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Glia outnumber neurons and are the most abundant cell type in the nervous system. Whereas neurons are 
the major carriers, transducers, and processors of information, glial cells, once considered mainly to play a 
passive supporting role, are now recognized for their active contributions to almost every aspect of nervous 
system development. Recently, insights from the invertebrate organism Drosophila melanogaster have 
advanced our knowledge of glial cell biology. In particular, findings on neuron-glia interactions via intrinsic 
and extrinsic mechanisms have shed light on the importance of glia during different stages of neuronal 
development. Here, we summarize recent advances in understanding the functions of Drosophila glia, which 
resemble their mammalian counterparts in morphology and function, neural stem-cell conversion, synapse 
formation, and developmental axon pruning. These discoveries reinforce the idea that glia are substantial 
players in the developing nervous system and further advance the understanding of mechanisms leading to 
neurodegeneration.
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·Review·

Introduction

Nervous systems sense environmental inputs and cellular 
cues and  their development, which mainly relies on 
the correct differentiation of two cell types, neurons and 
glia, is a vital process for animals to execute functions 
such as cognition, learning, and memory. At the cellular 
level, neurons develop from undifferentiated progenitor 
cells (neural stem cells) to differentiated cells with 
compartmentalized structures like axons and dendrites that 
mediate pathfi nding, information processing, and synaptic 
connections. Almost every aspect of this developmental 
process and subsequent neuronal activity are under precise 
regulation by factors such as signaling components and 
the surrounding milieu. Interestingly, a major part of these 
regulatory mechanisms is mediated by glia, the partners 
of neurons. It is known that glia play essential roles by 
providing extrinsic signals to neurons and acting as part of 

the niche required for neuronal development and function.  
Conventionally, glia have been considered to play a 

passive supporting role due to a lack of electrical excitability 
for transducing information like neurons. Nonetheless, 
compelling evidence has demonstrated that glia participate 
actively in mediating a number of neuronal events such 
as axon guidance, peripheral axon ensheathment, and 
formation of the blood-brain barrier to protect the central 
nervous system (CNS)[1-5]. On the other hand, a tripartite 
model that includes glia has recently been proposed to 
revise the classical view of synaptic structure[6-8]. In addition 
to the presynaptic and postsynaptic compartments, 
adjacent glia, particularly mammalian astrocytes, are now 
envisioned as one of the major components integrating 
synaptic function by releasing gliotransmitters, promoting 
synapse formation, and regulating synaptic plasticity[9]. 
Intriguingly, studies from the invertebrate model organism 
Drosophila melanogaster have offered abundant insights 
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into how Drosophila glia, resembling their mammalian 
counterparts, function to interact with neurons and regulate 
development. These recent advances have now implicated 
glia in other previously-unrecognized functions.

Several recent articles have provided excellent 
overviews of the origin and development of glia[10-14]. In this 
review, we explicitly summarize glial functions that have 
emerged as key mechanisms in the regulation of neuronal 
development in Drosophila. We describe the distinct classes 
of Drosophila glia, followed by a discussion of how they 
modulate neural stem-cell behavior, an extrinsic regulatory 
step during the early stage of neural fate decision. Next, 
we discuss how glia secrete different factors to affect the 
development and function of the neuromuscular junction 
(NMJ). Finally, we compare the glia-derived two-step 
secretion/engulfment mechanism in NMJ remodeling 
with axon pruning of mushroom body (MB) γ-neurons. 

Altogether, these recent discoveries point to a significant 
role for glia during neuronal development, and provide 
novel insights into mechanisms leading to a destabilized 
state of the nervous system, as in neurodegeneration.     

Drosophila Glia

The genetically-tractable organism Drosophila has been 
an excellent animal model in advancing our understanding 
of glial biology. Distinct classes of glia are based on their 
morphology and function similar to their mammalian 
counterparts[10, 13, 15-17] (Table 1 and Fig. 1). Surface glia, 
the outermost layer of protection surrounding the larval 
and adult CNS, comprises two subtypes, the perineurial 
and subperineurial glia (SPG). These glial cells exclusively 
function as a blood-brain-barrier to prevent unwanted 
molecules over a certain size from entering the CNS[2,5,16]. 
The protection is mainly mediated by SPG, which form 

Table 1.  Drosophila glial cells are categorized into four groups according to their function and distribution[9,10,13,16]

Drosophila glia Subtype Distribution Primary function
   Corresponding mammalian counterparts

CNS

 Surface glia Perineurial glia (PG) CNS surface Blood-brain barrier (BBB)

  (outer layer)

 Subperineurial glia CNS surface Blood-brain barrier (BBB)

 (SPG) (underneath PG) Glia-glia pleated septate junctions (pSJs)

 Neuropil glia Ensheathing glia Synaptic neuropil Axon ensheathment

  (outside) Mammalian counterpart: Oligodendrocytes

 Astrocyte-like glia Synaptic neuropil Axon ensheathment and pruning

 (Reticular glia) (infi ltrated) Engulfment activity

   Mammalian counterpart: Astrocytes

 Cortical glia  In the cortex Gas and nutrient exchange

  around neuronal Mammalian counterpart: Astrocytes

  cell bodies

PNS

 Peripheral glia PG Peripheral nerves Axon ensheathment

  (outer layer) Mammalian counterpart: Schwann cells

 SPG Peripheral nerves 

  (underneath peripheral PG)

 Wrapping glia  Inner layer contacting axon

CNS: central nervous system; PNS, peripheral nervous system. 
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pleated septate junctions among themselves. The 
components of pleated septate junctions are known 
to be homologs of proteins forming the paranodal 
junctions between axons and glia at the node of Ranvier 
in mammals[3,18]. In regards to size, SPGs have large 
and flatted cell bodies and are few in number, whereas 
perineurial glia have smaller cell bodies and higher 
numbers (Fig. 1A). 

Cortical glia, also termed cell-body-associated glia, 
are structurally similar to mammalian astrocytes. Cortical 
glia wrap around the neuronal cell bodies at the outer 
surface of the brain, mediate gas exchange between 
cell bodies and the trachea, and provide trophic support. 
The third glial subtype is neuropil glia; these are closely 
associated with the neuropil regions containing bundles of 
axons and ensheath the synaptic neuropil like mammalian 
oligodendrocytes. Two types of neuropil glia are present 
in Drosophila: ensheathing glia, which surround the 
synaptic neuropil, and astrocyte-like glia that infiltrate 
into the inner region of the neuropil volume. Finally, CNS-
derived peripheral glia are also subcategorized into three 
types[3-5,16]. The innermost type in contact with axons 
is termed wrapping glia; this is also considered to be a 
subtype of neuropil glia due to its association with nerves. 
Immediately above the wrapping glia is the peripheral 
perineurial glia and SPG. As in the CNS, these SPGs also 
form pleated septate junctions and provide insulation for 
axons (Fig. 1B). 

I t  i s  notewor thy that  microg l ia ,  the res ident 
immune cells, engulf cell debris to protect the integrity 
of the nervous system. Unlike mammals, there is no 
corresponding microglial subtype in Drosophila. In terms of 
engulfi ng activity, at least two subtypes of Drosophila glia 
have been shown to execute this function[19, 20].

Glia Modulate Neural Stem-Cell Behavior  

Drosophila neural stem cells, also termed neuroblasts 
(NBs), are plastic with an undifferentaited nature and 
serve as an excellent model to study stem-cell biology[21-23]. 
During the first wave of neurogenesis, embryonic NBs 
undergo asymmetric division to generate a smaller 
ganglion mother cell, which divides once more to produce 
differentiated neurons and/or glial cells, and another NB 
with self-renewal potential[21, 24]. These NBs generate 
most of the larval CNS neurons and enter a quiescence 
period for ~24 h at the end of embryogenesis[24-27]. How 
these NBs are reactivated during the larval stage remains 
largely unclear. However, once reactivated, they continue 
to divide and generate the neurons needed for the adult 
CNS. During larval neurogenesis, a different NB type, type 
II, produces a transient amplifying intermediate neural 
progenitor cell which undergoes extra rounds of division to 

Fig. 1. Drosophila glia. A: In this schematic cross-section of 
Drosophila brain, four types of CNS glia are shown in 
blue: cortical glia (neuronal cell bodies in green), surface 
glia, and neuropil glia, which include ensheathing glia 
and astrocyte-like glia. The insert shows the subtypes of 
surface glia. Perineurial and subperineurial glia are shown 
in close association with the cortical glia. These glial 
cells function as a blood-brain-barrier to protect the CNS. 
Pleated septate junctions (pSJs) within subperineurial 
glia are in black. B: Schematic of Drosophila peripheral 
glia in the neuromuscular junction with a presynaptic 
axon (purple) and postsynaptic muscle (yellow). Three 
subtypes of peripheral glia are shown in blue: perineurial, 
subperineurial, and wrapping glia. These glia wrap around 
the axons of motor neurons up to the proximal synaptic 
bouton and regulate synapse formation and function. 
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Fig. 2. Drosophila glia modulate neural stem-cell behavior. The life cycle of Drosophila from embryo to adult is illustrated in the left 
panel. A: The three-step fat body-glia-NB relay. An amino-acid-triggered fat body signal is delivered to the surface glia, which are 
ideally positioned to release dILPs to activate the insulin receptor (InR) expressed in the NBs. This action in turn reactivates NBs 
from quiescence. Glia also secrete other factors such as activin-like peptides (ALPs) to modulate NB reactivation. B: In Drosophila 
optic lobe, neural stem cells (NSCs) are transformed from neuroepithelial (NE) cells and this transition is regulated by the optic-
lobe-associated glia expressing the microRNA miR-8. miR-8 inhibits the translation of the epidermal growth factor receptor (EGFR) 
ligand Spitz, abolishes its secretion by glia and interaction with EGF receptors on NE cells. This glial regulation suppresses the 
NE-to-NSC transition.

produce greater numbers of neurons than type I NBs[28-30]. 
These NBs, patterned by the distinct temporal and spatial 
expression of transcription factors, orchestrate the order 
and diversity of neural progeny in both the larval and adult 
CNS[22,23,28]. 

Glia participate in distinctive ways throughout this 
developmental process[31-37]. A fat body-glia-NB signaling 
relay has been demonstrated to regulate NB reactivation 
after quiescence[38, 39]. Within this relay, the insulin/insulin-
like growth factor signaling pathway with the downstream 
effector PI3K/Akt, the central regulator of growth and 
metabolism, is activated in NBs by insulin-like peptides 
(dILPs) secreted by glia. These dILPs, in particular dILP2 
and dILP6, bind to the single insulin/insulin-like growth 
factor receptor and are secreted upon the delivery of a 
nutrient signal from the fat body. This tripartite relay then 
allows the NBs to exit from quiescence and reactivate.  

Typically, dILPs are secreted by insulin-producing 

cells in the larval brain to execute their function during 
cell growth and proliferation[40]. The discovery that glia are 
capable of secreting some of these peptides suggests 
an alternate route for converting the fat body signals into 
paracrine dILP function, hence diversifying their target list. 
This particular group of glia, surface glia, is adjacent to 
the NBs and associates with the surface to wrap around 
the CNS (note that Sousa-Nunes et. al. suggested that 
cortical glia are responsible for the secretion[39]). Surface 
glia are ideally positioned to transmit signals from the fat 
body to modulate NB reactivation. It is worth noting that glia 
also express additional factors such as the glycoprotein 
Anachronism (Ana)[41], dPerlecan[42-44], the RNA-binding 
protein FMRP implicated in Fragile X syndrome[45], 
and another type of secretory peptide, the activin-like 
peptides[46, 47], all of which have been reported to contribute 
to NB reactivation in different ways (Fig. 2A).

Later during development, after NB reactivation, 
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glia regulate the transition from neuroepithelial (NE) to 
neural stem cells in the developing larval optic lobe. This 
transition, an event orchestrated in a manner similar to 
the epithelial-to-mesenchymal transition in mammals[48], 
is an ideal system to study an effect of the glial niche on 
stem-cell behavior. One of the recent studies using this 
system has revealed a specific glial subtype below the 
SPGs, the optic-lobe-associated glia, that express the 
microRNA miR-8, a homolog of mammalian miR-200. Glial-
specific expression of miR-8 locally inhibits translation of 
the epidermal growth factor receptor ligand Spitz, affecting 
the ligand-receptor interaction on the NE cell membrane, 
and leading to the dysregulation of NE expansion and NB 
transition. In contrast, miR-8 positively regulates glial size, 
suggesting a dual effect on both glia and the neighboring 
NE cells[49] (Fig. 2B).        

In summary, different populations of Drosophila glia 
function in diverse ways to regulate stem-cell behavior. 
Similar to mammals, a glial niche environment organized 
by glia and other cell types is required for NB conversion, 
reactivation after quiescence, and ultimately during the 
proliferative developmental phase (Fig. 2).

Glia-derived Factors during Synapse Formation 

and Function

The Drosophila NMJ is a widely-used model for studying 
synapse format ion and act iv i ty.  These synapses 
are glutamatergic, stereotypically posit ioned, and 
resemble mammalian central synapses in terms of the 
neurotransmitter used[50, 51]. Compelling evidence has 
shown that glia, closely associated with these synapses, 
modulate synaptic activity and synapse formation[52-56]. 
Among the three types of peripheral glia, perineurial glia 
and SPGs, but not wrapping glia, send processes into the 
NMJ[56]. These processes display a variety of morphological 
structures along the motoneuron axons to the point of 
nerve-muscle contact, and sometimes extend into the 
proximal synaptic bouton, yet never completely cover the 
NMJ[5, 53, 56, 57]. 

Recent advances have uncovered a critical role for 
peripheral glia during NMJ formation and function. Wingless 
(Wg)/Wnt, identified by chromatin immunoprecipitation 
analysis as a downstream target of the glial transcription 

factor Reversed polarity (Repo), is secreted by glia to 
mediate postsynaptic glutamate receptor clustering[55]. 
Unlike the Wg/Wnt released from motoneurons, which 
regulates both NMJ growth and postsynaptic glutamate 
receptor clustering in a manner dependent on dFrizzled2 
(dFz2) receptors[58-61], glia-derived Wg/Wnt does not 
affect NMJ size, but regulates postsynaptic function as 
revealed by electrophysiological studies[55]. Furthermore, 
peripheral glia secrete another factor, the TGF-β ligand 
Maverick (Mav), that binds postsynaptically to a not-yet-
identifi ed receptor (likely the TGF-β type II receptor Punt) 
and turns on Gbb transcription via the cascade of Mad 
phosphorylation and Co-Smad Medea (Med) interaction. 
Gbb is the central effector of the retrograde signaling 
from muscle to presynaptic motoneuron and it does do by 
interacting with the bone morphogenetic protein (BMP) 
receptors Wishful thinking (Wit), Saxophone (Sax), and/or 
Thickvein (Tkv). Interaction with this receptor brings about 
Mad phosphorylation, hence regulating the expression of 
the Rac-activating gene trio and synaptic growth[52, 62, 63] (Fig. 3).

Bimodal Regulation of Synaptic Remodeling by Glia 

In addition to synapse formation and function, remodeling 
events that occur during synaptogenesis to shape the 
synaptic contact are also regulated by glia. For instance, 
the tumor necrosis factor-alpha (TNF-α) factor Eiger 
expressed by peripheral SPGs mediates a glia-derived 
pro-degenerative signaling event that controls axonal and 
synaptic degeneration. Severe presynaptic degeneration 
of the NMJ, indicated by fragmentation of presynaptic 
membranes, occurs when the functions of cytoskeletal 
molecules like Spectrin or Ankyrin are disrupted[64-66]. 
Loss of Eiger significantly suppresses the presynaptic 
degeneration induced by the absence of Ankyrin, 
suggesting a role for Eiger in mediating the degeneration 
of these presynaptic materials[54]. Upon secretion from glia, 
Eiger interacts with the TNF receptor Wengen in neurons, 
triggering the downstream caspase Dronc-Dcp1 pathway 
that induces axonal and synaptic degeneration. In addition, 
mitochondria-based signaling mediated by DARK and 
Debc1 is proposed to work with the caspase pathway to 
augment the response to the glia-derived pro-degenerative 
signal[54].
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Reasonably, upon degeneration, these fragmented 
presynaptic membranes need to be removed to create 
an environment for the synapse to “remodel” under 
normal cellular dynamics. A recent study has shown that 
these extra presynaptic materials, including fragmented 
membranes (also termed presynaptic debris) and 
undifferentiated boutons (also termed ghost boutons) 
represented by the lack of active zones and postsynaptic 
proteins[53, 67], have been detected in motoneurons either 
naturally or upon light-stimulation of neurons expressing 
channelrhodopsin-2. In addition to the Eiger-dependent 
instructive signals provided by glia, these extra materials of 
presynaptic origin are removed via an engulfment process 
also mediated by adjacent peripheral glia. In particular, 
downregulating the expression of the engulfment receptor 
draper in glia results in an accumulation of presynaptic 
debris, but does not affect the presence of ghost boutons. 

It is worth noting that draper expression in muscle is 
also required for the engulfment process, but only for the 
disappearance of ghost boutons, indicating distinctive 
mechanisms by which glia and muscle control different 
presynaptic materials[53] (Fig. 4A).

Developmental Axon Pruning: Two-step Mechanism 

Mediated by Glia

A similar two-step glia-mediated mechanism has been 
ascribed to the axon pruning of MB γ-neurons. During 
metamorphosis, extensive remodeling of axons and 
dendrites occurs in order to accommodate the need for 
an adult neuronal circuitry. Notably, γ-neurons of the MB, 
the center for learning and memory in Drosophila, serves 
as an excellent model for understanding the mechanism 
underlying this dynamic process. Beginning in the late 

Fig. 3. Glia-derived factors regulate NMJ formation and function. In the Drosophila NMJ, adjacent peripheral glia secrete Wg to regulate 
postsynaptic function via glutamate receptor clustering. Glia also secrete another TGF-β ligand Mav, which acts postsynaptically 
to turn on BMP signaling via Mad phosphorylation and Mad-Med interaction. Upregulated BMP signaling tunes the transcription of 
Gbb, which is released from muscle to the presynaptic compartment to activate BMP signaling in motoneurons. This retrograde 
Gbb signaling controls Trio expression, which then regulates NMJ growth and size.
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Fig. 4. Synaptic remodeling and axon pruning: two-step mechanism mediated by glia. A: In addition to releasing Wg and Mav, peripheral 
glia secrete the TNF ligand Eiger to interact presynaptically with the TNF receptor Wengen. This interaction activates the 
downstream caspase pathway (Dronc and Dcp1), which mediates axonal and synaptic degeneration in the NMJ. Two types of 
presynaptic degeneration materials, presynaptic debris and undifferentiated ghost boutons, are engulfed by glia and muscle 
respectively. Draper (red circles on the right), the engulfment receptor expressed in both glia and muscle, is responsible for 
engulfment activity in the NMJ. B: During axon pruning of MB γ-neurons, at an initial step, astrocytic glia (blue) secrete the TGF-β 
ligand Myo (black dots) to interact with the receptor Baboon (purple) on the neurons (upper left). This interaction activates TGF-β 
signaling in MB neurons, then upregulates ecdysone signaling by increasing the ecdysone receptor B1 (EcR-B1) levels. Upregulation 
of ecdysone signaling actively recruits astrocyte-like glia to infi ltrate γ-neurons and initiate axon pruning. In the late pupa, glial cells 
engulf the degenerating axon materials via the activity of Draper (lower right). MB neurons are yellow and Draper is red.
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larval stage, MB γ-neurons project with dendrites and 
axons that bifurcate into a dorsal and medial branch. At 
~6 h after puparium formation, the axons and dendrites 
undergo a pruning process triggered by the metamorphic 
hormone ecdysone[68], so that local axon degeneration 
is induced and both the dorsal and medial branches are 
pruned, leaving only the axon peduncle. Later during the 
pupal stage, the medial branch re-extends and establishes 
the adult-specifi c axonal connection. It has been previously 
shown that, in addition to ecdysone signaling, the ubiquitin-
proteasome system also plays a role in initiating the axon 
pruning of MB γ-neurons[68, 69].  

Intriguingly, glia are involved in regulating the axon-
pruning process by a consecutive two-step mechanism. 
Initially, upregulation of MB ecdysone receptor B1 
(EcR-B1) expression is required to trigger pruning, and this 
upregulation is effected by the activation of TGF-β signaling 
in MB neurons. To achieve this, surrounding cortical and 
astrocyte-like glia secrete the TGF-β ligand myoglianin 
(Myo) that interacts with the type-I receptor Baboon 
in MB neurons to activate intrinsic TGF-β signaling[70]. 
Interestingly, the immunoglobulin superfamily molecule 
Plum has been shown to regulate TGF-β signaling at the 
receptor level and may participate in the glia-MB neuron 
interaction during developmental axon-pruning[71]. 

Upon the upregulation of ecdysone signaling, 
astrocyte-like glia infiltrate the MB and axon pruning is 
initiated. Further down the road, astrocyte-like glia also take 
on a scavenger-like role in cleaning up the degenerating 
axon fragments[72-75]. This glial degradation pathway, 
mediated by endosomes and lysosomes, is strictly required 
for axon pruning since inhibition of glial function in this 
case results in a delay in pruning and accumulation of 
degenerating materials. On the other hand, in the absence 
of ecdysone signaling from MB neurons, astrocyte-like 
glia do not infiltrate γ-neurons and engulfment activity is 
silenced. These results suggest that astrocyte-like glia take 
on an active role during pruning and that a bi-directional 
interaction between MB neurons and glia is required for the 
correct pruning process to occur[72]. 

Interestingly, similar to the NMJ, the glial engulfment 
receptor Draper is also required for the engulfment of 
axonal debris during MB γ-neuron pruning[73]. Although 
a notable amount of data has demonstrated that draper 
expression in glia is required for the engulfment of 

apoptotic neurons in embryos[76, 77], glial engulfment during 
γ-axon pruning differs from the engulfment mechanism 
for apoptotic cells. Expression of the caspase inhibitor 
p35 in MB neurons does not lead to pruning defects[69], 
suggesting that apoptosis is not the major mechanism. On 
the other hand, γ-axon pruning is similar to the Wallerian 
degeneration of axon injury, which does not involve 
apoptosis, and the ubiquitin-proteasome system is one of 
the major mechanisms[78]. A Wallerian degeneration process 
has recently been well exemplifi ed in Drosophila olfactory 
receptor neurons[79] and it has been shown that draper 
expression is similarly upregulated when axons undergo 
injury in this model[79-82]. Yet, unlike γ-axon pruning where 
astrocyte-like glia are the major subtype responsible[75, 83], 
ensheathing glia have been shown to engulf debris during 
axon injury of olfactory receptor neurons[84] (Fig. 4B).

Concluding Remarks

Understanding the mechanisms of how a nervous system 
develops from single progenitor cells to a functional unit 
integrating responses has always been the central area 
of interest in modern neuroscience. In-depth experimental 
analysis and pioneering work on model organisms like 
Drosophila have allowed researchers to draw conclusions 
about the important contributions of glia to the series of 
events leading to the maturation of neuronal circuitry. As 
both a long-term supporter and an active participant, glia 
modulate neural stem-cell behavior, secrete factors to 
regulate synapse formation, and are involved in redefi ning 
the nature of synaptic connections via degeneration and 
regrowth. Intriguingly, bi-directional communication between 
neurons and glia powerfully orchestrates developmental 
progression and serves as the basis for the mechanisms 
underlying neurodegenerative diseases. It is increasingly 
clear that glia, like neurons, are major mediators in 
regulating various aspects of neuronal development and 
function; their importance can no longer be neglected. 
Future work is required to further elucidate the glia-derived 
regulatory mechanisms, both intrinsic and extrinsic, in other 
developmental contexts and a fruitful outcome advancing 
our knowledge is envisioned. 
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