsin-benzamidine system, and 

compute kinetics and thermodynamics for additional receptor-ligand systems.

Theory

The rationale and methodology behind our usage of milestoning to estimate kinetics using 

both MD and BD has been described recently in detail31 for multiple applications. Our 

implementation to the trypsin-benzamidine receptor-ligand system in this study was adapted 

with few changes, the majority consisting of improvements in software efficiency.
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In the case of bimolecular association, the kinetics of binding and unbinding can be 

represented respectively by two quantities, kon and koff, which are frequently depicted 

according to the following equation:

Eq. 1

Which is shorthand for specifying that the values kon and koff function as parameters within 

the following differential equations:

Eq. 2

Eq. 3

Eq. 4

Where [A], [B], and [AB] represent the concentrations of chemical species A, B, and their 

complex AB. The kon and koff relate to the dissociation constant KD, and by extension, a free 

energy of association ΔGbind:6

Eq. 5

Where R is the gas constant, T is temperature, and K⊝ is a factor equal to one, in units of 

concentration.

The theory of milestoning has been formulated to compute kinetic and thermodynamic 

details of a process if the states of that process are represented as carefully chosen surfaces 

in phase space. These surfaces are known as “milestones”.34 In this study, the milestones are 

represented as concentric spherical shells (figure 1) that encapsulate the binding site of the 

receptor. These spherical milestones are used for the computation of kon, koff, and ΔGbind. 

Milestoning theory allows us to approach the problem of kinetics by utilizing a multi-scale 

strategy. We use highly-detailed, but computationally expensive MD simulations to observe 

transitions between milestones closer to the binding site so that molecular flexibility will be 

a component of the transitions between milestones. We then use BD for the larger and more 

widely-spaced milestones far from the binding site, where fast sampling of long trajectories 

is required and rigid body dynamics and implicit solvent are adequate21, 28, 35 to model 
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transition times and probabilities. In this way, we take advantage of fully flexible MD where 

molecular flexibility is required, and also take advantage of the computation efficiency of 

BD where molecular flexibility is less important. Milestoning is the theory that combines the 

MD and BD components, by allowing statistics to be obtained in each regime independently, 

and then unifying the statistics through a rigorous theory that is agnostic to the method that 

was used to obtain them. Since the statistics of each milestone are obtained independently 

from the others, and since milestoning theory is a robust framework that can utilize 

information obtained by either Brownian or Newtonian dynamics,36 we can choose 

whichever simulation method is most appropriate and convenient for that milestone.

By sampling transition statistics and times between the milestones using numerous short 

simulations, one can construct a transition kernel K that represents the transition 

probabilities and an incubation time vector 〈t〉 that represents the average times of a system 

traversing the milestones.37–38

The transition kernel K is a square matrix whose elements are constructed according to the 

following formula:

Eq. 6

Where ni → j is the number of trajectories that begin at a given milestone i and end at an 

adjacent milestone j. And the incubation time vector 〈t〉 has elements that are constructed 

according to the following formula:

Eq. 7

Where tl is the time of the l’th successful forward trajectory starting at milestone i, and 

ni → k, as before, is the number of trajectories beginning at milestone i and ending at 

milestone k. Therefore, 〈t〉i represents the average time spent by the system after crossing i 
and before crossing any other milestone.

In order to compute a free energy profile along the milestones, we must first obtain the 

stationary flux vector qstat along the milestones by computing the principle eigenvector of 

K.

Eq. 8

Then qstat must be multiplied elementwise by 〈t〉 to find the stationary probability vector 

pstat.
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Eq. 9

Finally, pstat,i relates to the relative free energy ΔGi at milestone i according to the following:

Eq. 10

Where the index of pstat,ref is any reference state, such as the lowest energy, bound state. The 

value of pstat,ref is found by applying Eq. 9 to the chosen reference state.

To compute the kon, we utilize the formula that is also used in BD theory26:

Eq. 11

Where k(b) is computed using the following formula:

Eq. 12

The value k(b) represents the rate constant at which the ligand particles are crossing the b-

surface, W(r) and D(r) are the potential of mean force and diffusion coefficient, respectively, 

that the ligand experiences at a distance r from the center of the receptor beyond the b-

surface.26 D(r) is computed by generating a Rotne-Prager diffusion tensor to approximate 

the hydrodynamics of a two body interaction in a viscous medium.39 The value k(b) is 

computed automatically in BrownDye.

To find β, which represents the proportion of ligands crossing the b-surface that continue on 

to bind to the receptor, a starting probability vector q0 must be obtained in BD simulations 

by running a large number of conventional BD simulations where ligand molecules are 

started on a b-surface surrounding a receptor molecule. As the simulations run, and the 

proportion of trajectories that touch the outermost milestone(s) that encompasses a binding 

site on the biomolecule, rather than escaping to an infinite distance, are counted. In this case, 

q0 becomes:

Eq. 13

Where i and j are the indices of one or more of these outermost site-encompassing 

milestones, q0,i, q0,j, are the probabilities that a BD trajectory started on the b-surface 

descend and touch these milestones, and q0,∞ is the probability that a trajectory diffuses 

away to an infinite distance. All the entries in q0 must be normalized such that their sum 
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equals a value of one. An “infinity” state in both vector q0 and in matrix K, represents the 

condition in which the ligand has escaped to an infinite distance from the receptor.

Next the transition matrix K must be modified to a new matrix K̂ such that the milestones 

representing the bound and “infinity” states are sink states. That is, they all must have a 

probability of one that they transition only to themselves, and a zero probability to transition 

to anything else.

Eq. 14a

Eq. 14b

Once K̂ and q0 are properly defined, we compute the static flux vector21 q∞.

Eq. 15

Finally, we obtain β:

Eq. 16

Where i is the index of one of the bound states.

To compute the koff, we must return to the initial definition of matrix K as specified in Eq. 6. 

But it must be modified by introducing a “draining” state i by changing K into a draining 

matrix K̃ according to the following:

Eq. 17

That is, once we have decided that i is the draining state, we set that entire column of the 

matrix K̃ to zeros, while all other columns are kept the same as they were in K. In the 

SEEKR implementation, the outermost non-infinite milestone is considered to be the 

draining state. Then, we compute a mean first passage time (MFPT) τ:

Eq. 18

Where p0 is a starting distribution of probabilities along each milestone, and K̃T is the 

transpose of matrix K̃. We set p0,i to be 1 if i was a bound state, and set p0,i to be equal to 0 
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otherwise. The MFTP τ is equivalent to a residence time of the ligand within the binding 

site, and can be related to the koff according to the following relation:

Eq. 19

Materials and Methods

Description of the SEEKR package

SEEKR is a collection of scripts and files designed to automate the preparation and analysis 

of ligand-receptor kinetic calculations that use a multi-scale MD/BD/milestoning 

framework.

SEEKR does not run the simulations themselves, but instead relies on the well-established 

NAMD40 and BrownDye41 programs. In this case, SEEKR is more of a specialist interface 

or tool that automates the cumbersome process of preparing, running, and analyzing a 

particular type of multi-scale milestoning calculation so that researchers will be able to run 

them more easily than if the process were done manually.

SEEKR programs are classified into three general categories:

1. Preparation: These scripts and modules accept input from the user in order to 

construct all the necessary files needed by both NAMD and BrownDye to run 

their respective simulations. The files are organized into a file tree whose 

branches represent the various independent milestones, which simulation method 

is being used (MD or BD), and the various stages of the calculations. When run, 

the user will have all the required files arranged and poised for simulation and 

milestoning calculations.

2. Running: Other scripts aid the user in running the MD and BD simulations 

locally and on supercomputers. For instance, SEEKR contains a script to prepare 

the submission of the computationally-intensive MD simulation jobs to a 

SLURM supercomputer queue, and when the allotted time runs out, the script 

prepares all the necessary resubmission files for one, some, or all of the 

milestones with a single command. Other scripts use previous BD trajectory 

output to prepare and run ensembles of BD simulations from first hitting point 

distributions (FHPD).

3. Analysis: When all the simulations are complete, the user can run an analysis 

script that descends into the file tree, gathering all the simulation output. It then 

combines this information to construct the milestoning model, and performs all 

the milestoning and error calculations, providing the user with kinetic and 

thermodynamic information, including kon, koff, and the free energy profile. It 

also has the option to perform convergence analysis on these values. Additional 

analysis scripts can be utilized to generate a single file containing the ligand 

equilibrium distribution or FHPD of each milestone for easy visualization.
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The Python scripts have been tested using Python 2.7 and can be safely run in any version of 

Python 2 at version 2.7 or later. The remainder of the scripts are written in TCL, particularly 

those interfacing with NAMD, which has a TCL-based interface. SEEKR also uses the 

Numpy, Scipy, and MDAnalysis python libraries. The Adaptive Poisson-Boltzmann Solver 

(APBS)42 is used to generate the electrostatic potential maps for input to BrownDye, and the 

AmberTools program LEaP43 is also used to prepare structures for MD simulation.

Trypsin structure preparation and SEEKR creation of milestoning structures

Atomic coordinates of the trypsin-benzamidine system were obtained from the high 

resolution crystal structure Protein Databank (PDB) ID: 3PTB.44 Hydrogens were added 

using Molprobity with ring flips allowed.45–46 The system was then further prepared using 

LEaP with the Amber forcefield, ff14SB.47 Disulfide bonds were added manually. The 

appropriate protonation states of ASP, GLU, and HIS residues at a pH of 7.7 were 

determined using PROPKA.48–49 This pH was selected to align with the experimental 

conditions of Guillian and Thusius50. The structure was then solvated in a truncated 

octahedron of TIP4Pew51–52 waters and eight Cl− ions were added to neutralize the overall 

charge. The benzamidine ligand was parameterized using Antechamber with the GAFF force 

field.52–53 The total size of the system was approximately 23,000 atoms. To allow for 

relaxation from the crystallographic starting structure, the benzamidine ligand was removed 

and a 20 ns simulation of the apo structure was performed at a constant temperature of 298 

K using the Langevin thermostat and a constant pressure of 1 atm using the Langevin piston 

with a damping coefficient of 5 ps−1. A representative structure from this simulation was 

then used as the SEEKR input structure to generate all the necessary inputs for the MD 

simulations to be run using NAMD, and the BD simulations using Browndye.

The benzamidine bound-state coordinates were defined from the center of mass of the alpha 

carbons of residues 190, 191, 192, 195, 213, 215, 216, 219, 220, 224, 228 of PDB: 3PTB 

because these residues form the binding pocket in the bound-state crystal structure by 

manual inspection. Spherical milestones were defined with radii of 1, 1.5, 2, 3, 4, 6, 8, 10, 

12, 14 Å, with the origin being the bound state coordinates defined above. This spacing of 

the milestones was chosen to facilitate the simulation of transitions between milestones 

while still ensuring the Markov assumptions required by formal milestoning theory. Ten 

copies of the apo structure were generated, each with the benzamidine ligand inserted on one 

of the ten spherical milestones (figure 2A). Water molecules that clashed with the ligand 

structure were removed. The first nine milestones correspond to the MD simulation regime, 

with the innermost milestone (1 Å) representing the bound state, as the center of mass of the 

bound benzamidine ligand falls well within the 1 Å sphere that defines this milestone (figure 

2B). Furthermore, in a ~170 ns unrestrained MD simulation with the ligand in the bound 

pose, the 1 Å sphere contained the center of mass of the ligand over 71% of the simulation. 

The tenth and outermost milestone (14 Å) corresponds to the BD simulation regime. The 

distribution along any milestone where BD was started was constructed by first running 

conventional BD simulations and obtaining the distribution of hitting points along that 

milestone.
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The b-surface is a relatively large spherical shell that encloses the entire receptor molecule, 

with a radius of sufficient size that the entire surface sits well out into the bulk solvent where 

forces between the ligand and receptor would be largely unaffected by molecular orientation, 

and are therefore centrosymmetric.

MD simulations

A modified version of NAMD 2.11 was used for all MD calculations. The numerous MD 

inputs, including input files, integrator parameters, boundary conditions, temperature and 

pressure controls, etc. are either defined by the user or set by SEEKR to default values. 

Relevant settings and procedures implemented for each milestone in the MD regime are 

described here.

For each milestone system generated by SEEKR as described above, the solvent molecules 

were allowed to relax around the newly placed benzamidine ligand by minimizing for 5000 

steps with both the ligand and receptor restrained. The solvent was then further relaxed 

through a series of 2 ps heating simulations, where the temperature was increased from 298 

K to 350 K and then cooled back to 298 K in 10 K increments, keeping the atoms of the 

ligand and receptor restrained. Following this relaxation of the solvent, an equilibrium 

distribution of the ligand on the milestone surface was obtained from 1 μs of constant 

volume simulation at a temperature of 298 K where a harmonic spring force of 90 

kcal•mol−1•Å−2 was imposed to restrain the ligand at the appropriate radius from the binding 

site center for each milestone to generate an equilibrium distribution (figure 3A). This is also 

known as the umbrella sampling stage. From this equilibrium distribution, a FHPD (figure 

3B) was obtained by selecting 4700 position and velocity configurations from times 60 ns – 

1 μs of the equilibrium trajectory and allowing them to propagate backwards in time by 

reversing their velocities at constant energy and volume (reverse stage). Any trajectories that 

struck another milestone before re-crossing the milestone from which they originated were 

counted as part of the FHPD. All members of the FHPD were then brought back to their 

original positions and velocities and subsequently allowed to propagate forward in time at 

constant energy and volume (forward stage). When a simulation crossed its starting 

milestone again, it was then monitored for transitions to adjacent milestones and the 

incubation time for these transitions was also recorded. Once a trajectory crossed an 

adjacent milestone, the simulation was terminated. Any trajectories in this forward stage that 

crossed adjacent milestones before re-crossing their starting milestone were rejected. The 1, 

1.5, 2, 4, and 10 Å milestones produced results with significantly fewer transitions than the 

other milestones. Therefore, to improve the robustness of our statistics, we performed 

additional reverse and forward simulations where 10 more trajectories were initiated at 

random Maxwell-Boltzmann velocities from each equilibrium distribution point, in addition 

to the one described above (a total of 470,000 reversals for each of these milestones), 

increasing the number of transitions observed. For each milestone, successful forward stage 

statistics were inserted into the transition kernel K and incubation time vector 〈t〉.

BD simulations

All BD calculations were conducted with BrownDye, a software package specializing in the 

rigid-body diffusion of two biological molecules in an implicit solvent.41 The electric 
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potential map used as input for the BD simulation was calculated with the APBS version 

1.4. All BD inputs, as well as the necessary APBS inputs for creation of the electrostatics 

map, are user defined in the SEEKR input file or generated as SEEKR default values.

In an attempt to recreate the ionic conditions used in the experiment,50 a nonlinear APBS 

calculation was run at 298 K, with a solvent dielectric of 78 and a solute dielectric of 2, with 

the following ions: Ca2+ at a concentration of 0.02 mM with a charge of +2.0 e and a radius 

of 1.14 Å, Cl− at a concentration of 0.10 mM with a charge of −1.0 e and a radius of 1.67 Å, 

and tris at a concentration of 0.06 mM with a charge of +1.0 e and a radius of 4.0 Å.54 At the 

specified concentrations, these ions generate a Debye length of 8 Å, which is used as input 

to BrownDye. Both the b-surface BD simulations and BD trajectories starting from a 

milestone ran with a solvent dielectric 78 and a solute dielectric of 2, at 298 K. We ran three 

additional sets of BD simulations at different ionic concentrations to examine the effect of 

ionic strength in the BD simulations on the kon. Therefore, three additional simulations were 

run: one with an ion concentration of zero, another with half of the ion concentrations of the 

experimental procedure, and another with double the ion concentration of the experimental 

procedure. Although an electrolyte solution technically has a Debye length equal to infinity, 

we approximated the Debye length with a value of 99 Å in the BrownDye program.

For each kon calculation, we performed 106 BD simulations initiated at random points 

distributed on the b-surface, which were used to construct the vector q0 in Eq. 13. Once 

these simulations completed, the trajectories that successfully reached the outermost 

milestone were used as that milestone’s FHPD. From that FHPD, an additional 106 BD 

trajectories were run until reaching the second-outermost milestone or escaping to the q-

surface. These statistics were also included in the transition kernel K and incubation time 

vector 〈t〉.

Milestoning calculations

Using the statistics obtained from all the milestones in both the MD and BD regimes, the 

SEEKR software was used to construct the milestoning model and compute the kon, koff, 
ΔGbind, and other quantities of interest. Additional scripts used to generate some of the 

figures and data are also included in the SEEKR package. Error estimates were computed 

according to our previously defined procedure31.

The vast majority of the procedure outlined in the Materials and Methods section is 

automated within the SEEKR software package.

Results

Using the MD/BD/milestoning methodology through the SEEKR interface yielded a kon of 

2.1±0.3•107 M−1s−1 for the trypsin-benzamidine system. This value deviates from the 

experimentally measured kon for the same system at 2.9•107 M−1s−1 by a factor of ~1.5 (no 

experimental error margins were reported). We also estimate a koff of 83±14 s−1, which is 

within an order of magnitude of the experimentally determined value of 600±300 s−1 though 

our value is slower than expected. similar phenomenon is observed in other computational 

koff estimations of this system. An examination of the effect of ionic concentration on the 

Votapka et al. Page 10

J Phys Chem B. Author manuscript; available in PMC 2018 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



kon convergence of the rate constants as a function of the length of umbrella sampling 

performed is provided in the SI. Using Eq. 5, we obtain a ΔGbind estimate of −7.3±0.2 

kcal•mol−1 from a Kd of 4.3±1.2•10−6 M compared to the experimental ΔGbind of 

−6.71±0.05 kcal•mol−1, computed at 298 K using Eq. 5 and an experimental Kd of 

1.2±0.1•10−5 M.50

In addition, we obtained a relative free energy at each of the milestones along the binding 

pathway using the vector pstat in combination with Eq. 10. This free energy profile is 

displayed in figure 4.

Aside from the predicted thermodynamic and kinetic quantities, we used the trajectories 

generated during the SEEKR run to make other observations about the system during the 

binding and unbinding process.

By removing the benzamidine molecule and the solvent, we used POVME255 to provide 

pocket volume measurement and characterization during the course of the MD runs. The 

same origin and radius of the inclusion region that defined the binding pocket were used for 

all umbrella sampling trajectories. The pocket itself remains relatively rigid when the 

benzamidine is deep in the binding site during the umbrella sampling stage, however, more 

variation in volume was observed when the benzamidine was constrained to a milestone 

nearer to the entrance of the opening of the binding site (figure 5).

Closer analysis of the umbrella sampling trajectories for the 6, 10, and 12 Å milestones in 

conjunction with the POVME data indicates sampling of multiple conformations of the 

trypsin S1 binding pocket (figure 6A, 6B, and 6C). The binding pocket conformation is 

primarily dependent on the motion of two loops; the loop containing TRP215 and the loop 

containing ASP189, a critical residue for benzamidine recognition. The opening and closing 

of the S1 pocket is greatly influenced by the orientation of TRP215 When oriented 

downward as in figure 6A, the S1 pocket is open. This is the conformation observed in the 

crystal structure 3PTB with benzamidine bound. When TRP215 rotates upwards as in figure 

6B, the binding pocket is closed, and pocket volume significantly decreases. The dramatic 

change in pocket volume for the 10 Å milestone also occurs when TRP215 moves to close 

the S1 binding site.

We also observe the formation of an S1* pocket, that results from the motion of these two 

loops (figure 6C). This pocket provides an alternate binding pathway, in which benzamidine 

can approach ASP189 from a different orientation. These observations are in agreement with 

the study of Plattner and Noé22 where these results were observed through several hundred 

independent MD trajectories totaling over 100 μs of aggregate simulation time.

We also observed significant positional and rotational sampling by the benzamidine along 

most of the milestones during the umbrella sampling stages. This information can provide an 

idea for the likelihood of pathways that benzamidine follows on its route to binding. Figure 

3A shows the equilibrium distribution along each of the milestones, and figure 3B shows the 

FHPD for each of the milestones. Figure 7 shows the angle between a vector pointing along 

the amidine group and a vector pointing out from the opening of the binding site as a 

function of time during the equilibrium simulations. Several flips are observed in all but the 
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lowest milestones, where benzamidine rotation was restricted because these milestones are 

located deep within the binding pocket. The 10 Å also experiences a decrease in rotational 

sampling because benzamidine is interacting extensively with TRP215 and thus adopts an 

orientation that favors stacking of the aromatic rings.

The crystal structure of the trypsin/benzamidine complex shows the amidine group pointing 

downward toward the binding site (figure 2B). This structural feature is confirmed by our 

own simulations, and a relatively narrow arrangement of ligand orientations are observed 

along the lowest milestone.

The entire calculation cost approximately 1.4 million CPU hours on the Stampede 

supercomputer and local machines, with a total MD cost of approximately 19 μs of 

simulation.

Discussion

Compared to the experimental kon, our estimated kon is slower by about a factor of 1.3, but 

falls well within an order of magnitude. We attempted to closely recreate the experimental 

ionic conditions within our simulations, which has a pronounced effect on the kon (details in 

the SI). Our kon of 2.2±0.3•107 M−1s−1 is much closer to the experimental value of 2.9•107 

M−1s−1 than the kons obtained by Buch et. al.20 (15±2•107 M−1s−1) and comparable to what 

was obtained by Plattner et. al.22 (6.4±1.6•107 M−1s−1), although ours was obtained with 

significantly less computational resources, smaller by an order of magnitude. Our result is 

also very close to what was obtained by Tiwary et. al.25 (1±1•107 M−1s−1). Our estimated 

koff of 83±14 s−1 is within an order of magnitude of the experimental koff, far closer than the 

value obtained by Buch et. al. (9.5±3.3•104s−1), and comparable to the values obtained by 

Plattner et. al. (131±109 s−1), Teo et. al.24 (260±240 s−1), and Tiwary et. al (9.1±2.5 s−1). To 

our knowledge, this is the first successful estimate of koff using a hybrid MD/BD/

milestoning model.

An advantage of our approach is that both koff and kon can be determined from the same 

calculation. We can use our calculated koff and kon values in Eq. 5 to obtain an entirely 

computationally-determined dissociation constant KD of 3.8±0.8•10−6 M, and by extension a 

free energy of binding ΔGbind estimate of −7.4±0.2 kcal•mol−1. This is in good agreement 

with the experimental KD of 1.2•10−5 M, which when put through eq. 5 at a temperature of 

298 K, yields a free energy of −6.7 kcal•mol−1.

The accurate determination of kinetics using milestoning requires the proper generation of 

equilibrium and FHPD distributions. It is important to ensure adequate sampling in the 

generation of equilibrium distributions. Figure 3A shows the equilibrium distribution of 

benzamidine center-of-mass along the 1 Å to 12 Å milestones in the MD regime. The 

benzamidine appears to have explored all solvent-accessible regions along the milestones. 

Along with positional sampling, the observed diversity of benzamidine orientation in figure 

7 indicates that the ligand orientational degree of freedom is well-sampled in all but the 

lowest milestones. In addition to the ligand, it is important that receptor conformations that 

may affect ligand binding are also well sampled. By using POVME2, we observed 
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conformational states that have been observed in other studies such as the S1* pocket (figure 

6).22 We do not however observe any complete binding events via the S1* pocket, 

presumably as a result of our simplified spherical milestoning model. This may provide 

some explanation as to why our calculated rates are somewhat slower than experiment, as 

we do not capture this alternate pathway. However, we may reasonably assume that we are 

capturing most of the effects of slower receptor conformational changes and subsequently, 

that our kinetics predictions are reasonable.

While, of course, verification of SEEKR as a computational kinetics and thermodynamics 

estimator will need to be performed on additional systems, this similarity between 

experimental and theoretical free energies and rate constants in our accessible and highly 

parallel framework is encouraging.

Conclusions

In this work, we use our multi-scale MD/BD/milestoning methodology to examine ligand-

protein binding events with a larger, more complex, and more drug-like ligand than in our 

previous work. Furthermore, we present the first successful koff calculation to within one 

order of magnitude of experiment using this approach. Using the obtained values of kon and 

koff, and entirely computational estimate of KD and ΔGbind in good agreement with 

experiment were obtained. These results are further evidence that the MD/BD/milestoning 

methodology can be successfully applied to the investigation of binding and unbinding 

kinetics in receptor-ligand systems. We also present the SEEKR software package, which 

automates much of the preparation, submission, and analysis of these types of calculations. 

We have made SEEKR freely available and open-source on Github, and hope that it will be 

used and improved by the community to run predictive multi-scale milestoning calculations. 

SEEKR downloads, tutorials, and the user guide may be found at http://amarolab.ucsd.edu/

seekr.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A cartoon schematic of trypsin (grey shape) with the concentric spherical milestones (orange 

and blue circular curves) surrounding the binding site. Also, the b- and q-surfaces are 

represented as the outer blue and dashed green curves, respectively, that sit away from the 

molecule. Blue arrows represent BD trajectories, and orange arrows represent MD 

trajectories. Any surface with a blue arrow coming from or going to it represents the starting 

or ending surface for BD trajectories, respectively. Similarly, a surface with an orange arrow 

coming from or going to it represents the starting or ending surface for MD simulations, 

respectively.
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Figure 2. 
Panel A: before beginning the simulations, benzamidine has been placed along each of the 

milestones in gradually increasing distances from the center of the binding site on trypsin. 

Panel B: The center-of-mass of the benzamidine molecule in the trypsin 3PTB crystal 

structure lies within the lowest 1Å milestone (red sphere), which we define as the bound 

state
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Figure 3. 
Panel A: The equilibrium distribution of the center of mass of benzamidine generated along 

all of the milestones from 2 Å (red) to 12 Å (green) at the end of the umbrella sampling. No 

umbrella sampling is performed for the BD stages, so there are no points representing the 14 

Å milestone. Panel B: The FHPD of benzamidine centers of mass generated from the 

equilibrium distribution that succeeded in the reverse stage. The milestones between 1 Å 

(red) and 12 Å (green) were generated during the MD simulations. In addition, the blue 

distribution at 14 Å represents the FHPD obtained from the BD simulation. This FHPD is 

used to start forward stage trajectories for generating milestoning statistics.
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Figure 4. 
The free energy profile of benzamidine along each of the milestones leading to the binding 

site. The free energy barrier peaks around the milestone located at 6 Å.
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Figure 5. 
The volume of the S1 binding site with benzamidine restrained to the milestones as 

computed using the POVME2 program. Stabilization of the binding site pocket volume is 

observed as the ligand moves closer to the binding site.
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Figure 6. 
Dynamics of the apo trypsin S1 binding pocket umbrella sampling simulations. Pocket 

conformations are significantly influenced by the motions of the loop containing TRP215 

(violet) and the loop containing ASP189 (orange), which is important for benzamidine 

recognition. Benzamidine is shown in tan. POVME calculated volumes are shown in cyan. 

A) The open S1 pocket, where TRP215 is pointed in a downward orientation. B) Closed 

conformation of the S1 pocket as a result of TRP215 rotating to an upward pointing 

conformation. C) Formation of the S1* pocket where benzamidine can approach via an 

alternate pathway and interact with ASP189 from a different angle.
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Figure 7. 
The angle of benzamidine along the center-of-mass/amidine axis compared to a vector 

pointing outward from the binding site. An angle larger than 90° represents a conformation 

where the amidine group is pointing toward the binding site. Several flips were observed in 

all milestones above 2 Å, implying that the orientation of the ligand is well sampled along 

all of the milestones except for those deepest in the binding pocket, where the orientation 

found in the crystal structure is preferred, and the amidine group is pointing down into the 

site.
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