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Protein kinase D (PKD) is an evolutionarily-conserved family of protein kinases. It has structural, regulatory, 
and enzymatic properties quite different from the PKC family. Many stimuli induce PKD signaling, including 
G-protein-coupled receptor agonists and growth factors. PKD1 is the most studied member of the family. 
It functions during cell proliferation, differentiation, secretion, cardiac hypertrophy, immune regulation, 
angiogenesis, and cancer. Previously, we found that PKD1 is also critically involved in pain modulation. Since 
then, a series of studies performed in our lab and by other groups have shown that PKDs also participate 
in other processes in the nervous system including neuronal polarity establishment, neuroprotection, and 
learning. Here, we discuss the connections between PKD structure, enzyme function, and localization, and 
summarize the recent fi ndings on the roles of PKD-mediated signaling in the nervous system.
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Introduction

Members of the protein kinase D (PKD) family are 
diacylglycerol (DAG) and protein kinase C (PKC) effectors. 
They are activated by the actions of hormones, growth 
factors, neurotransmitters, and other stimuli through 
phospholipase C (PLC)[1].  Three widely-expressed 
mammalian homologs are PKD1 (mouse PKD, human 
PKCμ)[2, 3], PKD2[3], and PKD3[4] (also named PKC), but 
the levels of individual PKDs vary in different tissues. 
Recent fi ndings have revealed that PKDs participate in the 
regulation of Golgi function through modulating the fi ssion 
of vesicles from the trans-Golgi network (TGN)[5, 6]. Other 
recent reports have shown that PKDs function during cell 
proliferation and apoptosis, carcinogenesis, and intracellular 
trafficking. Here, we describe the connections between 
PKD structure, enzymatic function, and localization, and 
then summarize recent fi ndings on the roles of PKD in the 

nervous system.

The PKD Family Belongs to the CaMK Group

The PKD family comprises PKD1, PKD2, and PKD3. PKD 
was initially described as an atypical isoform of the PKC 
family[7], which is a member of the protein kinase A, G, and 
C (AGC) serine/threonine kinase subfamily[8, 9]. However, 
later studies revealed that PKD has mixed features of 
different subclasses of the PKC family, so it does not belong 
to any one of them. For example, its pleckstrin-homology 
(PH) domain is closely related to the PKB and G-protein-
coupled receptor kinase (GRK) families and is not found in 
any PKC enzyme, while the cysteine-rich domains are more 
reminiscent of classical and novel PKCs. The structure and 
function of the catalytic domain of PKD are quite different 
from those of the AGC/PKC family members[2-4, 10]. Indeed, 
PKD has now been classified as a new family within the 
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CaMK group[11], separate from the AGC group[12]. Thus, the 
functions of protein kinases are most appropriately linked to 
their catalytic domain structures.

Protein Structure, Regulation, and Intracellular 

Localization 

PKD1 has multiple domains: an N-terminal H-domain with 
a high proportion of apolar amino-acids, two cysteine-
rich zinc-finger regions (C1A and C1B), a region rich in 
negatively-charged amino-acids, a PH domain, and a 
protein Ser/Thr kinase catalytic domain. Similar structures 
are found in PKD2 and PKD3 (Fig. 1). The elaborate 
constitution of PKD1 is intricately linked to its catalytic 
functions, regulation, and intracellular localization (Table 
1). PKD1 can be activated through different pathways. 
First, some stimuli activate PLC, which induces PKD 
phosphorylation on the activation loop by PKCε and/or 
PKCη directly (or indirectly)[13-15]. For example, G-protein-
coupled receptors or receptor tyrosine kinases that activate 
PLC and PKCε or PKCη cause the phosphorylation of PKD 
at Ser744 and Ser748 in the activation loop[16-19]. Second, 
Gβγ subunits directly activate PKD1[20-22]. The precise 

mechanism of this activation in vivo needs to be defi ned. 
Third, the cleavage of PKD1 by caspase promotes its 
activation because it releases the inhibition of regulatory 
domains such as the zinc-fi ngers. This caspase-mediated 
activation of PKD1 has been demonstrated both in vitro 
and in vivo[23].

The activity of PKD1 is controlled by its regulatory 
domains (Table 1). The two zinc-fi ngers C1A and C1B and 
the PH domain inhibit the kinase activity. Unlike other PH 
domains that bind to lipids, the PH domain in PKD1 can 
bind to several proteins. Mutations in the PH domain can 
activate PKD1[17, 24, 25]. Deletion of the two zinc-fi ngers also 
fully activates PKD1[26, 27]. 

PKD transportation to different destinations, such 
as the plasma membrane, nucleus, or Golgi apparatus, 
in response to different signaling pathways, is largely 
dependent on the interactions of the PKD regulatory 
domains with lipids or proteins. In resting cells, PKD is 
mostly located in the cytosol, with a smaller fraction in 
the Golgi apparatus. In some specialized cells, PKD also 
exists in the mitochondria[28] and secretory granules[29]. After 
activation through the PLC pathway, PKD1 is transported 
from the cytosol to the plasma membrane, then returns to 

Fig. 1. Domain organization of protein kinase D (PKD) isoforms. Mammalian PKD1, PKD2, and PKD3 have an N-terminal H-domain with 
a high frequency of apolar amino-acids, highly-conserved DAG/PMA (phorbol-12-myristate-13-acetate)-binding regions (C1a and 
C1b), and PH and kinase domains. The amino-acid sequences of C1a, C1b, and the kinase domains of Caenorhabditis elegans 
(DKF-2A and DKF-2B) and mammalian PKDs are >70% identical. The number of amino-acids comprising individual PKD isoforms 
is shown on the right. 
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the cytosol and enters the nucleus. Some PKD1 localization 
studies have relied on overexpression experiments; 
nonetheless, the localization of overexpressed GFP-tagged 
PKD and endogenous PKD is identical[30, 31].

The PKD domains function differently during the 
process of localization (Table 1). As no interactions 
have been found between the PH domain of PKD1 and 
phosphorylated inositol lipids, which are important ligands 
responsible for membrane localization, this domain is not 
required for plasma membrane translocation[31,32] or Golgi 
localization[33-39] like other PH-domain-containing AGC 
kinases, such as PKB and the GRKs. However, the PH 
domain is required for the nuclear export of PKD1[22, 40]. 
The different lipid-binding specificity of the zinc-fingers 
C1A and C1B results in their different roles in targeting 
PKD1 to different destinations[29, 33, 41-43]. Plasma membrane 
translocation of PKD1 is dependent on the C1B domain, 
while its Golgi localization requires the C1A domain and 
the phosphorylation of loop serines. After activation by 
G-protein-coupled receptors, PKD1 can shuttle between 
nucleus and cytosol, requiring the C1B domain for import 
and the PH domain for export from the nucleus[22]. 

Biological Roles of PKD in the Nervous System

Role of PKD in Pain Modulation
Transient receptor potential vanilloid-1 (TRPV1) is a 
polymodal nociceptor activated by multiple stimuli[44-46]. 
We first demonstrated that PKD1 phosphorylates rat 
TRPV1 at Ser116 and binds to the N-terminal of TRPV1. 
Furthermore, mutation of Ser116 (S to A) blocks both 

TRPV1 phosphorylation by PKD1 and enhancement of 
the TRPV1 response to capsaicin[47]. Thus, PKD1 is a 
direct regulator of TRPV1. Next, in an animal model of 
inflammatory hyperalgesia caused by complete Freund’s 
adjuvant, an interaction between PKD1 and TRPV1 has 
been determined. We also found that PKD1 mediates 
the effect of heat hyperalgesia rather than mechanical 
hyperalgesia. The interaction between PKD1 and TRPV1 
in dorsal root ganglia participates in the development and 
maintenance of inflammatory heat hypersensitivity[48]. 
Our findings on the TRPV1 phosphorylation site and the 
involvement of PKD1 in inflammatory hyperalgesia have 
theoretical significance and provide a new target for the 
design of novel analgesics[47-49]. 
Role of PKD in Neuronal Polarity
The development and maintenance of neuronal polarity is 
involved in nearly every aspect of neuronal signaling[50, 51], 
and therefore is of great importance for neuronal functions. 
Early neurons have mechanisms similar to migrating cells 
for establishing the initial polarity. Our previous work[52] 
has shown that PKD1 and PKD2 are essential for the 
establishment and maintenance of neuronal polarity. Loss-
of-function of PKD disrupts polarized membrane traffi cking 
and results in multiple axon formation, whereas PKD gain-
of-function rescues the disrupted trafficking and polarity. 
Also, pre-existing dendrites can be converted to axons 
after PKD inhibition, suggesting that PKD1 and PKD2 
also participate in the maintenance of polarity[52]. Unlike 
other polarity proteins that interact with the cytoskeleton 
in neurites, PKD regulates polarity through its activity in 
the Golgi apparatus[52]. The role of PKD in establishing 

Table 1. Functions of the regulatory domains of protein kinase D (PKD)

Domain Functions

C1A Binding to diacylglycerol  

 Recruitment of PKD to Golgi apparatus   

 Negative regulation of PKD activity

C1B Binding to diacylglycerol  

 Transportation of PKD to the plasma membrane and into the nucleus 

 Negative regulation of PKD activity 

PH Transportation of PKD out of the nucleus 

 Negative regulation of PKD activity
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and maintaining polarity may be executed by regulating 
the TGN-derived sorting of dendritic and axon proteins. In 
hippocampal neurons, active PKDs are associated with 
the Golgi apparatus[53]. Integral membrane proteins that 
later fuse with axon or dendrite are enveloped in TGN-
derived vesicles and their sorting and packaging are 
regulated by PKD1[53, 54]. This generates and maintains 
neuronal polarity, ultimately resulting in specialized 
postsynaptic functions. Alteration of PKD activity induces 
parallel changes in dendritic arborization. PKD knockdown 
increases the trafficking of proteins destined for dendritic 
membrane, but has no effect on vesicle fission[54]. 
Thus, PKDs in hippocampal neurons bind to the Golgi 
apparatus to regulate the sorting, packaging, and targeting 
of different proteins, and suppress the endocytosis of 
dendritic membrane proteins, which are important for the 
establishment of cell polarity and dendritic specialization. 
One PKD effector candidate relevant to these processes 
is Kidins220. PKD1 phosphorylates the scaffold protein 
Kidins220[55-58]. Kidins220 transportation from the TGN to 
the plasma membrane requires the autophosphorylation 
of PKD1 at Ser916. Kidins220 knockdown leads to the 
formation of multiple axons and abnormal dendritic 
branching. Kidins220 also binds to tubulin and microtubule-
regulating molecules, which play an important role in 
neuronal morphogenesis. It is worth noting that loss-of-
function of Kidins220 or PKD1/2 have a similar phenotype. 
They both cause multiple axons and aberrant dendrites, 
while leaving the Golgi apparatus integrity undisturbed. 
Consistently, Kidins220 knockdown does not change the 
total or active PKD. As Kidins220 traffi c is associated with 
molecular motors that are important for the establishment 
of neuronal polarity, the function of the PKD-Kidins220 
complex may be executed by regulating the polarized 
protein traffi c. Kidins220 is also a cargo for kinesin-1 motor 
complex carriers, which drive the transport of multiple 
cargoes along the microtubule. It is noteworthy that 
kinesin-1 is related to the initial axonal specifi cation during 
the establishment of polarity.

The evolutionarily conserved PARs (partitioning 
defective), including PAR-1, are also involved in the 
process of polarity establishment[59-62]. Treatment with 
phorbol-12-myristate-13-acetate (PMA, a PKC activator), 
causes PKD-mediated PAR-1 phosphorylation and 
promotes its binding to 14-3-3, inducing PAR-1 dissociation 

from lateral plasma membrane and inhibition of activity[63]. 
These results suggest that PKD plays a role in regulating 
cell polarity via phosphorylation of PAR-1. However, 
evidence is still needed to confi rm this important hypothesis 
with physiological stimuli rather than PMA treatment.
Role of PKD in Neuroprotection
During the early stage of oxidative stress, PKD1 can 
protect neurons. When dopaminergic neurons are exposed 
to H2O2 or 6-OHDA, PKD1 is activated. As PKCδ directly 
phosphorylates PKD1 in vivo, PKCδ loss-of-function may 
effectively inhibit PKD1 activation. It is worth noting that 
PKD1 loss-of-function by RNAi or overexpression of S916A 
PKD1 enhances oxidative stress-induced apoptosis, 
while PKD1 gain-of-function inhibits this apoptosis[64]. 
Heat-shock protein 27 (HSP27) protects neurons during 
cerebral ischemia[65] through phosphorylation at Ser15 and 
Ser82, critical sites for neuroprotection. PKD also directly 
phosphorylates HSP27[66]. PKD loss-of-function abolishes 
the neuroprotective effects of HSP27[67].
Role of PKD in Associative Learning
In Caenorhabditis elegans, PKD isoforms integrate external 
information into neuronal and intestinal epithelial cells to 
regulate learning and behavior[68, 69]. Two PKD isoforms 
are found in C. elegans, encoded by the dkf-2 gene. DKF-
2B is located in neurons that construct the chemosensory 
circuitry, and DKF-2A is expressed in intestinal cells. 
Generally C. elegans displays chemotactic behavior toward 
Na+, while exposure to Na+ salts in the absence of food 
results in Na+ avoidance. The chemotaxis and avoidance 
of Na+ can be quantifi ed accurately[70-72]. The neurons that 
mediate the Na+ chemotaxis and learning express DKF-
2B; disruption of dkf-2 strongly suppresses Na+-dependent 
learning, but has no effect on Na+ detection or chemotaxis. 
Surprisingly, both neuronal DKF-2B and intestinal DKF-2A 
are essential for restoring the abnormal learning activity 
of dkf-2 knockout animals. EGL-8 (a PLCβ4 homolog) 
and TPA-1 (a PKCδ homolog) control DKF-2B and DKF-
2A in vivo. Animals with defective EGL-8 protein failed to 
learn to avoid 25 mmol/L Na+ after preincubation with 100 
mmol/L sodium acetate. Defects in Na+-induced learning 
were qualitatively and quantitatively similar in egl-8 and 
dkf-2 single mutants and in egl-8;dkf-2 double mutant. 
These results place EGL-8 and DKF-2A/2B in the same 
pathway and indicate that DAG production (or an increase 
in free cytoplasmic Ca2+ or both) is essential for salt taste-
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induced learning. Meanwhile, TPA-1 depletion markedly 
impaired Na+-dependent learning (CI ~+0.4), yielding the 
same phenotype as DKF-2A and DKF-2B defi ciency. These 
results indicate that TPA-1 regulates DKF-2B and DKF-2A 
in vivo. Thus, the DAG-PKD-mediated signaling pathway 
is required in both neurons and intestinal cells to generate 
Na+ avoidance[73].

These data show that PKD is important in the nervous 
system. As the neuronal circuitry expresses DKF-2B, PKD 
might regulate the associative learning by modulating 
synaptic transmission. DKF-2A activation induces the 
secretion of a diffusible hormone that binds to neuronal 
receptors. Thus, DKF-2A might participate in behavioral 

plasticity by mediating the starvation signal to neurons. This 
hypothesis needs further confi rmation.

Concluding Remarks

Recent studies have shown that PKDs function as 
linkers between substrate effectors and the fundamental 
physiological processes regulated by DAG. PKD signaling 
regulating multiple biological processes in the nervous 
system has been largely revealed (Fig. 2). The priorities for 
the moment are the generation of mouse models, including 
PKD conditional knock-out and tissue-specific knock-in 
of mutated PKDs. The characterization of PKD mutants 

Fig. 2. PKD signaling regulates multiple biological processes in the nervous system. Broken lines represent processes in which PKD is 
implicated but the precise mechanism has not been elucidated. Solid lines indicate direct phosphorylation of substrates in the 
nervous system. The phosphorylation site of each substrate by PKD is presented. The plus signs indicate that PKD has a positive 
role while the minus sign represents negative role.
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will help us to understand the consequences of PKD 
activation. The discovery of key roles for neuronal PKDs 
in associative learning in C. elegans suggests that the 
functions of mammalian PKD in synaptic plasticity, learning, 
and behavior should be assessed.
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