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Abstract

The emergence of pandemic influenza strains, particularly the reemergence of the swine-derived 

influenza A (H1N1) in 2009, is reaffirmation that influenza viruses are very adaptable and 

influenza remains as a significant global public health treat. As recommended by the World Health 

Organization (WHO), the use of adjuvants is an attractive approach to improve vaccine efficacy 

and allow dose-sparing during an influenza emergency. In this study, we utilized CaPtivate 

Pharmaceutical’s proprietary calcium phosphate nanoparticles (CaPNP) vaccine adjuvant and 

delivery platform to formulate an inactivated whole virus influenza A/CA/04/2009 (H1N1pdm) 

vaccine as a potential dose-sparing strategy. We evaluated the relative immunogenicity and the 

efficacy of the formulation in BALB/c mice following single intramuscularly administration of 

three different doses (0.3, 1, or 3 μg based on HA content) of the vaccine in comparison to non-

adjuvanted or alum-adjuvant vaccines. We showed that, addition of CaPNP in vaccine elicited 

significantly higher hemagglutination inhibition (HAI), virus neutralization (VN), and IgG 

antibody titers, at all dose levels, relative to the non-adjuvanted vaccine. In addition, the vaccine 

containing CaPNP provided equal protection with 1/3rd of the antigen dose as compared to the 

non-adjuvanted or alum-adjuvanted vaccines. Our data provided support to earlier studies 

indicating that CaPNP is an attractive vaccine adjuvant and delivery system and should play an 

important role in the development of safe and efficacious dose-sparing vaccines. Our findings also 

warrant further investigation to validate CaPNP’s capacity as an alternative adjuvant to the ones 

currently licensed for influenza/pandemic influenza vaccination.
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1. Introduction

Global influenza epidemics occur annually and cause nearly 500,000 deaths and 3–5 

millions of hospitalizations every year from severe respiratory complications related to 

influenza [WHO estimates]. Apart from seasonal outbreaks, influenza A strains caused three 

devastating pandemics in human in the 20th century: H1N1 in 1918, H2N2 in 1957, and 

H3N2 in 1968 [1–4]. A novel strain of influenza A H1N1 virus (A/H1N1/pdm/09) emerged 

in 2009. Although far less deadly than its 1918 ancestor, it was highly contagious 

nevertheless and was very efficient in human-to-human transmission compared to previous 

swine influenza strains [5,6]. The estimates from the CDC indicate that between 43 million 

and 90 million people have been infected in the US with 2009 H1N1 during the 2009–2010 

seasons [7]. On the global scale, during the first year that the virus circulated among human, 

between 151,700 and 575,400 people lost their lives from 2009 H1N1 infection and related 

complications [8]. The emergence of highly pathogenic avian influenza strains A/H5N1 in 

1997 [9] and 2003–2004, and A/H7N9 in 2013 [10], and the reemergence of a pandemic 

H1N1 in 2009 remind us that influenza is a very powerful and adaptable virus which must 

not be ignored.

Vaccination provides the most feasible and efficient way to prevent influenza infections and 

to reduce the morbidity and mortality from infection-related complications. As confirmed in 

CDC reports, the previous seasonal vaccinations of children or adults did not elicit cross-

reactive antibody responses to the pandemic H1N1 strain of 2009 [11]. Based on the WHO 

pandemic preparedness estimates, the global production capacity for pandemic vaccines is 

approximately 3 billion doses per year [12], although predictions for future capacity are 

more optimistic [13]. In any case, when a pandemic caused by a more pathogenic strain than 

2009 H1N1 emerges, there is a risk that most of the world’s population would be left 

unprotected. Thus, WHO recommends the use of adjuvants in pandemic influenza vaccines 

for dose-sparing [14].

Adjuvanted vaccines are considered to enhance rapidity or intensity of immune response, to 

induce longer-lasting and broader/cross-protective immune response (breadth), provide 

antigen-dose sparing to allow immunization of more people using smaller amount of 

antigen, reduce the need for booster dosing, and/or to improve vaccine efficacy in 

individuals with weaker immune system [15–17]. Thus, availability of effective adjuvants 

safe for human use is critical for pandemic preparedness. There are currently four 

inactivated pandemic influenza A(H1N1)2009 monovalent vaccines approved by the FDA in 

the US [18] but none are adjuvanted. A single 15 μg antigen dose in adults and a second 

dose given 21 days after the first are recommended in young children [19–21]. Among the 

adjuvants considered for inclusion in H1N1(pdm) vaccines, alum showed no significant 

benefit in clinical studies compared to the vaccine without the adjuvant [20]. Human 

volunteers at different age groups were administered an influenza A(H1N1)2009 monovalent 

split-virus vaccine at doses of 7.5 μg, 15 μg, or 30 μg HA antigen with or without alum 

adjuvant. Immunogenicity outcomes were evaluated with respect to HAI titers where HAI 

titer greater than 1:40 was considered as protective immune response. It was reported that a 

single dose of 15 μg or 30 μg vaccine without alum induced ≥1:40 HAI titers in 97% of the 
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subjects (ages 12 to 60). Alum-adjuvanted vaccine induced ≥1:40 HAI titers in less than 

90% of the subjects. Thus it was concluded that the alum did not enhance immune response 

to A(H1N1)2009 vaccine [20]. On the other hand, in clinical studies, MF59-adjuvanted 

Focetria™ [22–24] and AS03-adjuvanted Pandermix™ [25–27] at 3.75 μg A/H1N1 antigen 

dose were reported as being highly immunogenic and both vaccines were approved by the 

European Medicines Agency (EMEA). Recently, MF59 also gained FDA-approval but for 

limited use in seasonal influenza vaccine (Fluad™) [28].

Dose-sparing through use of adjuvants is an attractive strategy for ensuring sufficient 

vaccine will be available during a pandemic. On the other hand, the benefits of enhancing 

immunogenicity and boosting the vaccine capacity must be weighed against the risk of 

adjuvant itself inducing local or systemic adverse reactions. The safety of vaccine additives 

in general and the use of adjuvants (e.g. alum, squalene) in particular has been a long going 

public concern, particularly in the US [29]. Thus, development of adjuvants that can reduce 

such anxieties and gain public acceptance is also critical from the compliance standpoint.

Previously, a proprietary method of synthetically manufactured calcium phosphate 

nanoparticle (CaPNP) technology was disclosed [30,31] and its use to deliver therapeutic 

drugs [32,33] and vaccine antigens [34,35] by systemic or mucosal routes were reported. In 

preclinical safety and toxicity studies, CaPNP was shown safe for intramuscular, 

subcutaneous, intradermal, oral, and inhalation routes. In a Phase I study conducted in the 

US, subcutaneously administered CaPNP caused no toxicity, pathology, or adverse reactions 

in healthy volunteers [32,34]. In various preclinical studies conducted by the inventors of the 

CaPNP technology or other researchers using the technology, CaPNP-adjuvanted vaccines 

were shown to induce significant antigen-specific cell mediated and humoral immune 

responses and provided protection against live pathogens in challenge experiments [34–39]. 

In in vitro and in vivo studies, a multi-peptide dengue vaccine formulated with CaPNP 

demonstrated ability of CaPNP to efficiently deliver antigens to antigen presenting cells (e.g. 

DCs), to directly activate DCs and upregulate surface expression of MHC class I/II, 

CD107a, and co-stimulatory molecule CD86 to generate a robust CD8+ CTL response 

[40,41]. These studies provide scientific support suggesting that vaccines formulated with 

CaPNP have the capacity to induce broad spectrum of protective immune responses.

We report here an inactivated whole virus influenza A 2009 (H1N1pdm) vaccine (IIV) 

formulation containing CaPNP as an adjuvant and carrier. We evaluated the immune 

response generated by three different doses (0.3, 1, or 3 μg) of IIV+CaPNP vaccine in 

BALB/c mice after single intramuscular (i.m.) injections. We tested the protective efficacy of 

the vaccine in immunized mice following challenge with a lethal dose of live 2009 

(H1N1pdm) virus adapted to replicate in the lungs of BALB/c mice. Non-adjuvanted IIV 

vaccine was used as the control and alum-adjuvanted IIV vaccine was used for comparison. 

Our data indicate that CaPNP could allow dose-sparing of antigens in vaccines and also 

support the previous suggestions that it must be involved in multiple mechanisms of immune 

responses to induce protection against infection. Our findings also warrant further 

investigation to improve the immunogenicity and the efficacy seen from the current 

formulation.

Morçӧl et al. Page 3

Vaccine. Author manuscript; available in PMC 2018 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Materials and methods

2.1. Ethics regulation of laboratory animals

This study was conducted in accordance with the approval of the Institutional Animal Care 

and Use Committee of Utah State University (USU) dated 20 September 2013 (expiration 

date 19 September 2016). The work was performed in the AAALAC-accredited Laboratory 

Animal Research Center of Utah State University. The U. S. Government (NIH) approval 

was renewed on 1 April 2010 (PHS Assurance No. A3801-01) in accordance with the NIH 

guide for the Care and Use of Laboratory Animals.

2.2. Animals

Pathogen free female BALB/c mice, 18–20 g, were obtained from Charles River 

Laboratories (Wilmington, MA) and maintained in accordance with USU Institutional 

Animal Care and Use Committee (IACUC). Animals were quarantined for 72 hours and 

maintained on Tekland Rodent Diet (Harlan Tekland) and tap water at the Laboratory 

Animal Research Center of USU. The mouse efficacy studies were conducted in accordance 

with the approval of the IACUC of USU dated 20 September 2013. Eleven mice per group 

were used in most experiments.

2.3. Virus

Influenza A/CA/04/2009 (H1N1pdm) was used for lethal challenge. Influenza A/CA/

04/2009 (H1N1) strain designation 175190 was received from Dr. Elena Govorkova, 

Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis TN. 

The virus was adapted to replication in the lungs of BALB/c mice by 9 sequential passages 

in mice [42]. Virus was plaque purified in Madin-Darby Canine Kidney (MDCK) cells and a 

virus stock was prepared by growth in embryonated chicken eggs and then MDCK cells as 

described earlier [43].

2.4. Vaccine and adjuvants

The inactivated whole virus vaccine produced at USU consisted of the influenza A/CA/

04/2009 (H1N1pdm) virus grown in MDCK cells. After virus was harvested from MDCK 

cells, it was inactivated by addition of binary ethyleneimine (BEI) and then clarified/

concentrated using tangential flow filtration using a Pellicon® XL 50 cassette (100kd, 

Millipore) membrane. USU has the facility, technical, and scientific resources and expertise 

of producing an inactivated whole virus vaccine with similar quality as those made in 

industry, except at a much smaller scale. At USU, Dr. Bart Tarbet (co-author) was 

responsible for the production and the quality control of the “inactivated whole virus 

vaccine” used in the study. Dr. Tarbet has developed and licensed two inactivated influenza 

virus vaccines during his previous employments in industry. That “production” experience 

was utilized in a 5-year grant from BARDA to work with the WHO to train personnel from 

developing countries in the manufacturer of influenza vaccines [44].

The vaccine stock used in formulations contained 2048 H1N1 HA Unit/ml. CaPNPs (2% 

suspension) in the 450–500 nm size range were manufactured by CaPtivate Pharma using a 

process modified from previously described [34,Supplement]. The final concentration of 
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CaPNP in vaccines was at 0.3% (weight/volume) which was based on a different study 

(H5N1+CaPNP Vaccine), thus it was partially arbitrary [45,Supplement]. Alhydrogel 

(Aluminium hydroxide (alum), 2% gel) was purchased from InvivoGen (San Diego, CA) 

and used at final concentration of 0.2% in vaccines. Three different doses of inactivated 

influenza A/CA/04/2009 (H1N1pdm) vaccines (IIV) were formulated based on the HA 

amount. The vaccines contained 0.3 μg, 1 μg, or 3 μg H1N1 HA either without an adjuvant 

or adsorbed on pre-formulated CaPNP or commercial alum adjuvant. In preliminary 

investigation, an IIV vaccine at 3 μg H1N1 HA provided about 90% protection in mice 

against lethal challenge with mouse-adapted A/CA/04/2009 (H1N1pdm) virus (B. Tarbet, 

unpublished). Thus, in this study we used sub-optimal doses of IIV (≤ 3 μg) in order to 

observe the effect of adjuvants. Placebo vaccines contained physiological sterile saline (PSS) 

or 0.3% CaPNP.

2.5. Experimental design for animal studies

2.5.1. Immunogenicity studies—Mice were assigned to groups (11 mice per group) by 

random number generator. Five untreated mice were observed for normal weight gain. Mice 

were vaccinated with a single intramuscular (i.m.) dose of “IIV alone”, “IIV + 0.3% 

CaPNP”, or “IIV + 0.2% alum” vaccine containing 0.3, 1, or 3 μg H1N1 HA in 50 μl. 

Placebo vaccines were administered by the same route and volume. Blood was collected via 

cheek bleed on day 0 and day 21. Serum samples were prepared by centrifugation and stored 

at −70°C until used in assays.

2.5.2. Vaccine efficacy studies—On day 21 post immunization, mice were anesthetized 

by intraperitoneal (i.p.) injection of ketamine/xylazine (50 mg/kg//5 mg/kg). Anesthetized 

mice were infected by the intranasal (i.n.) route with approximately 1 × 104 cell culture 

infectious doses (CCID50) of A/CA/04/2009 (H1N1pdm) per mouse in a 90 μl inoculum. 

Post challenge, animals were monitored for morbidity and mortality and change in body 

weights for 21 days.

2.6. Virus-specific IgG ELISA

Virus-specific immunoglobulin levels, IgG1 and IgG2a, in mice sear were determined by 

using a mouse IgG enzyme immunoassay (EIA) kit (Bethyl Laboratories, Montgomery, TX) 

according to the manufacturer’s instructions with some modifications. Instead of coating 

plates with capture antibody, purified influenza A/CA/04/2009 (H1N1pdm) virus (0.84 μg/

well) was bound to microtiter plates (Nunc MaxiSorp C; Fisher Scientific, Pittsburg, PA) by 

incubation in carbonate-bicarbonate coating buffer overnight at room temperature. Influenza 

virus bound to plates enable the detection of virus-specific immunoglobulins using the IgG 

immunoassay kits. Serum samples were diluted in PBS and the manufacturer’s directions 

were followed for detection of bound antibody with a minor modification. The concentration 

of goat anti-mouse IgG-subtype specific antibody conjugated to horseradish peroxidase 

was increased 3× to increase the sensitivity of the assay. Antibody concentrations were read 

off from a standard curve generated by using the mouse reference serum.
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2.7. Humoral Immunity

Humoral immunity was measured in serum samples collected 21 days post-vaccination by 

hemagglutination inhibition (HAI) and virus-specific neutralization (VN) assays.

2.7.1. Hemagglutination inhibition (HAI) Assay—HAI assay was performed as 

previously described [43]. Prior to the HAI assay, immune sera were pretreated with 

receptor-destroying enzyme (RDE) II (Vibrio cholerae neuraminidase, Accurate Chemical 

and Scientific, Westbury NY) to remove non-specific inhibitors by diluting one part serum 

with three parts enzyme and incubating at 37°C for 18 hrs (WHO manual-2002). RDE was 

subsequently inactivated by heating in a 56°C water bath for 45 min. Serum samples were 

diluted in PBS in 96-well round-bottom microtiter plates (Fisher Scientific, Pittsburg, PA). 

Subsequently, 8 HA units/well of influenza A/CA/04/2009 (H1N1pdm) virus plus turkey red 

blood cells (Lampire Biological Laboratories, Pipersville, PA) were added (50 μl of each per 

well), mixed briefly, and incubated for 60 min at room temperature. The serum HAI titers 

are reported as the reciprocal of the highest serum dilution at which hemagglutination was 

completely inhibited and shown as Log2 geometric mean titers (GMT) in graphs.

2.7.2. Anti-influenza virus neutralizing (VN) antibody assay—MDCK cells were 

seeded in 96-well plates at 1 × 104 cells per well in MEM containing 5% FBS (Hyclone, 

Logan, UT) 24 hours prior to use. On the next day, 2-fold serial dilutions of serum samples 

from five mice were prepared in serum-free media, containing 10 units/ml trypsin and 1 

μg/ml EDTA, starting at 1:32 dilution and ending at 1:4096. Each serum dilution was mixed 

1:1 (0.1 ml) with serum-free media (containing trypsin and EDTA) containing 

approximately 100 CCID50/well of influenza A/CA/04/2009 (H1N1pdm) virus. After 

incubation at room temperature for 1 h, the serum-influenza virus mixture (0.2 ml) was 

transferred to a well containing MDCK cells and incubated for 3 days. Anti-influenza VN 

antibodies were measured as cytopathic effect (CPE) inhibition. CPE was scored from 

duplicate samples by examining the MDCK cell monolayers under a light microscope on 

day 3 post-infection.

2.8. Statistical analysis

Kaplan-Meier survival curves were generated and compared by the Log-rank (Mantel-Cox) 

test followed by pairwise comparison using the Gehan-Breslow-Wilcoxon test in Prism 6.0f 

(GraphPad Software Inc., La Jolla, CA). The mean body weights were analyzed by analysis 

of variance (ANOVA) followed by Tukey’s multiple comparison test using Prism 6.0f. In 

addition, the results from HAI and VN assays were analyzed by ANOVA followed by 

Tukey’s multiple comparison tests using Prism 6.0f.

3. Results

This study determined the immunogenicity and the efficacy provided by single i.m. 

administration of three different doses (0.3, 1.0 and 3.0 μg) of an inactivated influenza 

A/CA/04/2009 (H1N1pdm) virus vaccine (IIV) alone or in combination with 0.3% CaPNP 

or 0.2% alum against challenge with influenza A/CA/04/2009 (H1N1pdm) virus. Along with 

corresponding figures, all data is summarized in Table 1 for easy comparison.
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3.1. Virus-specific antibody response

Influenza virus-specific immunoglobulin levels in serum samples were evaluated by ELISA. 

Figure 1A and 1B shows virus-specific IgG1 and IgG2a levels in mice following single 

dose i.m. vaccination with non-adjuvanted IIV or IIV formulated with CaPNP or alum at the 

0.3, 1, or 3 μg antigen doses. As shown in Figure 1A, including adjuvants (CaPNP or alum) 
provided significant and dose-dependent increases in virus-specific IgG1 titers at all three 

dose levels compared to non-adjuvanted IIV. There was no significant difference in the IgG1 

titers produced by the vaccine containing CaPNP or alum. With respect to IgG2a levels 

(Figure 1B), alum induced lower IgG2a levels than both non-adjuvanted and CaP-adjuvanted 

vaccines at all dose levels. However, the differences were not statistically significant at lower 

vaccine doses of 0.3 μg or 1 μg. Although there was no statistically significant difference in 

the IgG2a produced by the vaccine with or without CaPNP, CaPNP-adjuvanted vaccine at 3 

μg level induced slightly higher IgG2a. At 3 μg dose level, CaPNP-adjuvanted vaccine also 

induced significantly higher IgG2a than the vaccine with alum at the same dose. The IgG2a/

IgG1 ratios for each vaccine are shown in Table 1 and are discussed in relation to vaccine 

efficacy in Discussion section.

3.2. Hemagglutination inhibition (HAI) titers

Figure 2 shows HAI titers following a single i.m. vaccination with varying doses of IIV 

vaccine with or without adjuvants. Non-adjuvanted IIV provided significant dose-dependent 

HAI titers compared to placebo. All vaccines with or without adjuvants at all dose levels, 

except 0.3 μg non-adjuvanted IIV, achieved HAI titers ≥ 40 (i.e. ≥1:40) which is generally 

defined as the threshold for a seroprotective response [20,46]. At the lowest dose level of 0.3 

μg, HAI titers for the vaccines containing CaPNP or alum adjuvants were significantly 

higher compared to non-adjuvanted IIV. At that low dose level, the HAI titers produced by 

CaPNP adjuvant were the highest (GMT= 64) compared with that of IIV plus alum (GMT= 

48) or non-adjuvanted IIV (GMT= 22) (ranked as IIVCaPNP>IIValum>IIV). In addition, 

higher % of mice immunized with 0.3 μg IIV+CaPNP (70% of mice) showed ≥40 HAI titers 

than the vaccine with alum (50% mice) (Fig. 2, Table 1). No mice in the non-adjuvanted IIV 

groups showed ≥ 40 HAI titers. At 1 μg vaccine dose, HAI titers with either CaPNP or alum 

were slightly higher than the vaccine without the adjuvant but the differences were not 

significant. At the highest vaccine dose of 3 μg, the IIV+CaPNP and IIV+alum vaccines 

induced comparable HAI titers (GMT=125–128) which were slightly higher than that of 

produced by the non-adjuvanted IIV vaccine (GMT=90). At the 3 μg vaccine dose, 90% of 

animals in all vaccine groups indicated ≥ 40 HAI titers. Thus, with respect to HAI titers, our 

preclinical data also suggested that presence of alum (or CaPNP) does not substantially 

enhance the HAI titer which is in line with the reports from human studies [20].

3.3. Virus neutralizing antibody (VN) titers

Figure 3 show virus neutralizing (VN) antibody titers on days 21 following i.m. vaccination 

with non-adjuvanted or CaPNP- or alum-adjuvanted IIV measured against influenza A 

H1N1pdm virus. Vaccination produced significant VN antibody titers in a dose-dependent 

manner in all vaccine groups. Inclusion of CaPNP or alum produced significantly higher VN 

titers than non-adjuvanted vaccine in most cases. The highest titers (GMT in the 512–700 
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range) were observed at the 3 μg dose level where mean titers peaked at 1024. Mice 

vaccinated with PSS or CaPNP placebo had no detectable serum VN titers against the virus. 

Although there is a lack of consensus, most studies suggest a good correlation between VN 

and HAI titers. However, our data did not show a clear correlation between VN and HAI for 

any of the vaccines (Table 1).

3.4. Vaccine efficacy

Figure 4 shows Kaplan-Meier survival curves for immunized mice after a lethal viral 

challenge with mouse-adapted A/California/04/2009 (H1N1pdm) virus. Animal survival on 

day 21 post-infection is also tabulated in Table 1 for direct comparison. As mentioned 

earlier, we used sub-optimal doses of IIV for immunization in order to observe the relative 

effect of CaPNP adjuvant on vaccine immunogenicity and efficacy. Thus, it was not 

surprising to see that none of the vaccine formulations provided complete protection as 

follows: (i) non-adjuvanted IIV provided 27%, 64%, and 82% protection, (ii) IIV plus 

CaPNP provided 55%, 82%, and 82% protection and, (iii) alum-adjuvanted vaccine provided 

64%, 45%, and 82% protection at the 0.3, 1, and 3.0 μg doses levels, respectively. In other 

words, the IIV+CaPNP provided significantly better protection than the non-adjuvanted IIV 

with 0.3 or 1 μg doses (30% and 20% more, respectively). In addition, at 1 μg vaccine dose, 

IIV+CaPNP also provided significantly better protection (~40% more) than the IIV+alum 

vaccine. Furthermore, IIV+CaPNP at 1 μg dose provided same level of protection (82%) to 

mice as the vaccines (non-adjuvnated or adjuvanted) given at 3 μg dose level, indicating a 3-

fold dose sparing.

The greatest weight loss in animals in all vaccine groups occurred within the 7–9 days of 

post-viral infection. Except the mice in placebo and in 0.3 μg or 1 μg non-adjuvanted IIV 

groups, animals started recovering from weight loss the next day after the maximum weight 

loss was observed. The mice in 3.0 μg IIV+alum group lost the least weight (19%) while 

mice in 0.3 μg or 1 μg non-adjuvanted IIV groups lost the most weight (≥30% (cut-off)). All 

the other groups lost maximum 23–26% weight and started gaining weight by the next time 

point. With the mouse-adapted H1N1(pdm) challenge, we did not observe the typical signs 

of disease seen in human (sneezing, fever etc.) which was expected.

4. Discussion

In this study we investigated the potential of CaPtivate’s CaP nanoparticle technology 

platform to provide dose-sparing for inactivated whole virus pandemic influenza A/CA/

04/2009 (H1N1pdm) vaccine. CaPNP is a synthetic formulation of calcium phosphate 

containing all GRAS components and has been shown safe for human vaccination in a Phase 

I study conducted in the US [32]. As a chemical entity, calcium phosphate is a natural/

biocompatible constituent of the body. It is significantly better tolerated than alum and has 

been safely used in human vaccines in Europe for decades [47–50]. CaPNP technology 

represents a unique formulation of calcium phosphate (not to be confused with its 

commercial counterpart) as spherical/round nanoparticles with physicochemical properties, 

morphology, and adjuvant action superior to those of aluminum salts or commercial calcium 

phosphate [40]. By itself, it is inert to body. When combined in vaccines, it indicates 
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capacity to induce a broad range of immune responses (e.g. humoral, cellular, mucosal) 

[30,32–37,39,43]. In various vaccine studies, CaPNP demonstrated ability to induce robust 

antigen- or virus-specific CTL responses [37,40]. CaPNP also demonstrated ability to boost 

antigen uptake by APCs and to efficiently stimulate maturation and activation of DCs [40]. It 

was reported that, people who developed mild illness during the 2009 H1N1 pandemic 

epidemic also had abundance of CD8+T cells (CTLs). CTLs recognize parts of flu viruses 

that are most stable among all strains [51]. In such situations, CTLs may provide extra layer 

of protection against the virus strains to which the recipient or the general human population 

are immunologically naïve. Thus, using a vaccine adjuvant/carrier that could induce humoral 

and also cell-mediated immune response should further enhance vaccine’s effectiveness and 

stop people dying during a pandemic.

This study presents preclinical data documenting the immunogenicity and efficacy after 

single i.m. administration of an inactivated A/CA/04/2009 (H1N1pdm) virus vaccine 

containing CaPNP in mice. As summarized in Table 1, immunogenicity testing clearly 

showed that IIV+CaPNP formulation could induce significantly higher serum HAI, VN, and 

anti-virus IgG1 titers than the non-adjuvanted IIV (Fig. 1A). In most cases, IIV+CaPNP 

demonstrated comparable HAI, VN, and IgG1 levels to that induced by IIV+alum but the 

vaccine containing CaPNP, at all dose levels, produced approximately 1.7× higher virus-

specific IgG2a antibodies than alum (Table 1). The IgG2a levels for non-adjuvanted and 

CaPNP-adjuvanted vaccines were comparable at all three dose levels (Fig. 1B). It has been 

previously demonstrated in mice that the Th2-type immune response, which is associated 

with stimulation of IgG1 antibodies, is the typical response to influenza vaccination by 

inactivated or subunit influenza vaccines [52,53 (Cross referenced in 54)]. However, 

stimulation of IgG2a, which is associated with Th1-type immune response, has been 

associated with survival from infection and increased vaccine efficacy [53,55]. The studies 

by Huber et al. [54] suggested that IgG1 antibodies, not the IgG2a antibodies, played as 

specific role in the neutralization of the virus. In their study, the specific induction of IgG2a 

was mostly correlated with viral clearance and increased protection against lethal influenza 

challenge. The increased induction of both IgG1 and IgG2a, but not IgG2a alone, has been 

indicated a better correlate for vaccine efficacy than neutralization alone [54]. Our data also 

suggest a similar association. Although the IgG2a/IgG1 ratios for non-adjuvanted IIV were 

higher than the IIV+CaPNP at all dose levels, IIV+CaPNP vaccine demonstrated 

significantly better protection at lower vaccine doses, particularly at 1 μg, than IIV without 

CaPNP. This may be because IIV+CaPNP vaccine also induced higher IgG1, HAI, and VN 

titers than non-adjuvanted IIV while it was inducing comparable levels of IgG2a. In 

comparison to alum, the vaccine containing CaPNP adjuvant indicated a balanced Th1/Th2-

type antibody response while alum induced primarily a Th2-type response (see IgG2a/IgG1 

ratios in Table 1).

With the exception of non-adjuvanted IIV at 3 μg vaccine dose, all three vaccines at all dose 

levels produced >40 HAI and > 64 VN titers in a dose-dependent manner. Based on previous 

studies concerning inactivated influenza virus vaccines, it was suggested that an HAI 

antibody titer of 1:40 against HA should be regarded as a relative correlate of protection 

(e.g. 50%–70%) [Reviewed in 52]. Our HAI data and its relation to protection against 

challenge infection were generally in agreement with this approximation. Although there is a 
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lack of consensus, most studies also suggest a good correlation between VN and HAI titers 

(i.e. 1:40 dilution both) but there are others suggesting 1:64 VN titers as the correlate of 

protection [53 (Cross-referenced in 52)]. In our study, there was no close correlation 

between the HAI and VN titers which may relate to differences in the antibody binding 

characteristics inherent in these functional assays [46]. There was a dose-dependent increase 

in VN-titers for all vaccines but the increases in magnitude of VN titers did not directly 

correlate with increased protection.

We observed the most notable difference in vaccine efficacy with the 1 μg dose level. The 

IIV+ CaPNP vaccine at the 1 μg dose level (1/3rd of the high dose) was sufficient to 

provided equal level of protection against the live A/CA/04/2009 (H1N1pdm) challenge as 

seen with the “high dose” (3 μg) IIV with or without adjuvants. Interestingly, this was in 

spite of significantly lower HAI, VT, and IgG titers were produced with 1 μg IIV+CaPNP 

vaccine compared to those at 3 μg dose levels. Although not evaluated in this study, we 

suggest that CaPNP may be stimulating a broader immune response than IIV alone or IIV 

containing alum to enable equal protection using only 1/3rd of the highest dose associated 

with the highest protection. In previous preclinical investigations conducted by various 

industrial partners of CaPtivate, vaccines containing CaPNP were shown to stimulate 

production of both Th1- (e.g. IL-12, IFN-ɣ) and Th2-type cytokines (e.g. IL-5) [41] and also 

Th17-promoting cytokines (e.g. IL-22) (unpublished). With acknowledging further 

investigation is needed, we speculate that activation of multiple cytokine profiles may also 

be contributing to the good efficacy seen with IIV+CaPNP vaccine at lower doses. In a 

previous study that used the methods of Q. He and T. Morcol et al. in Ref. 34, a foot and 

mouth disease virus (FMDV) vaccine containing CaPNP induced significant humoral and T-

cell mediated responses [37]. FMDV+CaPNP also provided 90% protection against virus 

challenge with ½ dose of the antigen as compared to vaccine without the adjuvant and in 

spite of inducing lower serum VN antibody titers. In another study, a CaPNP-adjuvanted 

fusion protein vaccine formulation was superior to free antigen in eliciting long-lasting 

CD8+ T cell and enhanced recall responses, despite producing lower IgG1 response 

compared to vaccine without the adjuvant [54]. Reports from these investigators echo our 

findings in this study.

In conclusion, we suggest that including CaPNPs in influenza vaccines may be an important 

contribution to antigen-sparing strategies. Current data also warrant further investigation in 

order to improve vaccine efficacy and dose-sparing potential. We have future studies 

designed to (i) optimize the vaccine formulation with respect to CaPNP particle size vs 

vaccine immunogenicity (ii) demonstrate the IIV+CaPNP vaccine’s capacity to induce Th1 

response and trigger T-cell activation, (iii) in challenge studies (with homologous and 

heterologous virus strains), the IIV+CaPNP vaccine eliciting the broader immune response 

relative to IIV will be evaluated for protective efficacy and its potential to induce longer-

lasting immunity, (iv) virus titters in lung lavage fluids will be determined, (v) the cytokine/

chemokine profiles will also be evaluated in lung lavage fluids by mouse cytokine screen 

(16-plex) multiplex ELISA.

Morçӧl et al. Page 10

Vaccine. Author manuscript; available in PMC 2018 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Virus-specific serum antibody response as measured by ELISA
IgG1 (Panel A) and IgG2a levels (Panel B) are shown in serum from mice on day 21 
following i.m. vaccination with an inactivated influenza virus (IIV) vaccine containing 

CaPNP or Alhydrogel (alum) as adjuvant. Data reported for IgG1 include 10 mice/group, 
IgG2a includes 5 mice/group. On top of the bars, “*” represent a significant increase 

(*P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001) compared to saline (PSS) and CaPNP 

only controls (placebos) in 1-way ANOVA/Turkey test. Significant differences (*P<0.05) 

between groups are linked by brackets.
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Figure 2. 
Hemagglutination inhibition titers on day 21 following i.m. vaccination with an inactivated 

influenza virus (IIV) vaccine without adjuvant or containing CaPNP or Alhydrogel (alum) as 

adjuvant. Transparent bars framing the data sets are manually overlaid on the plotted data to 

make comparisons between groups easier to the reader. Geometric means and 95% 

confidence intervals are shown. On top of the bars, “*” represent a significant increase 

(*P<0.05, **P<0.01, and ***P<0.001) compared to saline (PSS) and CaPNP only controls. 

Significant differences (*P<0.05) between groups are linked by brackets.
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Figure 3. 
Virus neutralization (VN) titers on day 21 following i.m. vaccination with an inactivated 

influenza virus (IIV) vaccine containing CaPNP or Alhydrogel (alum) as adjuvant. 

Transparent bars framing the data sets are manually overlaid on the plotted data to make the 

comparisons easier. Geometric means and 95% confidence intervals are shown. On top of 

the bars, asterisks represent a significant increase (*P<0.05, **P<0.01, and ***P<0.001) 

compared to saline (PSS) and CaPNP only controls. Significant differences (*P<0.05) 

between groups are linked by brackets.
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Figure 4. 
Survival following intramuscular vaccination with an inactivated influenza virus (IIV) 

vaccine containing CaPNP or Alhydrogel (alum) as adjuvant, and challenge with 1 × 104 

CCID50 (or 3 × LD50) influenza A/CA/04/2009 (pandemic H1N1). Infected mice (n=11) 

were monitored for 21 days post challenge. Significant increase in survival compared to PSS 

and CaPNP placebo treatments are denoted as *P<0.05, **P<0.01, ***P<0.001. Significant 

differences (*P<0.05) between any two groups are linked by brackets.
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