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The biological basis underlying differentiation of naı̈ve (NAI) T cells
into effector (EFFE) and memory (MEM) cells is incompletely un-
derstood. Furthermore, whether NAI T cells serially differentiate
into EFFE and then MEM cells (linear differentiation) or whether
they concurrently differentiate into either EFFE or MEM cells
(parallel differentiation) remains unresolved. We isolated NAI,
EFFE, and MEM CD8� T cell subsets from human peripheral blood
and analyzed their gene expression by using microarrays. We
identified 156 genes that strongly differentiate NAI, EFFE, and
MEM CD8� T cells; these genes provide previously unrecognized
markers to help identify each cell type. Using several statistical
approaches to analyze and group the data (standard heat-map and
hierarchical clustering, a unique circular representation, multivar-
iate analyses based on principal components, and a clustering
method based on phylogenetic parsimony analysis), we assessed
the lineage relationships between these subsets and showed that
MEM cells have gene expression patterns intermediate between
NAI and EFFE T cells. Our analysis suggests a common differenti-
ation pathway to an intermediate state followed by a split into
EFFE or MEM cells, hence supporting the parallel differentiation
model. As such, conditions under which NAI T cells are activated
may determine the magnitude of both EFFE and MEM cells, which
arise subsequently. A better understanding of these conditions
may be very useful in the design of future vaccine strategies to
maximize MEM cell generation.

CD8� T cells � phylogeny � microarray analysis � lineage relationship �
differentiation

To maintain an efficient T cell repertoire potentially capable
of responding to any pathogen, T cells of diverse specificities

are continually produced within the bone marrow throughout
life. Those that survive thymic selection populate the periphery
initially in a naı̈ve (NAI) state. NAI T cells require encounters
with cognate antigens of sufficient magnitude and appropriate
additional signals to undergo clonal expansion and differentia-
tion into effector (EFFE) and memory (MEM) cells. The genetic
events that underlie this differentiation process are not fully
understood. Furthermore, it is unclear whether NAI T cells first
differentiate to EFFEs, which then differentiate into MEM cells
(linear differentiation), or whether NAI T cells directly differ-
entiate into EFFE and MEM cells simultaneously (parallel
differentiation). Although the linear differentiation model is
widely accepted (1), recent data appear to support the parallel
differentiation model (2, 3).

Microarray technology represents a powerful tool in studying
the gene expression changes that underlie the differentiation of
NAI to EFFE and MEM T cells. Microarray analysis of murine
CD8 T cell subsets has indeed provided unique insights into the
process of MEM formation upon virus challenge (4, 5). In
humans, the gene expression profiles of peripheral blood mono-
nuclear cells have been analyzed through serial analysis of gene
expression (6) and DNA microarrays (7). However, CD8 T cell
subsets have not been similarly analyzed to elucidate the gene
expression changes that drive MEM differentiation in human
lymphocytes.

Recently, microarray analysis of hematopoietic cells demon-
strated that gene expression data implicitly contain information
about developmental relationships amongst cell types and lin-
eage discrimination (8). Hence, we hypothesized that systematic
comparisons of the gene expression patterns of NAI, EFFE, and
MEM T cells might also shed light on the issue of linear versus
parallel differentiation of T cells. We isolated NAI, EFFE, and
MEM (based on expression of CD27 and CD45RA) CD8� T cell
subsets from the peripheral blood and analyzed these subsets
on DNA microarrays. As expected, there are significant gene ex-
pression differences between these cell types. If each gene within
a cell works independently, one could consider genes showing
significant expression changes as ‘‘votes’’ in the differentiation
process. In the differentiation of NAI to EFFE and MEM T cells,
each differentially expressed gene could vote for one of the six
possible permutations of gene-expression ordering for the three
cell types: (EFFE, MEM, NAI), (EFFE, NAI, MEM), (NAI,
MEM, EFFE), (NAI, EFFE, MEM), (MEM, NAI, EFFE), or
(MEM, EFFE, NAI).

Our data showed that most of the differentially expressed
genes place MEM cells as intermediary between the other two
cell types and support the parallel differentiation model.

Materials and Methods
Cell Isolation and Microarray Analysis. Details of the experimental
procedures are described in ref. 9. Briefly, peripheral blood
mononuclear cells from 10 subjects (5 healthy and 5 melanoma
patients) were stained with antibodies specific for CD8, CD27,
and CD45RA. Cells were selected for CD8� and
CD27�CD45RA�, CD27�CD45RA�, or CD27�CD45RA� by
means of FACS sorting (FACSVantage, Becton Dickinson). At
least 100,000 cells from each group were isolated. Total RNA
was extracted by using TRIzol (Invitrogen) and then underwent
linear amplification with the Agilent linear amplification kit
(Agilent Technologies, Palo Alto, CA). Amplified RNA was
quantitated, and quality was determined by using a BioAnalyzer
(Agilent Technologies). RNA was labeled by using the Agilent
labeling kit and probed onto Agilent human 1 cDNA microar-
rays. Universal total RNA (Strategene) was used as reference.
Hybridized arrays were scanned with the Agilent scanner, and
data were extracted by using Agilent feature extraction software
(version 7). Thirty arrays (10 of each cell type) were hybridized
in five batches of 6 arrays.

Details of the Statistical Analysis. The data were first renormalized,
and batch medians were removed so that each batch had the
same median (details in ref. 9). Then the multiple testing R (10,
11) package MULTTEST (12) was used to filter the genes that
showed statistically significant differential expression patterns
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between the three cell types. A total of 168 features qualified as
statistically significant after adjusting for multiple testing and
choosing only the genes significant at the 0.05 adjusted P-value
level, meaning that gene expression levels were significantly
different across cell types. Note that 24 features were, in fact,
duplicates, so they were reduced to single ‘‘gene expressions’’ by
taking means. The remaining 156 genes were the main basis for
our follow-up univariate and multivariate analyses (see Table 1,
which is published as supporting information on the PNAS web
site). To describe these differing patterns quantitatively, we
developed an angular representation.

The Angular Representation. For each gene, values were catego-
rized into three groups according to cell type: EFFE, MEM, and
NAI T cells. Each gene may be visualized in a ‘‘box-and-
whiskers’’ plot, or ‘‘boxplot,’’ which captures the 25th, 50th, and
75th quantile of values (the ‘‘box’’) and the extreme values
(‘‘whiskers’’). Because there are three groups, there are three
boxplots for each gene. The boxplots thus exhibit relative
expression changes in the three cell types. Fig. 1 shows boxplots
for selectin-L, the IL-7 receptor gene (IL7R), and granzyme B.

Each boxplot shows how the three cell categories are assigned
‘‘up,’’ ‘‘intermediary,’’ or ‘‘down’’ parity. The angular represen-
tation quantifies the boxplots as an (x, y) point and an angle by
the following procedure:

1. Consider the medians of the gene expression levels for EFFE,
MEM, and NAI cells.

2. Take x � median(MEM) � median(EFFE) and y � medi-
an(NAI) � median(MEM). These values are the effective
‘‘slopes.’’

3. Combine into the coordinate (x, y) and normalize to length 1;
i.e., multiply by a constant c so that c�x2 � y2 � 1. Alterna-
tively, we also normalize the distance by the standard devi-
ation of the genes, which produces the scatter plot in Fig. 2B.

4. Map the point onto the unit circle. This mapping results in a
continuum of relations between the expression levels of
EFFE, MEM, and NAI T cells (Fig. 2A). Note that genes
exhibiting similar expression patterns are clumped together
on the circle, and genes behaving in an opposite pattern are
located diametrically opposite on the circle. See that gran-
zyme B (GZMH) and selectin-L (SELL) are located on
opposite sides of the circle.

5. Attached to each point is an angle starting at 0° at the point
(1, 0) and increasing 360° counterclockwise around the circle.

For the IL-7 receptor as an example, we describe the details
of the computation of the angle statistic. Here are the three
medians for each class for this gene: EFFE, 2.30; MEM, 3.44;
NAI, 2.88. The difference between the median of type MEM and
type EFFE is x � 3.44 � 2.30 � 1.14, and the difference between
types NAI and MEM is y � 2.88 � 3.44 � �0.56.

We solve c�1.142 � (�0.56)2 � 1 to obtain the normalization
factor c � 0.79. Our new normalized point then becomes c � (x,
y) � (0.90, �0.44), which is given on the unit circle by the
coordinates and defines a unique angle on the circle, 334° (Fig.
2A). In Fig. 2B, the differences in medians between the groups

Fig. 1. Boxplots of sample genes demonstrating expression ranges in each cell type: selectin-L (A), IL-7R (B), and granzyme B (C)..

Fig. 2. Graphical representations of patterns of differential expression for the set of 156 significant genes: angular representation of genes (A), standardized
scatter plot (B), and histogram of angles (C).
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MEM and EFFE, and EFFE and NAI, is divided by the gene’s
standard deviation. The histogram of the angles represented in
Fig. 2A appears in Fig. 2C and is discussed below.

Multivariate Analysis. In the previous analyses, we detected dis-
tinct patterns by considering the genes individually. In the
multivariate analysis, we consider the interactions and correla-
tions between all genes and cell types. We use principal com-
ponents analysis to provide simple, low-dimensional maps of the
cell types and genes. This technique finds linear combinations of
the original variables [called principal components (13)] that
have a higher variance than the original variables; thus, with only
a few principal components, we can represent a large proportion
of the variability in the data.

Results
Significant Gene Expression Differences Among NAI, EFFE, and MEM
CD8� T Cells. As previously reported (9), NAI, EFFE, and MEM
CD8� T cell subsets were segregated based on expression of
CD27 and CD45RA and sorted to �95% purity. Total RNA
were extracted from these cells and analyzed on cDNA microar-
rays after linear amplification. Cells from 10 individuals (5 with
stage III�IV melanoma and 5 healthy controls) were analyzed.
At the scale of gene expression differences between cell types,
the differences between melanoma and healthy T cells are
imperceptible. Thus, it was reasonable to combine data from the
melanoma and healthy groups for the purpose of studying
differences between T cell subsets.

We filtered the genes that show statistically significant differ-
ences between gene expressions and among the three cell-type
groups. The groups were NAI (CD27� and CD45RA�), EFFE
(CD27� and CD45RA�), and MEM (CD27� and CD45RA�).
A univariate analysis of the data showed 156 genes that were
significantly differentially expressed amongst the three subsets.

Angular Representation. Using the angular representation, we
have made a point on the circle for every significant gene. A
histogram of the angles shows that 62 genes have angles between
0° and 90° (Fig. 2C). In particular, we take note of the following
groups of genes (see the supporting information for complete
lists).
EFFE down, MEM intermediary, NAI up. See Table 2, which is published
as supporting information on the PNAS web site. Selectin-L
(CD62L) and CC chemokine receptor 7 (CCR7) are both
molecules that facilitate T cell homing to lymphoid tissues; they
are expressed predominantly by NAI T cells and are expressed
at intermediate levels by MEM T cells (14).
EFFE down, MEM up, NAI down. See Table 3, which is published as
supporting information on the PNAS web site. Ahmed and
coworkers (2) recently showed that the IL-7 receptor is selec-
tively expressed in MEM T cells. The T cell receptor-interacting
molecule is a recently identified transmembrane adaptor protein
that is exclusively expressed in mature T cells (15).
EFFE up, MEM intermediary, NAI down. See Table 4, which is published
as supporting information on the PNAS web site. Granzyme B
is a cytolytic mediator that is expressed at high levels by EFFE
CD8 T cells and also is expressed at intermediate levels in MEM
CD8 T cells (16). It was recently shown that T cells express
certain natural killer receptors, such as CD94 (labeled KLRD1
from hereon), upon activation (14), which is thought to modulate
T cell activity.
EFFE up, MEM up, NAI down. See Table 5, which is published as
supporting information on the PNAS web site. CD58 (LFA-3) is
an adhesion molecule that is known to be expressed on activated
and MEM T cells (4). HLA-DR is a major histocompatibility
complex (MHC) class II molecule that is normally expressed on
antigen-presenting cells; it is also expressed in T cells after
activation (17).

EFFE up, MEM down, NAI up. See Table 6, which is published as
supporting information on the PNAS web site. None of the
significant genes had an expression pattern in which the MEM
group is less expressed than the other two groups. This obser-
vation is illustrated in the upper-left quadrant of Fig. 2A, and the
gap in the histograms of the angles of Fig. 2C.

Aggregate Expression Analyses Reveal Nonuniform Distribution. If we
considered the genes as independent ‘‘voters,’’ the overwhelming
vote was for the MEM cells as an intermediary type between
NAI and EFFE. However, because genes do not act indepen-
dently, a multivariate analysis that accounts for the correlations
between genes was performed. The multivariate eigenanalysis
approach shows that we can represent �80% of the information
in the 156-row matrix of significant genes in a map on one
principal plane chosen by principal components analysis (Fig. 3).
A three-pronged structure emerges, suggesting a central inter-
mediary state (InterMEM) between the three cell types that is
closer to the MEM state than to the NAI or EFFE states.

Hierarchical Relationships. We also performed hierarchical clus-
tering of these data, as shown in Fig. 4A. Almost all genes show
the MEM group as intermediary between the other two very
distinct cell types, with either higher expressions for NAI or
EFFE. In the same spirit as ref. 8, we performed a phylogenetic
analysis, considering the genes to be either expressed, underex-
pressed, or off. These three categories of expression are con-
sidered ordinal. Genes move from not expressed to expressed in
one step, and from underexpressed to expressed in two steps.
Using this assumption, we built the maximum parsimony tree of
all of the arrays by using the 156 significant genes with the
PHYLIP* function dnapars. Fig. 4B shows such a tree. As in the
case of hierarchical clustering, the tree shows how the cells group
together according to type.

We identified several genes that, on their own, allow for the
discrimination between the three groups. These genes add to the
currently accepted markers of CD27 and CD45RA and include:
CD164L1, syntaphilin, and IFN-� receptor 2 for NAI cells;
vinculin, granzyme B, and KLRD1 for EFFE cells; and T cell
receptor-interacting molecule and granzyme K for MEM cells.

Fig. 3. First principal plane from the principal components analysis of the
matrix of significant genes in all 30 samples.
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Discussion
In this study, NAI, EFFE, and MEM T cells were identified and
sorted based on their expression of two surface markers, CD27
and CD45RA, an accepted combination of markers to delineate
these subsets (18). Using DNA microarray analysis, we identified
156 genes that strongly differentiate NAI, EFFE, and MEM
CD8� T cells in the peripheral blood. NAI T cells are known to
express CD45RA, CCR7, CD62L, CD27, and CD28; activated T
cells, however, lose expression of CD62L and CD45RA and
up-regulate activation markers such as HLA-DR and effector
molecules such as granzyme (18). Importantly, although NAI T
cells were sorted based on CD27 and CD45RA, these cells were
found to have elevated expression of CCR7 and CD62L, pro-
viding an internal validation. Similarly, sorted EFFE cells were
found to express HLA-DR and granzyme B. It should be pointed
out that in the phenotypic analysis of circulating CD8� T cells to
identify unique functional subsets, many intermediate pheno-
types exist, which may represent transient states. Nonetheless,
gene expression data generated from the three subsets defined
by CD27 and CD45RA fit well with known properties of NAI,
EFFE, and MEM T cells and therefore represent reasonable
composites of these three idealized states. This analysis focused
on genes differentially expressed in all three cell types and thus
does not include genes that are expressed similarly in two cell
types and are different in the other.

The hallmarks of MEM T cells include longevity and more
rapid proliferation and acquisition of EFFE function upon
antigen encounter than NAI T cells (19). It is now known that
MEM T cells are not uniform with respect to function, prolif-
erative potential, trafficking patterns, and, hence, gene expres-
sion. MEM T cells may be divided into central and effector
subtypes, based on expression of the chemokine receptor CCR7
(20). Central MEM T cells home to and mainly reside within
lymph nodes; EFFE MEM cells home to target tissues. Indeed,
data from this study demonstrate that circulating MEM CD8� T
cells (based on CD27� CD45RA�) express intermediate levels
of CCR7, suggesting that these cells constitute a mixture of
EFFE and central MEM T cells. Although analysis of MEM cells
further segregated into these two subtypes could yield additional
information, the gene expression patterns we identified for
MEM cells represent a composite of the two MEM subtypes,
thus focusing on genes that underlie the memory state.

We used several statistical approaches to analyze and group
data from these arrays: standard heat-maps and hierarchical
clustering, a unique circular representation, multivariate analy-
ses based on principal components, and a clustering method

based on phylogenetic parsimony analysis. For the 156 genes
found to differentiate between the three subsets, we assigned
each gene a value of 0–360, corresponding to degrees in a circle,
to characterize its expression in NAI, EFFE, and MEM cells.
When the value for each gene is plotted onto a circle, a dramatic
absence of genes in an entire region emerged (Fig. 2), which
corresponds to genes underexpressed in MEM cells in relation
to NAI and EFFE cells. These data suggest that of genes that
differentiate NAI, EFFE, and MEM T cells, once a gene is
turned on within MEM cells, it does not get turned off.

Another striking observation arose from principal compo-
nents analysis. Of a total of 30 samples analyzed, 80% of the
variability fell onto only two dimensions, suggesting a very highly
ordered structure at play in regulating NAI, EFFE, and MEM
differentiation. From all of these analyses, MEM cells consis-
tently fall between NAI and EFFE, being closer to EFFE than
to NAI. This observation is also confirmed by phylogenetic tree
and heat-map analysis, suggesting a biological explanation of why
MEM cells can differentiate much more rapidly into EFFEs than
NAI T cells (19). These data are also in agreement with the
elegant data in mice from Ahmed and coworkers (4) that showed
that upon activation, a fraction of NAI T cells acquire IL-7R
expression, and these cells differentiate directly into MEM cells
without going through an EFFE stage.

The analysis of lineage relationships between cells represents
a previously unrecognized use of microarray data. A recent
report (8) used phylogenetic analysis of gene expression data to
show that mRNA implicitly contained information about devel-
opmental relationships among cell types. Our phylogenetic tree
analysis shows that MEM cells have gene expression patterns
between NAI and EFFE T cells. Furthermore, principal com-
ponent analysis shows that an intermediate state (InterMEM)
exists that is closest to a MEM type, suggesting a model in which,
upon activation, NAI T cells first go to this intermediary state.
Most cells then go on to become EFFEs, but some become MEM
cells. This model is consistent with that proposed by Ahmed and
colleagues (2). Furthermore, MEM cells may go back to this
intermediary state subsequent to activation to become EFFEs.
The finding that gene expression differences between MEM cells
and the intermediary state are much less than those between
NAI cells and the intermediary state is consistent with the
long-held observations that MEM T cells can differentiate into
EFFEs much more rapidly than NAI T cells (19). Another
finding of our data that strongly supports the notion that MEM
T cells are intermediate between NAI and EFFE cells is that
there are only eight genes whose expression patterns are not

Fig. 4. Tree representations of arrays: hierarchical clustering of arrays (A) and parsimony tree (B).
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intermediary between those of NAI and EFFEs. Hence, these
eight genes may serve as an important basis for the memory T
cell state.

A theoretical concern may be that if genes in MEM cells
consist of two subgroups, ones that group with NAI cells and
ones (e.g., those responsible for proliferation) that group with
EFFEs, then the composite gene expression pattern would
appear as intermediate. If this were the case, the boxplots would
show MEM at a similar level to one of the other types (either like
NAI or EFFE), and the angles of the boxplots would be
concentrated only at the four extremes of the circle: (0, 0), (0, 1),
(�1, 0), and (0, �1). To address this possibility, we performed
simulations generating 100 genes with a pattern tailored to have
similar genewise medians and standard deviations as the data,
but showing this double grouping. These simulated genes pro-
duce heat-map and angular plots that are not at all comparable
to the ones from the actual data, thus making this scenario very
unlikely (see Fig. 5, which is published as supporting information
on the PNAS web site).

Taken together, our results confirm that a significant number
of differentially expressed genes underlie the differentiation
from NAI to EFFE and MEM T cells. Many genes in each group
fit well with known biological differences between these subsets,

providing internal validation. Additional genes not previously
known to be uniquely associated with one subtype over the
others were discovered. These genes may serve as previously
unrecognized markers to delineate subsets. Importantly, to our
knowledge, this is the first study to use gene expression patterns
to determine lineage relationship between T cell subsets.
Through several methods, including angular presentation and
phylogenetic tree analysis, MEM T cells consistently show gene
expression patterns intermediate to NAI and EFFE T cells.
These findings fit known properties of MEM T cells to rapidly
acquire EFFE functions and suggest that NAI T cells may
differentiate into EFFE and MEM cells concurrently, hence
supporting the parallel differentiation model. As such, these data
also suggest that conditions under which NAI T cells are
activated may determine the ratio between EFFE and MEM
cells that arises subsequently. A better understanding of these
conditions may be very useful in the design of future vaccine
strategies in which the goal is to maximize MEM cell generation.
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