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Positron emission tomography (PET) is an in vivo molecular imaging tool which is widely used in nuclear 
medicine for early diagnosis and treatment follow-up of many brain diseases. PET uses biomolecules as 
probes which are labeled with radionuclides of short half-lives, synthesized prior to the imaging studies. These 
probes are called radiotracers. Fluorine-18 is a radionuclide routinely used in the radiolabeling of neuroreceptor 
ligands for PET because of its favorable half-life of 109.8 min. The delivery of such radiotracers into the 
brain provides images of transport, metabolic, and neurotransmission processes on the molecular level. 
After a short introduction into the principles of PET, this review mainly focuses on the strategy of radiotracer 
development bridging from basic science to biomedical application. Successful radiotracer design as described 
here provides molecular probes which not only are useful for imaging of human brain diseases, but also allow 
molecular neuroreceptor imaging studies in various small-animal models of disease, including genetically-
engineered animals. Furthermore, they provide a powerful tool for in vivo pharmacology during the process of 
pre-clinical drug development to identify new drug targets, to investigate pathophysiology, to discover potential 
drug candidates, and to evaluate the pharmacokinetics and pharmacodynamics of drugs in vivo.
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·Review·

Introduction

Positron emission tomography (PET) is an in vivo 
molecular imaging tool widely used in nuclear medicine 
for early diagnosis and treatment follow-up of many 
brain diseases. Positron-emitting radionuclide-labeled 
substances allow the visualization, characterization, and 
measurement of biological processes at the molecular and 
cellular levels in humans and other living systems by highly 
sensitive coincidence-detection[1]. This is based on 511 keV 
photons (gamma radiation) originating from positron-
electron annihilation. PET differs in that aspect from other 
modalities such as single-photon emission computed 
tomography (SPECT), magnetic resonance imaging 

(MRI), optical imaging, and ultrasound. Because of their 
high sensitivity (~10-9 to 10-12 M) PET and SPECT offer 
advantages over the other methods. Therefore, in the past, 
they were the only modalities that allowed noninvasive 
imaging of biochemical receptor sites. Nowadays, the other 
imaging modalities compete in that aspect although precise 
absolute quantitation in terms of biochemical parameters 
has not been achieved yet. 

Recently, multimodal imaging approaches, specifi cally 
PET/CT and PET/MRI, have been suggested to bring a 
new perspective into the fields of clinical and preclinical 
imaging. Clinical cases have shown that the combination 
of anatomical structures, revealed by CT and MRI, and the 
functional information from PET into one image, with high 
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fusion accuracy, provides an advanced diagnostic tool and 
research platform[2, 3].

PET and SPECT use biomolecules as probes, labeled 
with radionuclides of short half-lives, synthesized prior to 
the imaging studies. These probes are called radiotracers. 
According to the concept developed by George von 
Hevesy[4] a radiotracer is a chemical compound in which 
one or more atoms have been replaced by its radioisotope. 
By virtue of its radioactive decay, it can be used to follow 
the original compound as it acts in the same manner. 
Due to the extremely small concentrations required, the 
radiotracer does not disturb the systemic processes to be 
studied. This allows the tracing of chemical, biochemical, 
and physiological processes and investigation of their 
functions and capacities.

Although SPECT is the most common imaging tool in 
clinical nuclear medicine, this review is focused on PET. 
SPECT primarily uses radioiodine, e.g. 123I, or radiometals, 
e.g. 99mTc as the label. Iodine is rarely present and metals 
are usually absent from the protein-binding drugs that serve 
as lead structures. Therefore, the applicability of SPECT for 
neuroimaging is rather limited, because labeling with 123I or 
99mTc causes strong and unpredictable alterations of target 
affinities and blood-brain-barrier (BBB) permeability. The 
positron-emitting radionuclides 11C and 18F, introduced as an 
isotopic modification (11C for 12C; “isotopic labeling”) or an 
atomic substitute (18F for 1H, OH; “isosteric, isoelectronic, or 
bioisosteric labeling”), generate rather small affi nity changes, 
if any. 18F is considered the most suitable radionuclide for 
PET because of its fi ve-fold longer half-life (109.8 min) than 
11C, its high β+ yield (97%) and its lower positron energy 
maximum of 640 keV (IAEA, Nuclear Data Services, https://
www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html).

Despite the limitations, the principles and strategies 
for radiotracer development described below also apply to 
SPECT. Also, aspects of radiation safety, toxicology issues, 
quality control, licensing, and regulatory control, which need 
to be considered for the production of radiopharmaceuticals 
suitable for administration to humans, have been reviewed 
extensively elsewhere[5]. Meanwhile, a highly regulated system 
for radiopharmaceutical production has been established 
in most of the developed countries (http://ec.europa.eu/
health/documents/eudralex/vol-4/index_en.htm). This topic is 
therefore excluded from further consideration. 

Successful radiotracer design as described below 

does not necessarily lead to human application. Nowadays, 
special PET and SPECT devices are available for small-
animal imaging, allowing molecular neuroreceptor imaging 
studies in various models of disease including genetically-
engineered animals[6, 7]. They provide a powerful tool for in 
vivo pharmacology during the process of pre-clinical drug 
development to identify new drug targets, to investigate 
pathophysiology, to discover potential drug candidates, and 
to evaluate the pharmacokinetics and pharmacodynamics 
of drugs in vivo[8].

The general sequence of radiotracer development is 
shown in Fig. 1 and can be followed up in a short video 
available at http://www.beilstein.tv/tvpost/toxic-epibatidine-
was-structurally-modified-to-image-alzheimer%C2%B4s-
disease/. This demonstrates how chemical/pharmaceutical 
and biochemical/pharmacological steps interact to finally 
decide whether to break-off or continue the development 
process. PET radiotracers that have been developed for 
neuroreceptor imaging and have already been used in 
humans are listed in Table 1.

Target Selection and Identifi cation of Lead Structures

Careful selection of the target to be imaged in combination 

Fig. 1. Strategy for development of new PET radiotracers for 
neuroimaging. 
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Table 1. Neuroreceptor targetsa that have been used for successful PET radiotracer development

Neuroreceptor PET radiotracer Selected reference for human use
Acetylcholine receptor: muscarinic [11C]scopolamine Frey et al. 1992[9]

Acetylcholine receptor: muscarinic [N-11C-methyl]-benztropine Xie et al. 2004[10]

Acetylcholine receptor: muscarinic [11C](+)3-MPB Yamamoto et al. 2012[11]

Acetylcholine receptor: muscarinic M2 [18F]FP-TZTP Ichise et al. 2008[12]

Acetylcholine receptor: nicotinic α4β2 2-[18F]fl uoro-A-85380 Sabri et al. 2008[13]

Acetylcholine receptor: nicotinic α4β2 6-[18F]fl uoro-A-85380 Ding et al. 2004[14]

Acetylcholine receptor: nicotinic α4β2 [18F]AZAN Wong et al. 2013[15]

Acetylcholine receptor: nicotinic α4β2 (-)-[18F]fl ubatine Sabri et al. 2011[16]

Acetylcholine receptor: nicotinic α7 [11C]CHIBA-1001 Toyohara et al. 2009[17]

Adenosine receptor: A1 [18F]CPFPX Bauer et al. 2003[18]

Adenosine receptor: A1 [11C]MPDX Fukumitsu et al. 2008[19]

Adenosine receptor: A2A [11C]TMSX Mishina et al. 2011[20]

Adenosine receptor: A2A [¹¹C]SCH442416 Ramlackhansingh et al. 2011[21]

Cannabinoid receptor: CB1 [18F]MK-9470 Burns et al. 2007[22]

Cannabinoid receptor: CB1 [11C]MePPEP Terry et al. 2010[23]

Cannabinoid receptor: CB1 [18F]FMPEP-d Terry et al. 2010[23]

Cannabinoid receptor: CB1 [11C]OMAR Wong et al. 2010[24]

Cannabinoid receptor: CB2 [11C]NE40 Ahmad et al. 2013[25]

Dopamine receptor: D1 [11C]SCH 23390 Farde et al. 1987[26]

Dopamine receptor: D1 [11C]NNC687 Karlsson et al. 1993[27]

Dopamine receptor: D1 [11C]NNC756 Karlsson et al. 1993[27]

Dopamine receptor: D1 [11C]NNC112 Slifstein et al. 2008[28]

Dopamine receptor: D2-D3 [11C]raclopride Farde et al. 1986[29]

Dopamine receptor: D2-D3 [11C]NMSP Wong et al. 1986[30]

Dopamine receptor: D2-D3 [11C]NPA Narendran et al. 2009[31]

Dopamine receptor: D2-D3 [11C]MNPA Otsuka et al. 2009[32]

Dopamine receptor (extrastriatal): D2/D3 [11C]FLB457 Farde et al. 1997[33]

Dopamine receptor (extrastriatal): D2/D3 [18F]fallypride Mukherjee et al. 2002[34]

Dopamine receptor: D3>D2 [11C]-(+)-PHNO Ginovart et al. 2007[35]

Estrogen receptor [18F]FES Moresco et al. 1997[36]

Glutamate receptor: mGluR1 [11C]ITMM Toyohara et al. 2013[37]

Glutamate receptor: mGluR5 [11C]ABP688 Ametamey et al. 2007[38]

Glutamate receptor: mGluR5 [18F]SP203 Brown et al. 2008[39]

Glutamate receptor: mGluR5 [11C]AZD9272 Kagedal et al. 2012[40]

Glutamate receptor: mGluR5 [18F]FPEB Wong et al. 2013[41]

Glutamate NMDA receptor: PCP site [11C]ketamine Kumlien et al. 1999[42]

Glutamate NMDA receptor: PCP site [11C]CNS-5161 Hammers et al. 2004[43]

Glutamate NMDA receptor: PCP site [18F]fl uoromemantine Ametamey et al. 2002[44]

Glutamate NMDA receptor: PCP site [18F]GE-179 McGinnity et al. 2014[45]

Glutamate NMDA receptor: glycine-site  [11C]AcL703 Matsumoto et al. 2007[46]

Histamine receptor: H1 [11C]doxepin Yanai et al. 1991[47]

(To be continued)
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Histamine receptor: H3 [11C]GSK189254 Ashworth et al. 2010[48]

GABA-benzodiazepine receptor: α1 [11C]fl umazenil Persson et al. 1985[49]

GABA-benzodiazepine receptor: α1 [18F]fl uoroethyl-fl umazenil Leveque et al. 2003[50]

GABA-benzodiazepine receptor: α1 [18F]fl uorofl umazenil Lee et al. 2007[51]

GABA-benzodiazepine receptor: α1 [18F]fl umazenil Massaweh et al. 2009[52]

GABA-benzodiazepine receptor: α5 [11C]Ro15-4513 Lingford-Hughes e al. 2002[53]

Opioid receptor: μ [11C]carfentanil Frost et al. 1990[54]

Opioid receptor: δ [11C]methylnaltrindol Madar et al. 1997[55]

Opioid receptor: κ [11C]GR103545 Tomasi et al. 2010[56]

Opioid receptor: unselective [11C]diprenorphine Frost et al. 1990[54]

Opioid receptor: unselective [18F]FcyF Cohen et al. 2000[57]

Opioid receptor: unselective [18F]fl uorethyldiprenorphine Baumgärtner et al. 2006[58]

Neuropeptide Y receptor: Subtype 1 [18F]Y1-973 Hostetler et al. 2011[59]b

Serotonin receptor: 5-HT1A [11C]WAY-100635 Pike et al. 1995[60]

Serotonin receptor: 5-HT1A [carbonyl-11C]WAY-100635 Parsey et al. 2000[61]

Serotonin receptor: 5-HT1A [carbonyl-11C]DWAY Andree et al. 2002[62]

Serotonin receptor: 5-HT1A [11C]CPC-222 Houle et al. 1997[63]

Serotonin receptor: 5-HT1A [11C]CUMI-101 Milak et al. 2010[64]

Serotonin receptor: 5-HT1A [18F]MPPF Costes et al. 2002[65]

Serotonin receptor: 5-HT1A [18F]FCWAY Theodore et al. 2006[66]

Serotonin receptor: 5-HT1B [11C]P943 Gallezot et al. 2010[67]

Serotonin receptor: 5-HT1B [11C]AZ10419369 Varnäs et al. 2011[68]

Serotonin receptor: 5-HT1B [11C]P943 Murrough et al. 2011[69]

Serotonin receptor: 5-HT2A [11C]MDL100907 Hinz et al. 2007[70]

Serotonin receptor: 5-HT2A [18F]altanserin Rosier et al. 1996[71]

Serotonin receptor: 5-HT2A [18F]deuteroaltanserin Van Dyck et al. 2000[72]

Serotonin receptor: 5-HT2A [18F]setoperone Trichard et al. 1998[73]

Serotonin receptor: 5-HT2A [18F]Cimbi-36 Ettrup et al. 2014[74]

Serotonin receptor: 5-HT4 [11C]SB207145 Marner et al. 2009[75]

Serotonin receptor: 5-HT6 [11C]GSK215083 Parker et al. 2012[76]

Sigma receptor: σ1 [11C]SA4503 Mishina et al. 2005[77]

Sigma receptor: σ1 [18F]FPS Waterhouse et al. 2004[78]

Translocator protein (TSPO)b [11C]PK11195 Junck et al. 1989[79]

Translocator protein (TSPO) (R)-[11C]PK11195 Banati et al. 1999[80]

Translocator protein (TSPO) [11C]PBR28 Brown et al. 2007[81]

Translocator protein (TSPO) [11C]DPA-713 Endres et al. 2009[82]

Translocator protein (TSPO) [11C]DAA1106 Yasuno et al. 2012[83]

Translocator protein (TSPO) [11C]vinpocetine Gulyas et al. 2012[84]

Translocator protein (TSPO) [18F]F-PBR06 Fujimura et al. 2009[85]

Translocator protein (TSPO) [18F]DPA-714 Arlicot et al. 2012[86]

Translocator protein (TSPO) [18F]FEPPA Mizrahi et al. 2012[87]

Translocator protein (TSPO) [18F]PBR-111 Guo et al. 2013[88]

aNeurotransmitter transporters are not considered; bformerly known as peripheral benzodiazepine receptor.

(Continued)
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with proper ident i f icat ion of a lead structure and 
subsequently an appropriate lead compound is one of 
the most important steps in the process of radiotracer 
development. Considering the resources needed to obtain 
a radiopharmaceutical ready for human application, strong 
biomedical or even pathological relevance of the chosen 
target is needed. Major groups of brain diseases such 
as neurodegenerative diseases, affective disorders, and 
brain tumors are expected to be of multifactorial origin, i.e., 
interactions between multiple genes infl uenced by internal 
and external factors occur, and this may have pathological 
or protective consequences. 

Imaging with a single radiotracer offers the chance 
of picking out only one dedicated piece of the whole 
scenario of physiological interactions. Thus, it is important 
to select those key proteins as rational targets which are 
predominantly altered in pathophysiological states. Ideally, 
they are causally involved in the etiology of the disease, 
providing the possibility that their imaging may have impact 
on both diagnosis and therapeutic drug development. 

A schematic view of this complex situation, identifying 
important molecules involved in the three classes of 
diseases noted above, is shown in Fig. 2. Notably, many 
of them are identical though occurring in different contexts. 
Therefore, it is highly likely that radiotracers designed, for 
instance, for imaging a certain key protein in the etiology of 
Alzheimer´s disease (AD) may also be of major importance 
for other diseases, which further justifies the efforts 
expended on radiotracer development.

For example, sigma1 (σ1) receptors are chaperones 
involved in the suppression of oxidative stress, a feature 
that links them to numerous brain diseases[89]. Post-
mortem studies have shown loss of σ1 binding sites in 
the hippocampus of patients with AD[90] and in the cortex 
of patients with schizophrenia[91]. Overexpression of σ 

receptors has been found in many brain tumor cell lines 
and in human brain tumors[92]. The neuroprotective potential 
of σ1 receptor agonists has been shown in different models 
of neurodegeneration[89, 93] and is expected to be important 
for cancerous diseases as well[92, 94].

As another example, impaired cholinergic neurotrans-
mission is a key feature of AD and the related cognitive 
impairment is at least partially associated with loss of 
cortical nicotinic acetylcholine receptors (nAChRs)[6, 95]. 
There is evidence that both subtypes with the highest 

expression in the brain are involved: α4β2 and α7 nAChRs. 
Accordingly, these subtypes have been chosen for 
radiotracer development[6, 96, 97]. However, these nAChRs 
are not only key proteins in neurodegenerative diseases 
(Fig. 2A) but also in many other brain diseases such as 
drug addiction, schizophrenia (Fig. 2B), and possibly cancer 
(Fig. 2C). This offers the advantage that corresponding 
radiotracers may also be used to answer questions related 
to these diseases. 

The radiotracer (S)-[11C]nicotine, one of the very first 
positron-emitting receptor ligands, was initially developed 
to investigate the distribution of nicotine in vivo and later 
tested for PET imaging of nAChRs in the human brain[6, 98]. 
However, co-administration of unlabeled nicotine failed to 
displace much of the radioligand, indicating that the PET 
signal did not sensitively reveal specifi c binding to nAChRs. 
Cerebral (S)-[11C]nicotine uptake proved mainly to be 
determined by blood fl ow, rather than the local abundance 
of nAChRs in vivo[6]. This indicates the importance not only 
of target but also of lead structure identification. Clearly, 
nicotine failed for the purpose of nAChR imaging. The 
discovery of various nAChR subtypes during the last two 
decades and their investigation have revealed different 
distributions and functions in various brain regions[6, 99]. 
Accordingly, different lead structures are needed to image 
them separately. 

The selection process for development of 18F-labeled 
radiotracers resembles the strategy used by the 
pharmaceutical industry in drug discovery. Although 
some features of radiotracers and drugs are different, 
the principal need remains: specific target binding. As 
discussed below, some selection criteria, such as affi nity, 
selectivity, kinetic behavior, and metabolism may be even 
stronger for radiotracers than for common drugs. On the 
other side, characteristics like bioavailability, side-effects, 
and pharmacological efficacy are negligible. Regardless 
of the differences, the lead structures of pharmaceutical 
interest are usually the basis for radiopharmaceutical 
development.

Target Characterization and in vitro Screening of 

New Compounds

High-affinity binding is one of the most important prere-
quisites for radiotracers targeting neuroreceptors[100, 101]. As 
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a rule of thumb, a binding potential (BP = Bmax/KD) of >2 is 
required for a good PET radioligand[102]. This implies the 
need to search for higher target affi nity (1/KD) if the receptor 
density (Bmax) is low. For example, the receptor densities for 
α7 nAChRs in the human brain are between 2 and 16 fmol/mg
tissue[96]. Accordingly, a KD between 1 and 8 nmol/L is 
required to fulfil the minimal criteria. The best α7 nAChR 
PET radiotracers available so far have affi nities between 0.3 
and 10 nmol/L[6]. 

Other important prerequisites for PET radiotracers 

are target selectivity and low non-specific binding[100, 101]. 
The displacement of radiotracer binding by ligands specifi c 
for non-target sites indicates lack of selectivity. This is a 
general disadvantage, because the specifi c signal obtained 
in neuroimaging studies is reduced (i.e. constitutes only 
a fraction of the total signal) in the presence of binding to 
non-target sites[100]. nAChRs, for example, comprise many 
subtypes expressed by at least 16 different genes[6, 103]. 
Many of them share a high degree of sequence identity and 
similarity with other nAChRs and also with other ligand-

Fig. 2. Key molecules for development of new PET radiotracers for neuroimaging neurodegeneration (A), psychiatric disorders (B), and 
brain tumors (C). 
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gated ion channels[104]. Therefore, detailed investigation 
of non-target sites is important for the development of 
PET radiotracers for neuroimaging of nAChRs. In some 
cases, it is not the sequence-similarity of target proteins 
that is responsible for cross-reactivity but the chosen lead 
structure. A well-known example is vesamicol, which is 
the only known lead structure for targeting the vesicular 
acetylcholine transporter (VAChT). It has only a ten-
fold higher affinity for VAChT than for σ receptors in the 
brain[105]. Improving this selectivity is still a challenge in the 
development of PET radiotracers for the VAChT[106].

The receptor densities and affi nities of the respective 
ligands in target tissues are parameters that can be 
quantified in vivo by molecular imaging with PET. They 
are important during radiotracer development. To obtain 
such information, in vitro radioligand-binding assays 
can be used[100, 101]. The total binding measured in these 
assays is always a sum of target-specific binding, which 
has limited capacity and is saturable, and non-specific 
binding, which has a high capacity and is non-saturable at 
pharmacologically meaningful concentrations[100]. 

Given that the receptor density is determined by the 
target, higher BP values can only be achieved by higher 
ligand affi nity. The binding affi nity in vitro and in vivo may 
differ considerably because of the presence of different 
affi nity states and other confounding factors[107]. Therefore, 
in vitro binding assays are the methods of choice to 
experimentally determine the affinity of new ligands. In 
particular, homogenate-binding or cell-binding assays 
allow high-throughput screening if needed. Alternatively, 
autoradiography on brain slices may be used; this is much 

more time-consuming but allows additional investigation of 
the regional distribution of receptors in the brain[100, 108].

With regard to nAChRs, the α4β2 subunit distribution 
has been investigated by in vitro autoradiography using 
[3H]cytisine[109, 110] while the α7 nAChR has been characterized 
using [125I]α-bungarotoxin[111, 112] or [3H]methyllycaconitine[113]. 
For various reasons, these three ligands are not suitable 
as lead compounds for PET radiotracer development[6]. 
However, these highly selective compounds can be used to 
obtain information on the specifi c receptor binding of new 
drugs. For example, the highly-selective α7 nAChR ligand 
NS10743[114] (for structure see Fig. 7) is able to displace the 
binding of [125I]α-bungarotoxin in the mouse brain (Fig. 3). 

Concerning the α4β2 nAChR subtype, epibatidine 
has been used successfully as a lead compound since it 
has long been known for its high affinity for heteromeric 
nAChRs[115]. However, it has rather high toxicity arising from 
its potency and capacity to activate many different neuronal 
nAChR subtypes[116].

In order to improve the subtype selectivity, the fl uoro-
for-chloro-substituted homoepibatidine analogue, fl ubatine 
(previously called NCFHEB), has been synthesized[117] (Fig. 
4). Results from [3H]epibatidine binding assays performed 
with HEK293 cells expressing the human α4β2 nAChR 
(Fig. 5) show that both enantiomers of flubatine have 
affinities comparable to that of epibatidine and that the 
(+)-enantiomer has two-fold higher affinity than the other 
stereoisomer[117]. 

As expected from previous studies with fluoro- and 
norchloro-analogues of epibatidine[116], the newly-designed 
homoepibatidine analogues have 20- to 60-fold lower 

Fig. 3. NS10743, a lead compound for α7 nAChRs, displaces in vitro binding of the highly-selective [125I]α-bungarotoxin in mouse brain.
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affinities to ganglionic α3β4 nAChRs than to the α4β2 
subtype[117]. For fl ubatine, the increase in subtype selectivity 
seemingly results in decreased pharmacological side-
effects compared to epibatidine. Intraperitoneal injection 
of 25 μg/kg (+)-flubatine or (–)-flubatine into awake mice 
is without important pharmacological effects[118]. Extended 
single-dose toxicity studies in rodents have shown a NOEL 
(No Observed Effect Level) of 6.2 μg/kg for (–)-flubatine 

Fig. 5. Competition binding assays of [3H]epibatidine on mem-branes prepared from cultured HEK293 cells stably transfected with α4β2 
and HEK293 α3β4 cells. Increasing concentrations of epibatidine or fl ubatine were used for competition. Non-specifi c binding was 
determined in the presence of 300 μmol/L (–)-nicotine tartrate and subtracted from the total binding (adapted from Deuther-Conrad 
et al. Farmaco 2004[117]).

Fig. 4. Toxic epibatidine (left) and its less toxic derivative norchloro- 
fl uoro-homoepibatidine (fl ubatine, right).  

and 1.55 μg/kg for (+)-fl ubatine after i.v. injection[119]. These 
values are about ten-fold higher than those reported for 
N-methylepibatidine[120] and fl uoro-norchloroepibatidine[121]. 

Regarding α7 nAChRs, many drug companies are 
developing receptor agonists and/or positive allosteric 
modulators for the treatment of schizophrenia and 
dementia[97]. Recently, NS10743, developed by Neuro-
Search A/S (Ballerup, Denmark), has been characterized 
as a lead structure for PET radiotracer development. 
[3H]Epibatidine-binding studies performed with HEK293 
cells expressing the human α7, α3β4, or α4β2 nAChR have 
revealed Ki-values of NS10743 of 12 nmol/L, 84 nmol/L, and 
>10 μmol/L, respectively[114]. Together with autoradiographic 
evidence of specific receptor binding as shown in Fig. 3,  
these data encouraged the radiolabeling of NS10743 to 
obtain an α7 nAChR-selective PET radiotracer[114].

Occasionally, there is a lack of specific drugs that 
interact with certain brain proteins. For example, only a 
single lead compound AH5183, later called vesamicol[122, 123], 

has been identified for the VAChT so far. Accordingly, 
all the PET radioligands that have been developed for 
neuroimaging the VAChT are derivatives of this lead 
structure[106]. Major drawbacks of vesamicol are the 
relatively low affi nity (Ki >10 nmol/L) and lack of selectivity. 
It binds to σ receptors with only ten-fold lower affinity[105] 
as well as to a “vesamicol-binding-protein”[124]. Similar 
affinity and selectivity have been found for (–)-FEOBV[125], 
a radioligand first described in 1993[126] and recently 
chosen for human VAChT studies[127]. Autoradiographic 
investigations of the human brain have revealed that 
[18F]FEOBV binding is decreased by 33% in the prefrontal 
cortex, 25% in hippocampal CA3, and 20% in the CA1 
region of patients with AD[128]. Although this was interpreted 
as cholinergic depletion, reduced σ1 receptor binding 
cannot be excluded, because a 26% loss of this receptor 
has also been described in the CA1 region of patients with 
AD[90]. So far, no ideal PET radiotracer for the VAChT has 
been developed[106] and optimization of the binding affi nity 
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of vesamicol-type ligands has been hampered by the lack 
of respective quantitative structure-activity relationships. 
Therefore, molecular modeling approaches have been 
used to predict the binding affinity of vesamicol-type/like 
ligands for VAChT from their molecular structures[125, 129]. 

A completely different situation is found with regard 
to radiotracer development for σ1 receptor imaging. These 
receptors have an unusual multi-drug binding spectrum 
and the respective ligands cover diverse structural 
classes[89]. Therefore, selectivity not only for the other 
subtype (σ2 receptor) but also for a great variety of further 
potential binding sites needs to be considered. Choosing 
spiropiperidines as lead structures, which fulfill these 
criteria and display a lack of signifi cant binding to a great 
variety of different targets[130-132], has enabled successful 
PET radiotracer development[89]. However, structural 
modifi cation was needed to introduce fl uorine in a suitable 
labeling position. Accordingly, various series of derivatives 
have been synthetized to select those with the highest 
affinity, selectivity, and in vitro metabolic stability[133-138]. 
Very high selectivity towards the VAChT has been found, 
excluding cross-reactions with this target[139].

Physicochemical Characterization of Lead Compounds

Besides affi nity and selectivity, some basic physicochemical 
properties of the parent compound have to be considered 
before radiolabeling. Lipophilicity, measured for example 
as logP and/or logD in octanol/water partition experiments, 
and molecular weight are important determinants for the 
compound´s ability to cross the BBB[140, 141]. Small-molecule 
drugs may sufficiently cross the BBB via lipid-mediated 
free diffusion if they have a molecular weight <400 g/mol 
and form <8 hydrogen bonds[141]. However, the majority of 
small-molecule drugs and all large-molecule drugs lack 
these chemical properties[141]. Considering these limitations, 
increasing lipophilicity may enhance the BBB permeability, 
but it also tends to increase plasma protein binding, 
causing a decrease of drug availability. Consequently, a 
parabolic relationship exists between lipophilicity and BBB 
permeability[107]. For a series of benzamides targeting the 
dopamine D2 receptor, an optimal logP between 2 and 
3 has been determined[142]. Accordingly, there is a rather 
small window of appropriate combinations of lipophilicity, 
molecular weight, and affi nity. Nevertheless, a nearly infi nite 

number of substances can theoretically be synthesized 
from basic organic elements within the restraints described 
above.

Significant deviations from the above parabolic 
relationship have been found, which can be ascribed to the 
existence of multiple mechanisms of drug transport through 
the BBB[143]. There is clear evidence that the expression 
of active efflux pumps like the multidrug transporter 
P-glycoprotein (P-gP) at the BBB accounts for the poor 
permeability of certain drugs (see below). Undoubtedly, 
P-gP is an important barrier to the entry of hydrophobic 
drugs into the brain[144]. Thus, proper prediction needs to 
consider active transport phenomena. 

Furthermore, a variety of nutrient transporters exp-
ressed at the BBB are able to transport certain xenobiotics 
and drugs[141, 143]. Recently, it has been shown that the α4β2 
nAChR PET radiotracer [18F]flubatine (formerly called 
[18F]NCFHEB) interacts with carrier-mediated choline 
transport at the BBB[118].

Preparation of Labeling Precursors and Radio-

labeling

Considering the short half-lives of the radionuclides used 
for radiolabeling (e.g., 20.4 min for 11C and 109.8 min for 

18F) they need to be incorporated into appropriate precursor 
molecules quickly. Ideally, the precursor molecules should 
allow rapid labeling in a maximum of two synthetic steps. 
As a rule of thumb, the whole labeling procedure including 
purifi cation and formulation of the fi nal product, should not 
last longer than two to three half-lives (for 11C). Accordingly, 
labeling precursors are not necessarily chemically similar 
to the respective radiolabeled compound/non-radiolabeled 
reference compound. 

Furthermore the precursor should allow (1) high 
reproducibility of the reaction, (2) automation of the 
production process (labeling, purification, formulation), 
and (3) accomplishment of an absolute radiochemical 
yield (RCY) of the formulated product high enough 
to permit human application. Ideally, the latter should 
enable routine as well as commercial production of the 
radiopharmaceutical.

Fluorine forms very strong covalent C-F bonds 
that provide valuable chemical, physical, and biological 
properties to organic molecules that contain one or more 
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fluorine atoms attached to aromatic carbon. However, 
because of the reactivity and hazards of elemental fl uorine 
and hydrogen fluoride, the task of introducing fluorine 
into organic molecules has been a particular challenge 
to synthetic chemists and has led to the development of 
specialized fl uorination techniques and reagents[145, 146]. 

Generally, fluorine can be introduced into organic 
molecules by electrophilic fluorination reactions using 
elemental fluorine or by nucleophilic fluorination using 
inorganic and other ionic fluorides. Although various 
f luorinating agents have been reported in organic 
fluorination reactions, only two agents are suitable 
for direct radiofluorination reactions with 18F: [18F]F2 
and its derivatives (such as [18F]acetylhypofluorite for 
electrophilic fluorination and [18F]fluoride for nucleophilic 
substitutions[147-149]). For regioselective introduction of 
18F, activated precursor molecules like trialkylstannyl-
substituted arenes are needed. 

Electrophilic fluorination is quite fast and efficient, 
making it a highly desirable synthetic method to obtain 
metabolic radiopharmaceuticals such as the glucose 
derivative [18F]FDG (via the old-fashioned synthetic 
pathway using glycals) or the amino acid [18F]FDOPA. 
Unfortunately, the products suffer from low specifi c activity 
owing to the carrier-added non-radioactive fluorine[147, 148] 
and thus are excluded from use for neuroreceptor imaging. 

The only exception is the post-target-produced highly 
specific [18F]F2 of up to 55 GBq/μmol[150] and its use for 
[18F]CFT synthesis, a dopamine transporter ligand[151]. 
Therefore, no further attention is given to electrophilic 
radiofluorination in this review. Furthermore, special 
methods for 18F-labeling of peptides and proteins are not 
considered, because these molecules are not suitable for 
brain imaging due to their very low BBB transport rates[152].

Nucleophilic substitution primarily depends on the 
activation of the [18F]fl uoride ion ([18F]F-) – so-called “naked 
fl uoride” – starting from irradiated 18O-enriched target water. 
This is reached by the generation of ion pairs consisting 
of bulky counter-ions for the [18F]F- such as K+-chelating 
agents or tetraalkylammonium ions[153, 154].

In the presence of aprotic or very weakly-acidic protic 
solvents, the counter-ion/[18F]F- - ion pair is available as a 
highly reactive nucleophile. In combination with suitable 
precursors provided with properly reactive leaving groups, 
nucleophilic substitution reactions may occur.

Nucleophilic substitution depends on properly active 
leaving groups for the 18F-fluoride exchange reaction. Its 
selection depends on various chemical properties of the 
compounds to be labeled. For radiosynthesis of a desired 
18F-labeled compound via nucleophilic substitution, a 
distinction generally has to be made between aliphatic and 
aromatic procedures.

For aliphatic nucleophilic substitutions[155], in most 
cases, the anions of sulfonic acids such as trifl ate, tosylate, 
mesylate, or nosylate groups are the preferred leaving 
groups. An option to introduce 18F to aliphatic (or even 
deactivated aromatic) moieties of a molecule is the use of 
its halide derivatives. The approximate order of increasing 
suitability for aliphatic reactions is: I > Br > Cl > F, which 
is the reverse of that found in aromatic nucleophilic 
substitution reactions[156]. In the radiolabeling of various 
fl uoro-alkyl indiplon derivatives, the use of bromine as the 
leaving group has an RCY (38-43%) similar to the use 
of a tosylate leaving group[157-159]. Notably, depending on 
the length of the alkyl chain, O-tosyl-containing precursor 
molecules gradually decompose over months[159]. Using a 
halide leaving group, even isotopic 19F (stable fl uorine) for 
18F exchange with minor precursor amounts is an option[160]. 
Ring opening of cyclic reactive entities offers another 
method for the introduction of radiofl uorine[161].

F luoro-aromatic compounds are known to be 
extraordinarily stable. This is true for the C-F bond too. 
Accordingly, radiofluorinated derivatives are very suitable 
radiotracers. For their no-carrier-added radiosynthesis, 
aromatic nucleophil ic substitutions on deactivated 
(electron-deficient) aromatic ring systems (i.e. activated 
in terms of nucleophilic reactions) with suitable leaving 
groups are needed. This activation is caused by electron 
withdrawing groups, whereas trialkylammonium (-N(Me3)

+) 
or nitro groups or special combinations of both act as 
leaving groups[162]. For aromatic nucleophilic substitution 
reactions, the -N(Me3)

+ group is preferred because it 
usually allows more reproducible radiosynthesis with 
higher RCYs. Beside deactivated carbocyclic aromates, 
pyridine rings are a valuable tool to be radiofl uorinated as 
they are already deactivated moieties. Recently, seven 
different strategies for radiolabeling the α4β2 nAChR 
ligands (–)/(+)-[18F]flubatine were compared[163]. The 
original radiosynthesis using a bromo-pyridine precursor 
and an ethoxycarbonyl protecting group at the tropane 
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nitrogen requires a microwave reaction followed by chiral 
HPLC separation of the enantiomers and provides overall 
RCYs of only 2%, which is insufficient for routine clinical 
PET investigation[164]. Several variations of leaving groups 
coupled in the ortho-position to pyridine nitrogen (-Cl, -NO2, 
-N(Me3)

+/iodide, -N(Me3)
+/triflate) and protecting groups 

(-Boc, -Trityl, -Fmoc) have been investigated. The use of 
chlorine was unsuccessful, while the use of –NO2 revealed 
~75% lower labeling effi ciency than that of -N(Me3)

+/iodide 
or -N(Me3)

+/triflate. A combination of the N(Me3)
+/iodide 

precursor and a Boc-protecting group provided the best 
results with an RCY of 60 ± 5%[163]. The radiosynthesis 
was independent of the use of a microwave and was easily 
transferable to automated synthesis modules to prepare 
for human application. Recently, automated synthesis has 
been reported by two institutions with RCYs of 30%[165] and 
25%[166].

The above-mentioned electron withdrawing groups (-I 
effect, -M effect) bound to aromatic moieties are a definite 
need to enable a nucleophilic attack. In a recent study 
on radiolabeling of cannabinoid receptor type 2-selective 
compounds (Fig. 6), the summarized effect of bromine in 
the meta-position to the leaving group –NO2 was regarded 
to be not strong enough to achieve an RCY >3%[167]. An 
introduction of nitrogen into the aromatic ring facilitated 
the nucleophilic substitution (RCY >28%) but reduced the 
affinity by a factor of 30[167]. To retain the affinity (Ki = 4.3 
nmol/L), a –N(Me3)

+ precursor was synthesized and used for 
radiolabeling and provided RCYs between 30% and 35%[168].

Besides low labeling yields, the use of bromine 
precursors may have further disadvantages such as an 
unsatisfactory quantitative separation of the radiolabeled 
product and its precursor (Fig. 7). Initial attempts to use a 
bromine precursor for radiolabeling of NS10743, a highly 

selective α7 nAChR ligand, failed. 
For some molecules, the structure does not allow 

nucleophilic substitution or the radiotracers decompose 
under the accompanying harsh conditions. In these cases, 
labeling can be achieved by a multistep procedure using 
small generic groups that allow both derivatisation with 
fl uorine as well as convenient introduction of radiofl uorine. 
These groups are referred to as secondary labeling 
precursors or prosthetic groups[148, 169, 170]. A large number 
of these 18F-labeled intermediates have been prepared 
and investigated, such as amines, alcohols, aldehydes, 
ketones, carboxylic acids, esters, and halides[148]. In 
particular, [18F]fl uoroalkynes and [18F]fl uoroalkylazides are 
interesting prosthetic groups as they can be coupled to 
a variety of molecules using the Huisgen “click” reaction 
which proceeds in high RCYs in aqueous solution under 
mild conditions. Thus, it can be used for the radiolabeling 
of water-soluble biomolecules[148, 171-175]. Generally, careful 
selection of prosthetic groups is critical for radiotracer 
development as they often exert great infl uence on target 
binding and/or in vivo stability[169].

A further path to 18F-labeled radiotracers is starting the 
labeling of a pre-prepared substance (reactive precursor) in 
a fi rst step and its chemical transformation in a subsequent 
reaction into the final product. This is demonstrated by 
means of a ring closure reaction (McMurry coupling, Fig. 8). 

We have recently used 18F-labeled alkyltosylates for 
the radiolabeling of phenolic precursors via etherification 
to obtain high-affinity and selective radiotracers for 
the serotonin transporter[177] and the enzyme phos-
phodiesterase 10A[178], respectively, with RCYs between 
11% and 25%. High metabolic stability of the ether 
bond is expected because negligible defluorination was 
observed[178]. 

Fig. 6. Effect of leaving group (LG) on radiolabeling yield of a new cannabinoid receptor type 2-selective drug. RCY, radiochemical yield.
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Fig. 7. Radiosynthesis of the α7 nAChR ligand [18F]NS10743 using two different precursors. The bromo precursor NS9177 proved 
unsuitable for radiolabeling. The radio-HPLC sample is from the reaction mixture with the bromo precursor. RCY, radiochemical 
yield.

By contrast, [18F]fl uoroacetamides have proven to be 
metabolically unstable due to hydrolytic cleavage[169]. Thus, 
high-affinity and selective radiotracers for the VAChT[179] 
and the GABAA receptor[180], respectively, are not suitable 

for in vivo imaging because metabolites that cross the BBB 
are generated. The metabolic instability is caused by the 
action of hydrolytic enzymes, e.g. carboxylesterase[169]. In 
such cases, the use of [18F]fluoropropane sulfonamides 

Fig. 8. Introduction of [18F]fl uoride into a complex molecule in a fi rst step and subsequent McMurry coupling to the fi nal product, a PET-
tracer for imaging cyclooxygenase-2[176].



Peter Brust, et al.    Development of 18F-labeled radiotracers for neuroreceptor imaging with PET 789

can be recommended because of their stability against 
carboxylesterase-mediated hydrolysis[169].

Specifi c Binding of Radiotracers in vitro 

To determine the specific target binding of newly-
developed radiotracers, various in vitro binding assays 
can be used[100]. These provide specifi c features useful for 
target characterization and in vitro screening; an example 
of affinity determination of [18F]NS10743[114] is shown in 

Fig. 9. In a homologous competitive binding assay using 
SHSY5Y cells expressing the human α7 nAChR and 
increasing concentrations of [18F]NS10743 as radiotracer, 
an equilibrium dissociation constant KD of ~9 nmol/L was 
estimated. Non-specific binding was determined in the 
presence of 300 μmol/L (−)-nicotine tartrate and subtracted 
from the total binding. 

Alternatively, in vitro binding affinity can also be 
determined by autoradiography, where brain slices are 
incubated with increasing radiotracer concentrations. 
Although more time-consuming, this technology has the 
advantage that additional information on the regional 
distribution of the target within the brain is available. As an 
example, Fig. 10 shows the distribution of α4β2 nAChRs 
in rat brain as determined with the two enantiomers of 
[18F]flubatine. Brain slices were incubated with increasing 
radiotracer concentrations to obtain data on target density 
and radiotracer affinity. As expected, these clearly show 
the highest receptor densities in the thalamus, superior 
colliculus, and nucleus interpeduncularis[181]. Unexpectedly, 
different affi nities were estimated for the various regions. In 
principle, this may be caused (1) by a remaining part of the 
endogenous ligand (ACh) competing with the radiotracers, 
(2) different allosteric receptor regulation in the various 
regions, or (3) by additional binding to (an)other target(s).

In another experiment (Fig. 11), additional information 
was obtained on the selectivity of (–)-[18F]fl ubatine for α4β2 

Fig. 9. Saturation analysis of [18F]NS10743 binding on membranes 
prepared from cultured SHSY5Y cells expressing the 
human α7 nAChR. Non-specific binding was determined 
in the presence of 300 μmol/L (–)-nicotine tartrate and 
subtracted from total binding.

Fig. 10. In vitro autoradiographs of α4β2 nAChR distribution in rat brain using (+)-[18F]fl ubatine and (–)-[18F]fl ubatine as radioligands. 
Increasing concentrations of flubatine were used for homologous competition. Non-linear regression analysis was used to 
estimate the affi nities (1/KD) in various brain regions. Nc, nucleus.
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nAChRs. The radiotracer binding in pig brain was inhibited 
by co-incubation with various drugs of different selectivities 
for nAChRs. The nonselective inhibitor epibatidine[182] 
and the β2-subtype-selective inhibitors A-85380[183] and 
cytisine[182] clearly reduced the (–)-[18F]flubatine binding, 
whereas the α7-subtype-selective inhibitor MLA[184] did not.

Furthermore, autoradiographic experiments are 
well-suited to compare various radiotracers and target 
binding in different species. For example, the distribution 
of GABAA receptors in pig brain as measured with the 
gold-standard [3H]flunitrazepam and a new 18F-labeled 
indiplon[185] derivative[186] is similar to that in rat brain (Fig. 
12). Another example shows the use of [3H]citalopram, 
the most selective serotonin transporter radioligand[187], 
to obtain in vitro autoradiographs of serotonin transporter 
(SERT) distribution in the pig brain (Fig. 13). Cresyl violet 
staining of parallel slices allowed the precise delineation of 
numerous brain regions and correlation analysis between 
autoradiographs of the gold-standard ([3H]citalopram) 
and a new PET radiotracer ([18F]FMe-McN5652). A highly 

signifi cant correlation between the radioligands (r = 0.9, P 
< 0.001) was found[188].

Usually, in vitro autoradiography is a good predictor 
of the imaging properties of a new radiotracer. However, 
radiotracers with unacceptable in vitro data are still able to 
provide good images in vivo. An example is the dopamine 
transporter-selective SPECT radiotracer [99mTc]TRODAT-1. 
In vitro autoradiography with this radiotracer shows a high 
non-specifi c background with less conspicuous binding in 
the rat striatum, a dopamine-transporter-rich brain region[189]. 
Meanwhile, [99mTc]TRODAT-1 has been introduced into the 
clinic as a tool for the diagnosis of Parkinson’s disease[190]. 

Metabolism of Radiotracers in Animals

Investigation of radiotracer metabolism in vivo needs 
special consideration, especially for neuroimaging. 
Because of the exceptionally great functional diversity of 
the brain compared to other organs, there is a need to 
precisely differentiate between various brain regions with 

Fig. 11. In vitro autoradiographs of α4β2 nAChR distribution in pig brain using (–)-[18F]fl ubatine as radioligand. Epibatidine, A-85380, 
cytisine and MLA were used as competitors to assess the specifi city and selectivity of radiotracer binding to α4β2 nAChRs. 
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Fig. 12. In vitro autoradiographs of GABAA receptor distribution in pig and rat brain using [3H]fl unitrazepam and a new 18F-labeled indiplon 
derivative[186] as radioligands (adapted from Deuther-Conrad et al. Curr Radiopharm 2009[158]).

regard to specific radiotracer binding and target density. 
Therefore, it has to be ensured that the PET image is 
derived from the radiotracer only and not blurred by the 
presence of radiolabeled metabolites. Consequently, the 
potential presence of radiometabolites in the brain needs to 
be investigated and ideally excluded. Furthermore, the use 
of compartmental models for the quantitation of receptor 
binding parameters depends on an exact measurement 
of the radiotracer availability for brain uptake. Accordingly, 
the radioactivity measured in blood samples needs to be 
corrected by subtraction of the amount of radiometabolites. 

Standard chromatographic methods such as high-
performance liquid chromatography (HPLC), thin-layer 
chromatography (TLC) and solid-phase extraction (SPE) 
are used to separate the radiotracer and its metabolites. 
In principle, all methods are based on the different 
interactions of various analytes with the stationary and 
mobile phases. After separation has been achieved, the 

activity of the analytes is determined by special online 
activity detectors integrated into the HPLC system, by 
autoradiography of TLC plates, or by measurement of 
eluted substances in well-counters. While HPLC and TLC 
are standard procedures during radiotracer development, 
SPE offers advantages in the clinical setting because of 
its high throughput and low cost. However, SPE has to be 
validated by comparison with HPLC or TLC before use.

A common concern in the development of PET 
radiotracers for neuroimaging is the presence of lipophilic 
metabolites in blood, because they are likely to cross the 
BBB just because of their lipophilicity[107]. Such metabolites 
may either be active, i.e. having a target-affinity high 
enough for significant binding, or inactive. In the former 
case, quantification is highly confounded because the 
measured signal represents undetermined proportions of 
parent tracer and metabolite, each of which may have a 
different affinity for the target[107]. In the latter case, non-

Fig. 13. In vitro autoradiographs of serotonin transporter distribution in pig brain using [3H]citalopram and [18F]FMe-McN5652 as 
radioligands, compared to an adjacent cresyl violet-stained brain slice (adapted from Kretzschmar et al. Eur Neuropsy-
chopharmacol 2003[188]). 
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specifi c binding is increased, leading to a decreased signal-
to-noise ratio. 

For example, the 5-HT2A receptor PET radiotracer 
[18F]altanserin is metabolized by reduction of ketone to 
yield [18F]altanserinol, which is transported across the 
BBB[191]. In the brain, it contributes to non-specifi c binding. 
However, the signal obtained from specific receptor 
binding is regarded to be unchanged because the affi nity 
of altanserinol for serotonin receptors is negligible[191]. This 
offers the possibility of using [18F]altanserin together with 
a constant infusion paradigm for quantification of 5-HT2A 
receptor availability in the brain[191, 192]. Alternatively, the 
use of the simplified reference tissue model (see below) 
allows consideration of the presence of radiometabolites in 
brain, as long as their contribution to non-specifi c binding 
is homogenous throughout and there is a reference region 
without specifi c binding[193]. 

Confounding effects of brain metabolites on dopamine 
transporter (DAT) imaging have been observed for a 
variety of radiotracers such as [123I]β-CIT[194], [11C]β-CIT[195], 
[18F]FECNT[196], [11C]PE2I[197], and [11C]/[18F]LBT-999[198]. 

In the case of β-CIT, lipophilic metabolites have been 
detected[194, 195]. Accordingly, labeling of β-CIT with 11C 
by either N-methylation or O-methylation has resulted in 
radioligands with different kinetics in the monkey brain. 
Preparation of two of the putative labeled metabolites 
[N-methyl-11C]β-CIT-acid and [O-methyl-11C]nor-β-CIT, and 
investigation of their brain uptake, revealed that <0.4% 
of the injected [N-methyl-11C]β-CIT-acid entered the brain 
whereas 5%–6% of the more lipophilic [O-methyl-11C]
nor-β-CIT entered and accumulated in the striatum and 
thalamus. Notably, nor-β-CIT has been found to specifi cally 
bind to the serotonin transporter[199], providing an additional 
confounding effect. 

Regarding [11C]PE2I, a benzyl alcohol metabolite 
derived from biotransformation by cytochrome P450 
enzymes residing predominantly in the liver[200], has been 
shown to cross the BBB[197]. In the brain, it is supposed 
to be further metabolized by alcohol and aldehyde 
dehydrogenases. Also, for [11C]LBT-999 and [18F]LBT-
999, hydroxylated derivatives have been found. Their 
accumulation in the striatum indicates specific binding to 
the DAT[198]. 

For [18F]FECNT, N-dealkylation has been shown 
to provide a brain-penetrant radiometabolite of even 

higher in vitro DAT affinity than the parent compound 
itself, preventing the use of a reference tissue model for 
quantitation[196, 201].

Lipophilicity is not necessarily a prerequisite for 
brain uptake of radiometabolites. [18F]fluoroacetamides 
have been shown to be metabolically unstable due to 
hydrolytic cleavage of the amide bond. The resulting 
highly hydrophilic [18F]fluoroacetate is transported into 
the brain[202-204], at least partly mediated by carboxylic 
acid transporters at the BBB[205]. [18F]fluoroacetate was 
proposed as a major metabolite of radiotracers for imaging 
the VAChT, e.g. [18F]FAMV[179] and [18F]FAA[206], or GABAA 
receptors[180], preventing the use of these radiotracers for 
neuroimaging. Interestingly, it was found that fl uoroacetate 
is defluorinated by glutathione S-transferases[207] which 
are highly expressed in brain tissue[208]. To explain the high 
amounts of radioactivity in rat ventricles after injection of 
[18F]FAMV, it was proposed that the elimination of brain 
metabolites may occur by clearance via the cerebrospinal 
fl uid[179].

Besides knowledge regarding the potential of 
radiometabolites to cross the BBB, information on the 
precise amounts of radiometabolites in plasma is often 
needed for quantitation of receptor binding of PET 
radiotracers in vivo (see below). The faster the metabolism, 
the stronger the alterations of the input functions and the 
infl uence of potential bias. Determination of metabolites in 
rodents or larger animals such as pig or monkey provides 
suitable estimates for clinical PET studies. Because 
of the higher surface-to-volume ratio, the influence of 
metabolism on the PET quantitation of human data is usually 
overestimated when investigated in experimental animals. 
Thus, for the serotonin transporter PET radiotracers (+)-[11C]
McN5652 and [18F]FMe-McN5652, the metabolism in pigs[209] 
is about twice as fast as measured in humans[210, 211]. Another 
very good example is the α4β2 nAChR PET radiotracer 
(–)-[18F]flubatine. Rather strong differences between 
pigs and humans have been reported. While ~60% 
of metabolites were found in pig plasma at 2 h after 
injection[212], this value was only ~10%–15% in humans[213]. 
Because of this very low amount of radiolabeled metabolites, 
full kinetic modeling was possible even without metabolite 
correction of the input function[214], which is of great 
advantage for routine clinical use.

The high metabolic stability of flubatine has recently 
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been confi rmed in an in vitro study comparing mouse and 
human microsomal preparations (containing enriched 
cytochrome P450 enzymes[215, 216]), where a 5–6-times 
faster metabolism was found in mice. Interestingly, 
the (–)-enantiomer is significantly less stable than the 
(+)-enantiomer (unpublished data). Stereoselective 
metabolism of drugs by P450 enzymes is a common 
phenomenon and may also explain differences in the 
metabolism of other enantiomeric PET radiotracers, such 
as (+)-/(–)-[11C]McN5652[211] or the σ1 receptor-selective 
(R)-/(S)-[18F]fl uspidine[136].

Proof of Target-specifi c Binding in Animals

Usually one of the first steps to demonstrate target-
specific binding in vivo is the investigation of radiotracer 
biodistribution in mice or rats. Although in vitro studies 
allow the estimation of target affinities, the bioavailability 
of radiotracers is a confounding factor for target binding 
in vivo. The bioavailability of radiotracers is infl uenced by 
blood fl ow, plasma protein binding, membrane permeability, 
and metabolism. Furthermore, the optimized settings 
used for radioligand binding assays usually differ from the 
physiological conditions found in vivo where different pH 
and temperature as well as the presence of endogenous 
competitors may be confounding factors. The complex 
interaction of all these parameters can only be investigated 
in vivo and justifi es the approval of animal experiments by 
legislative authorities. 

Information on the time-dependent biodistribution of 
radiotracers can be obtained by ex vivo tissue sampling 
or small-animal imaging[7, 100]. The two methods are rather 
complementary than competitive, both offering advantages 
and disadvantages (see Table 2). More detailed information 
is available elsewhere[100]. 

In addition to the use of rodents for ex vivo tissue 
sampling or small-animal imaging, larger animals such as 
monkeys or pigs are used for PET imaging with human 
scanners. 

Independent of the type of in vivo study chosen, the 
strategy to obtain certain information about the radiotracer 
is similar. Studies have to show that the brain uptake is 
sufficiently high, specific, and selective to justify human 
application for neuroimaging. Furthermore, data obtained 
on whole-body radiotracer kinetics can also be used to 
estimate the absorbed radiation dose as a prerequisite for 
human application[217]. 

The magnitude of brain uptake is mainly determined 
by the size, lipophilicity, and H-bonding capacity of the 
radiotracer[141, 218], i.e. parameters accessible by in vitro 
investigations. The brain uptake may occasionally be 
confounded by affinity for efflux transporters at the BBB. 
A variety of in vitro systems representing the BBB have 
been described, but the optimal use of these data, in terms 
of extrapolation to human unbound brain concentration 
profiles, remains to be fully exploited[219]. Therefore, 
animal experiments are still indispensable to investigate 
this aspect. Notably, the expression of the various efflux 

Table 2. Advantages and limitations of ex vivo tissue sampling and small-animal imaging

Parameter Ex vivo tissue sampling Small-animal imaging

Anesthesia Just before death  Throughout the study

Applied activity (per mass) ~ Human dosage >> Human dosage

Radiation damage Unlikely  Possible

Estimation of absorbed radiation dose Possible Possible (preferred)

Multiple time point measurements Multiple subjects needed Single subjects

Longitudinal studies Not possible Possible

Animal models of disease Relatively high expenses  Possible

Tracer kinetic modeling Relatively high expenses Possible

Physiology Unaffected  Potentially affected

Blocking effects of drugs Unaffected by applied dosage Potentially affected by applied dosage 



Neurosci Bull     October 1, 2014, 30(5): 777–811794

transporters at the BBB differs significantly between 
species[220, 221]. Among drug transporters, breast cancer 
resistance protein appears to be most abundant with an 
expression level ~2-fold greater in humans than in mice. 
By contrast, the expression level of P-gP in humans is 
~2.5-fold lower than the corresponding mdr1a gene in 
mice[221]. Consequently, low brain uptake in rodents does 
not necessarily forecast the uptake in other species like 
humans. For example, the brain uptake of the high-affi nity 
and selective α7 nAChR ligand [18F]NS14492 is ~10-times 
higher in pigs than in mice, suggesting suitability for human 
brain imaging[222]. Similar species differences between 
rats, guinea pigs, and monkeys have been reported for the 
5-HT2A receptor ligand [18F]altanserin, the NK1 receptor 
antagonist [11C]GR205171, and the classical P-gP substrate 
[11C]verapamil[223].

The specifi city and selectivity of brain uptake is another 
important issue to consider in animal experiments[7]. For 
targets with a heterogeneous distribution, the ratio of brain 
uptake between a region with high target expression and a 
region with negligible or low target expression represents a 
reasonable measure of specifi c binding. A typical example 
is the dopamine D2 receptor. The caudate/cerebellum ratio 
was used to verify specifi c binding of the fi rst (D2-receptor 
specific) PET radiotracers, 3-N-[11C]methylspiperone and 
[11C]raclopride, in human and monkey[224, 225]. Since these 
early studies, the cerebellum has often been used as suitable 
reference region for the development of PET radiotracers 
for other dopamine receptors[226], serotonin 5-HT1A and 
5-HT2 receptors[227, 228], muscarinic and nicotinic ACh 
receptors[229-231], histamine receptors[232], and the serotonin 
transporter[188, 233]. An example of ex vivo autoradiography 
of SERT distribution in rat brain where the radiotracer 

[18F]FMe-McN5652 (30 MBq) was injected intravenously 
is shown in Fig. 14B. The animal was sacrificed 90 min 
later and the brain subjected to autoradiography. Regions 
with the highest SERT expression such as frontal cortex, 
striatum, and substantia nigra[187, 234] clearly showed the 
highest radiotracer accumulation, providing evidence for 
radiotracer selectivity[188]. Furthermore, comparison with 
an in vitro autoradiograph of rat brain (Fig. 14A) using the 
same radiotracer clearly showed a high correlation of SERT 
binding between the approaches.

An example of how an ex vivo binding ratio has been 
used to identify the radiotracer with the highest σ1 receptor 
binding in mouse brain among a series with various lengths 
of the alkyl side chain is shown in Fig. 15. Notably, for 
the σ1 receptor, as for metabotropic glutamate receptor 1 
(mGluR1)[59] and the GABAA receptor[180], the cerebellum 
is among the regions with the highest expression and 
cannot be used as a reference region in this case. The ratio 
between the region with lowest radiotracer accumulation 
(olfactory bulb) and that with highest accumulation (facial 
nucleus) was chosen for the estimation of specifi c receptor 
binding. Consistent with the highest brain-to-plasma ratio 
at 60 min post-injection and the highest target affi nity, this 
ratio was highest for the ethyl derivative [18F]fl uspidine[89].

Besides the use of reference regions for the evaluation 
of specific receptor binding in brain, blocking studies are 
recommended. A high concentration of a drug that binds 
specifi cally to the receptor site is injected before or together 
with the radiotracer and thereby prevents its specifi c binding 
to the target[100]. From the difference between a control 
study and the blocking study, information on the specific 
binding can be obtained. Using a similar setup, the target 
selectivity of the radiotracer can be investigated. As shown 

Fig. 14. Comparison of in vitro (A) and ex vivo (B) autoradiographs of serotonin transporter distribution in rat brain using [18F]FMe-
McN5652 as radioligand (adapted from Kretzschmar et al. Eur Neuropsychopharmacol 2003[188]).
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Fig. 15. Comparison of ex vivo autoradiographs of σ1 receptor distribution in rat brain using (±)-[18F]fluspidine and derivatives with 
various lengths of the alkyl side-chain as radioligands (adapted from Brust et al. Curr Med Chem 2014[89]). 

Fig. 16. Comparison of ex vivo autoradiographs of serotonin transporter distribution in rat brain using [18F]FMe-McN5652 as radioligand. Specifi c 
transporter inhibitors were used to assess the selectivity of transporter binding (adapted from Marjamäki et al. Synapse 2003[235]). 

in Fig. 16, the selectivity of the new SERT radiotracer 
[18F]FMe-McN5652 was assessed by ex vivo autoradiography 
performed on rat brain at 120 min after radiotracer injection 
and 180 min after administration of nisoxetine, a specific 
norepinephrine uptake inhibitor, or GBR12909, a specific 

dopamine uptake inhibitor[235]. In contrast to the selective 
SERT inhibitor fl uoxetine, neither drug inhibited binding of 
[18F]FMe-McN5652 to the rat midbrain, a region with high 
SERT expression. 

In comparison to autoradiography, PET images of 
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Fig. 17. PET images of a pig brain (left; volume 110 mL) and an ex vivo autoradiograph of a mouse brain (right; volume 0.4 mL) are 
compared to demonstrate the difference in resolution between the two imaging modalities (adapted from Brust et al. J Nucl Med 
2014[237]).

animal brains suffer from low resolution. This can clearly be 
seen in Fig. 17 where an ex vivo autoradiograph of a mouse 
brain (volume 0.4 mL) is compared to a PET image of a pig 
brain (volume 110 mL). Despite this limitation, the specifi city 

of radiotracer binding may be determined in animal PET 
studies. The coronal PET images in Fig. 17 show that 
administration of the σ1 receptor ligand SA4503 prevents the 
specifi c target binding of (S)-[18F]fl uspidine in pig brain[236]. 

Estimation of Receptor-binding Parameters in 

Animals

One of the great advantages of PET is the possibility of 
precise quantitation of local tracer concentrations in tissue; 
this ultimately enables the estimation of receptor binding 
parameters in vivo. Preclinical PET studies in animals are 
suitable for this purpose[7, 8] and hence permit appropriate 
radiotracer evaluation. Initially, the PET scanner´s 
resolution was rather low (~10 mm)[238] allowing successful 
quantitation only in the brains of larger animals such as 
primates[239, 240], dogs[241-243], cats[244, 245], and pigs[246-248]. 
During the last decade, various dedicated PET cameras for 
imaging in small animals have been developed, providing a 
resolution of 1–2 mm[6, 249]. 

Moreover, the first PET/MRI systems have become 
available for both human and small-animal imaging, 
allowing more accurate identification of brain regions[250]. 
Thus, accurate quantitation is possible and similar to 
that achievable with autoradiography[7]. In addition, 
pharmacokinetic, mult iple-tracer, and longitudinal 
studies can be performed in single subjects constituting 
a great potential for basic neuroscience research[251], 
neuropharmacology[8, 252], and the investigation of animal 
models of neurological and neuropsychiatric disorders[7].

While in vitro autoradiography was the method of 
choice for receptor mapping for more than three decades, 

the suitabil ity of animal PET/MRI for that purpose 
has recently been proven. For example, Syvänen[253] 
determined the GABAA receptor density, Bmax, in rat 
brain using four doses (between 4 μg and 400 μg) of 
[11C]flumazenil. Five regions with high GABAA receptor 
expression were investigated and the highest Bmax was 
found in the hippocampus (44 ng/mL) and the lowest in the 
cerebellum (33 ng/mL). No signifi cant regional differences 
in the receptor affi nity, KD (5.9 ng/mL), were detected. Using 
the same setup, an experimental model of epilepsy was 
investigated and a signifi cant decrease of Bmax by 12% was 
reported, while KD remained unchanged[253]. 

Although convincing in animals, a similar protocol 
applied to humans has major drawbacks. Multiple 
radiotracer injections significantly increase the radiation 
burden. Furthermore, use of pharmacological doses 
requires much stronger safety regulations. Therefore, a 
common and generally-accepted approach to quantify 
radiotracer receptor binding in humans is estimation of 
the binding potential, BP = Bmax/KD

[107]. Assuming that 
KD remains unchanged, changes of BP are directly 
proportional to changes in Bmax, a postulate which holds in 
the majority of such studies.

The BP can be estimated by compartmental mod-
eling[254-259]. A compartment model is a linear mathematical 
model that describes the transfer of a radiotracer 
among various compartments which are regarded to be 
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homogenous at all times with respect to the radiotracer 
concentration. Compartmental models describe the tracer 
kinetics as a fi rst-order process which is in general, but not 
always, justified in view of the very low concentrations in 
which the tracer is present in the investigated organism. 

Also, one should keep in mind that the different 
compartments do not necessarily correspond to unique 
spaces (e.g. extracellular versus intracellular) but usually 
rather represent different chemical modifications in which 
the radioactive label resides (see above, the radiotracer 
and its metabolites). For this reason, all compartmental 
concentrations in PET are usually referred to the same 
common volume (total tissue space). This has to be 
considered when interpreting the numerical results in order 
to avoid misconceptions. In other words, compartmental 
models superficially relate tracer concentrations in the 
different compartments, but in fact represent (local) mass-
balance equations. Radiotracer exchange between the 
different compartments is described by rate constants 
(usual unit: 1/min) specifying the fractional change of 
concentration per unit time in the respective compartment 
due to the process modeled by that specifi c rate constant.

As long as the tracer kinetics can be considered 
linear (which is usually a valid assumption) a sufficiently 
comprehensive compartmental model (with a sufficient 
number of compartments) will be able to describe any 
given system. Increasing the number of compartments 
suffi ciently, one can even model diffusive processes (which 

inherently imply the presence of concentration gradients). 
For the evaluation of PET data, however, this is not a 
feasible strategy. It rather turns out that very simple one- 
or two-tissue compartmental models suffi ce to adequately 
describe the data at the given limits of spatial and temporal 
resolution. For a more in-depth description of the basics 
of compartmental modeling we refer the reader to the 
literature[258, 259].

Typical examples of compartmental models are 
shown in Fig. 18, where Ca refers to the arterial plasma 
concentration of the unmetabolized radiotracer, Mt to the 
total amount of radiotracer, Mf to the free fraction, and Mb 
to the bound fraction. Linear systems of ordinary differential 
equations describe the changes of radiotracer contents in 
these models. Based on these equations, the rate constants 
for the blood-brain and brain-blood transfer (K1 and k2’ or 
k2”), and the rate constants for the specifi c binding/release 
(k3’ and k4), can be estimated by nonlinear least-squares 
fi ts. Distribution volumes calculated from the rate constants 
provide parameters related to receptor density. For the 
one-tissue compartmental model, the respective parameter 
is the total distribution volume VT (equal to K1/k”2). For the 
two-tissue compartmental model the total distribution volume 
VT = VND + VS = (K1/k2’)(1 + k3’/k4), the specific distribution 
volume VS = (K1/k2’)(k3’/k4), and the binding potential BP = 
k3’/k4 provide measures of the specifi c binding. 

Fig. 19 shows an example, where a two-tissue 
compartment model was used to estimate BP of the SERT 

Fig. 18. Compartmental models used to describe receptor binding of radiotracers in brain.
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radiotracer [18F]FMe-McN5652 in anesthetized pigs under 
control conditions and after i.v. injection of the highly-
selective SERT inhibitor citalopram (5 mg/kg). Under 
control conditions, BP values clearly reflected the SERT 
distribution as demonstrated by correlation analysis with 
[3H]citalopram autoradiography with the highest values in 
the thalamus and the lowest in the cerebellum. Pre-injection 
of citalopram significantly inhibited [18F]FMe-McN5652 
accumulation, as demonstrated by the time-activity curves, 
and BP estimated from these curves[209, 260]. This clearly 
demonstrated the specifi city of the radiotracer uptake. The 
selectivity for the norepinephrine transporter (NET) was 
demonstrated by pre-injection of maprotilin, a selective 
NET inhibitor[209].

Accurate measurement of the arterial plasma time-
activity curve as well as consideration and correct 
determination of metabolites in plasma is important for 
receptor quantitation based on compartmental models 
using an arterial input function. This poses substantial 
problems in imaging of small animals and humans. 
Therefore, alternative quantification strategies, called 
“references tissue models’’ have been developed[261, 262]. 

These models rest on the observation that (apart from 
minor effects of different arrival times) the arterial input 
function is identical in different brain regions. Then, it is 
possible to use the tissue response to this input function 
in one region as an indirect measure of the input function 
if that region is devoid of the targeted receptor. This 
obviates the need for actual measurement of the arterial 
plasma time-activity curve and also makes metabolite 
analysis unnecessary. Furthermore, this strategy can be 
used even in the presence of brain metabolites. Although 
these techniques have several advantages compared to 
arterial blood sampling (especially non-invasiveness), they 
quite sensitively rely on several assumptions and should 
be used with great care. For example, the existence of 
any specific binding in the reference region results in an 
underestimation of specifi c binding in the target region[257].

PET also allows the visualization of specifi c receptor 
binding by estimation of the binding parameters in each 
voxel, i.e. each image point in the three-dimensional 
rectangular grid[263]. The higher the number of voxels, 
the higher the number of calculations to be executed. 
To be able to perform about a million estimations in a 

Fig. 19. Comparative PET and autoradiographic study of serotonin distribution in pig brain using [18F]FMe-McN5652 and [3H]citalopram 
as radioligands. Binding potential values estimated from time-activity curves (B) of a PET study in various brain regions 
(A) are compared to results from an in vitro autoradiographic study using [3H]citalopram (C) (adapted from Brust et al. 
Neuropsychopharmacology 2003[209] and Brust et al. Synapse 2003[212] ).



Peter Brust, et al.    Development of 18F-labeled radiotracers for neuroreceptor imaging with PET 799

reasonable time, graphical methods are available allowing 
linear rather than non-linear regression. For radiotracers 
with irreversible binding the Gjedde-Patlak graphical 
analysis[264-266] and for those with reversible binding the 
Logan graphical analysis[267] have become the methods of 
choice. For the two-tissue compartmental model, the slope 
of the regression line in the Logan plot represents the total 
distribution volume VT, defi ned by K1/k2(1+k3/k4) + fbv (fbv = 
fractional blood volume in the target region, k3/k4 = BP[267]). 

Fig. 20A shows a parametric map of VT of the α7 
nAChR radiotracer [18F]NS10743 resampled into the 
MR-based common stereotactic space for the brain of a 
juvenile pig[230]. Fig. 20B shows VT of [18F]NS10743 after 
administration of the selective α7 nAChR antagonist 
NS6740. This clearly demonstrates specific radiotracer 
binding in pig brain.

Newer developments include proposals to obtain 
parametric images even in cases without either an 
arterial input function or a reference region[268], direct 
reconstruct ion algori thms of l inear and nonl inear 
parametric images, and joint estimation of parametric 
images and input function[263]. Further validation of these 
concepts is still needed.

Proof-of-Concept in Humans

The final step in PET radiotracer development is proof-

of-concept in humans. A prerequisite to get permission 
for such studies is the transition of the biomarker from 
research-grade radiochemical to a radiopharmaceutical, 
for which higher standards of product quality must be 
met[269]. Many aspects of radiation safety, toxicology issues, 
quality control, licensing, and regulatory control need to be 
considered for the production of radiopharmaceuticals and 
these have been extensively reviewed elsewhere[5, 100, 270, 271]. 
The regulatory framework has become increasingly 
restrictive during the last two decades. Therefore, the 
time between fi rst successful radiosynthesis of a new PET 
radiotracer and its first human use is at least between 5 
and 10 years. For example, in the case of the α4β2 nAChR 
radiotracer (–)-[18F]flubatine, the time between the first 
report on radiosynthesis[164] and the fi rst report on human 
use[16] was 8 years. For [18F]FMe-McN5652 it was 10 
years[210, 272], and for [18F]FEOBV[126], a radiotracer for the 
VAChT, it has been almost 20 years[273]. At the beginning 
of neuroreceptor imaging with PET this transition time was 
much shorter, in the range of 1–2 years as exemplifi ed by 
[11C]raclopride[225, 274], 3-N-[11C]methylspiperone[224], and 
[11C]fl umazenil[49, 275].

However, even if a radiotracer is not further developed 
into a radiopharmaceutical for imaging in human subjects it 
may fi nd widespread use in preclinical studies with special 
animal PET devices[276] to investigate animal models of 
diseases[7] or new drugs[8, 252]. 

Fig. 20. Parametric maps of the distribution volumes (VT, mL/g) of [18F]NS10743 under baseline (A) and blocking (B) conditions in sagittal 
plane of pig brain. The VT values were calculated by the classic Logan method using the arterial input function for [18F]NS10743 
(adapted from Deuther-Conrad et al. Eur J Nucl Med Mol Imaging 2011[230]).
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Conclusion

The main focus of this review is the development and 
evaluation of radiolabeled ligands (radiotracers) in 
order to investigate brain functions in living organisms. 
Application of radiotracers provides images of transport, 
metabolic, and neurotransmission processes on the 
molecular level. PET is a method used in humans to 
acquire such information. It is the most sensitive and 
specific molecular in vivo imaging method available at 
present. Through the integration of chemical/radiochemical, 
pharmaceutical/radiopharmaceutical, biochemical and 
radiopharmacological basic research, computational 
chemistry, and with the aid of nuclear medicine diagnostics, 
a new approach in neuroscience has been made available. 
The foremost importance of this approach is the diagnosis 
and therapeutic monitoring of brain diseases.
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