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Oxidative stress plays a significant role in the pathogenesis of Alzheimer’s disease (AD), a devastating 
disease of the elderly. The brain is more vulnerable than other organs to oxidative stress, and most of the 
components of neurons (lipids, proteins, and nucleic acids) can be oxidized in AD due to mitochondrial 
dysfunction, increased metal levels, infl ammation, and β-amyloid (Aβ) peptides. Oxidative stress participates 
in the development of AD by promoting Aβ deposition, tau hyperphosphorylation, and the subsequent loss of 
synapses and neurons. The relationship between oxidative stress and AD suggests that oxidative stress is an 
essential part of the pathological process, and antioxidants may be useful for AD treatment.  
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Introduction 

The human brain, although it constitutes only 2% of the 
body weight, consumes ~20% of the oxygen supplied by 
the respiratory system[1]. The high energy-consumption 
of the brain means that it is more susceptible to oxidative 
stress than any other organ. As the basic functional unit of 
the brain, the neuron is particularly vulnerable to oxidative 
damage because it has a higher metabolic rate than other 
cells[2]. The oxidation of lipids, proteins, and nucleic acids 
in neurons is a common pathological feature of Alzheimer’s 
disease (AD)[3]. Neurons contain a large amount of 
polyunsaturated fatty acids (PUFAs) that can interact 
with reactive oxygen species (ROS), leading to a self-
propagating cascade of lipid peroxidation and molecular 
destruction[4]. Furthermore, neurons contain low levels of 
glutathione, an essential antioxidant for eliminating free 
radicals[5]. Therefore, neurons are highly susceptible to 
oxidative stress. 

An increased oxidative burden has been reported in 
the brains of non-demented elderly and/or sporadic AD 
patients[6, 7]. Increased levels of oxidative stress biomarkers 

in the blood reflect such stress in the brain[8, 9]. Currently, 
many blood markers of oxidative stress have been 
identified in AD patients or related animal models, 
including protein carbonyls and 3-nitrotyrosine[10, 11], 
8-hydroxydeoxyguanosine (8-OHdG), 8-hydroxyguanosine 
(8-OHG), malondialdehyde (MDA)[12], 4-hydroxynonenal 
(4-HNE), and F2-isoprostanes (F2-IsoPs)[13-16]. Apart from 
the intracellular accumulation of free radicals, changes 
in the activities or expressions of antioxidant enzymes, 
such as superoxide dismutase (SOD) and catalase, have 
also been described in both the central nervous system 
and peripheral tissues of AD patients[14, 17]. Thus, oxidative 
stress is an important pathological feature in AD.  

However, how and where the oxidative stress 
originates in AD are open questions. Research has 
suggested that mitochondrial dysfunction[12, 18, 19], metal 
accumulation[12, 20, 21], hyperphosphorylated tau[22, 23], 
inflammation[24, 25], and β-amyloid (Aβ) accumulation[12, 19] 
are the basic mechanisms underlying the induction of 
oxidative stress. Deficiency or destruction of components 
of the antioxidant system such as SOD in the mitochondria 
(Mn-SOD or SOD2) and cytosol (Cu-Zn-SOD or SOD1), 
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glutathione peroxidases, and catalase, is also involved 
in the induction of oxidative stress[14, 17, 26]. Inactivation 
and deficiency of these enzymes reduce the clearance 
of free radicals. On the other hand, oxidative stress is 
an important contributor to Aβ accumulation and tau 
hyperphosphorylation, suggesting that it plays an essential 
role in the pathogenesis of AD[12, 19, 27], and may be a 
biomarker and treatment target for AD[27-29]. 

Oxidative Stress Is a Common Pathological Feature 

in AD

Lipid Oxidation
The brain is rich in phospholipids, which are critical to the 
processes of neurotransmission, and the basis of neuronal 
interactions and cognition. Brain phospholipids contain a 
high proportion of PUFAs, especially docosahexaenoic acid 
and arachidonic acid. It has been found that as free radical 
production increases, the PUFAs contents in the brain 
gradually decline[30, 31]. In addition, the lipid hydroperoxides 
are particularly unstable and can automatically decompose 
into various products, including MDA, 4-HNE, ketones, 
epoxides, and hydrocarbons in the presence of iron[30]. 
Several studies have confirmed an increase of MDA and 
4-HNE levels in the brains of patients with AD and mild 
cognitive impairment (MCI)[13, 32, 33]. Isoprostane production 
is another outcome of lipid peroxidation. F2-IsoPs are 
produced from arachidonic acid via esterification. In AD, 
increased levels of F2-IsoPs and F4-IsoPs have been 
detected in the cerebrospinal fl uid (CSF)[15, 34]. Interestingly, 
the level of F2-IsoPs in the ventricular fluid is negatively 
correlated with brain weight[35]. Another study also found 
that the amount of F2-IsoPs is increased in MCI patients[36]. 

Protein Oxidation
Increased level of protein carbonyl, a marker of oxidative 
damage to proteins, has been demonstrated in the 
AD brain[33]. Reactions of various reactive oxygen and 
nitrogen species with tyrosine result in the production 
of 3-nitrotyrosine and dityrosine. In particular, the 
3-ni t rotyrosine residue concentrat ion in the CSF 
is negatively correlated with the Mini-Mental State 
Examination score[37]. Furthermore, protein nitration is an 
early event in the pathogenesis of AD. For example, the 
levels of total protein nitration in the inferior parietal lobule 

and in the hippocampus from patients with MCI are much 
higher than those in healthy control subjects[38]. 
Nucleic Acid Oxidation
DNA oxidation can lead to the formation of 8-OHdG. The 
8-OHdG level in mitochondrial DNA isolated from the 
parietal cortex of AD patients is significantly increased 
(three times) as compared to control subjects[39]. Oxidative 
modification to RNA is also increased in the AD brain[40]. 
Interestingly, 8-OHG appears to precede all the typical 
hallmarks of AD, such as neurofi brillary tangles (NFTs) and 
Aβ plaques, and specifically occurs decades before Aβ 
aggregation in AD patients. Another way to measure DNA 
oxidation is to determine DNA strand breakage. It has been 
reported that the level of DNA breakage in the cerebral 
cortex of AD patients is twice that in controls[41].

All of these products of the oxidation of lipids, 
proteins, and nucleic acids have been considered as blood 
biomarkers for early AD diagnosis[30]. Their effi cacy as early 
biomarkers of AD needs further study. 

Oxidative Stress Is Induced by Multiple Mechanisms

Mitochondrial Dysfunction
The mitochondria are much more susceptible to oxidative 
stress as the site of the electron transport chain for 
adenosine triphosphate (ATP) production and the main 
source of ROS[42, 43]. Mitochondrial dysfunction and 
subsequent metabolic abnormality have been found in 
hippocampal neurons of AD patients[44, 45]. Deficiency of 
cytochrome oxidase, a key electron transport enzyme, is 
responsible for the increase of ROS production and the 
reduction in energy stores in AD[46]. Mn-SOD, an antioxidant 
enzyme that protects mitochondria from oxidative stress, 
is inactivated in APP/PS1 transgenic mice, and Mn-SOD 
inactivation further promotes mitochondrial dysfunction, 
oxidative stress, and apoptosis[47]. All these findings 
indicate that ROS production is intimately associated with 
mitochondrial dysfunction, especially abnormality of the 
electron transport chain. 

Aβ is the most important culprit for mitochondrial 
dysfunction, and thus contributes to the ROS production in 
AD (Fig.1). Accumulating evidence shows that Aβ disturbs 
the electron transport chain by reducing the activities of key 
enzymes[48] and disrupting mitochondrial dynamics[19, 49]. 
These pathological changes are involved in oxidative 
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stress[12], dysfunction of mitochondrial axonal transport[50], 
and mitochondrial DNA (mtDNA) mutation[19]. Soluble Aβ 
is correlated with increased hydrogen peroxide levels and 
decreased activity of cytochrome c oxidase in Tg2576 
mice, prior to the appearance of Aβ plaques[51]. In isolated 
mitochondria, Aβ treatment causes oxidative injury to the 
mitochondrial membrane, impairs lipid polarity and protein 
mobility, and inhibits key enzymes of the respiratory chain. 
Consequently, mitochondrial membrane permeability 
and cytochrome c release are increased, and apoptosis 
is evoked[48, 52]. Hirai et al. (2001) also reported that 
intracellular Aβ interferes with oxidative phosphorylation 
and ROS production within mitochondria, and this is related 
to the decreases in mitochondrial membrane potential, 
complex IV (cytochrome c oxidase) activity, and ATP 

production[44]. Consistently, various AD transgenic mouse 
models carrying mutants of amyloid precursor protein (APP) 
and presellien-1 (PS-1) exhibit increased hydrogen peroxide 
and nitric oxide production as well as elevated oxidative 
modification of proteins and lipids correlated with age-
associated Aβ accumulation, indicating that Aβ promotes 
oxidative stress[53-55]. Aβ also binds to Aβ-binding alcohol 
dehydrogenase (ABAD), a member of the short-chain 
dehydrogenase reductase family in mitochondria, to induce 
apoptosis and ROS production in neurons, which can be 
prevented by ABAD inhibitors[56]. Besides, mitochondria 
are dynamic organelles that constantly undergo fission 
(splitting) and fusion (combining). Abnormal mitochondrial 
dynamics is associated with the production of free radicals. 
Particularly, excessive mitochondrial fragmentation results 

Fig. 1. Oxidative stress in Alzheimer’s disease. The schematic shows how oxidative stress can be induced by mitochondrial dysfunction, 
metal malmetabolism, infl ammation, hyperphosphorylated tau and Aβ accumulation in AD. Besides, the products of oxidative 
stress in the brain, such as 8-OHG, MDA, and 4-HNE may be used for AD diagnosis. Finally, considering the essential role of 
oxidative stress in AD, antioxidants may be used for treatment.
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in increased ROS production. For example, mitochondrial 
fragmentation accounts for increased high-glucose-
induced respiration and ROS overproduction, which can be 
prevented by inhibition of mitochondrial fission[57]. Fission 
of mitochondria in AD seems to be more prevalent than 
fusion[19, 58]. The level of dynamin-related protein 1 (Drp1), a 
regulator of mitochondrial fi ssion, is reduced in sporadic AD 
fi broblasts, and it may be correlated with exposure to Aβ[59]. 
Uncoupling proteins (UCPs) are a family of mitochondrial 
anion carrier proteins that are anchored to the inner 
membrane and have diverse physiological functions[60]. 
UCP2 and UCP3 are activated in response to oxidative 
stress to protect mitochondria[61]. However, this protective 
effect is disrupted in cells overexpressing APP or mutant 
APP[62], which further leads to progressive mitochondrial 
dysfunction and ROS production. 

Mutat ions in mtDNA play a signif icant role in 
mitochondrial dysfunction in AD. Studies have revealed 
a causal relationship between mtDNA mutations and 
ROS production in the affected tissues of patients with 
mitochondrial diseases, when the mutation load of mtDNA 
reaches a threshold[63, 64]. For example, skin fibroblasts 
isolated from patients with myoclonic epilepsy with red 
ragged fi bers (MERRF) show enhancement of intracellular 
hydrogen peroxide levels and oxidative damage, and an 
imbalance of gene expression of antioxidant enzymes[65]. 
Similar phenomena have also been found in patients with 
mitochondrial encephalomyopathy and lactic acidosis with 
stroke-like episodes (MELAS)[66] and Leber’s hereditary 
optic neuropathy (LHON)[67]. 
Metal Accumulation
In the hippocampus, amygdala, and other brain regions with 
severe histopathological changes in AD patients, abnormal 
levels of copper, zinc, and iron have been reported[68]. 
Metals can interact with Aβ to induce oxidative stress (Fig.1). 
By binding to copper or iron, Aβ produces ROS by redox 
activity, and metal chelators reduce Aβ levels and prevent 
its aggregation by attenuating the metal overload[21, 69, 70]. 
Aβ binds Cu2+ with high affi nity, forming a cuproenzyme-like 
complex[71]. During this process, the electron is transferred 
from Aβ to Cu2+, converting Cu2+ to Cu+ and forming the Aβ 
radical (Aβ+•)[72]. In addition, Cu+ can donate two electrons 
to oxygen, generating H2O2

[72, 73], and further producing 
hydroxyl radicals (Fenton-type reaction)[74]. Iron accumulation 
is also present in cells associated with neuritic plaques 

in AD[75], which results in the increase of oxidative stress. 
However, it has been shown that hemochromatosis 
mutations are associated with increased oxidative stress 
and progression of disease pathology[76]. Similar to the 
copper-Aβ interaction, the binding of iron to Aβ results in a 
reduction of Fe3+ to Fe2+ and the generation of H2O2

[77]. In 
SH-SY5Y cells overexpressing the Swedish mutant form 
of human APP, the intracellular iron is signifi cantly elevated 
along with increased oxidative stress[78]. These findings 
show that ROS are produced by the interactions between 
Aβ and metals. In addition, aluminum is associated with AD 
neurodegeneration by oxidative stress and infl ammation[3]. 
As one of the key components in amyloid plaques and 
cerebrovascular amyloidosis, zinc is also considered to be 
correlated with AD. Evidence from triple-transgenic mice 
demonstrated that APP, PS1, and PS2 mutations produce 
ROS to mobilize zinc from extracellular metallothionein[79], 
which may be involved in Aβ accumulation[80]. 
Hyperphosphorylated Tau
Hyperphosphorylated tau protein, the major component 
of NFTs and a hallmark of AD, is significantly correlated 
with the neurodegeneration and cognitive decline[81]. 
Interestingly, neurons with NFTs have significantly lower 
8-OHG levels despite obvious oxidative damage. This 
implies that tau phosphorylation and NFT formation may 
play a role in protecting neurons from oxidative insult[82] 
(Fig.1). However, most studies indicate that tau is involved 
in the neurodegeneration associated with oxidative stress 
in AD. In a Drosophila model of human tauopathy (tau 
R406W), a reduction in the gene dosage of thioredoxin 
reductase or mitochondrial SOD2 promotes tau-induced 
neurodegenerative histological abnormalities and neuronal 
apoptosis[23]. On the contrary, overexpression of these 
antioxidant enzymes or treatment with vitamin E decreases 
the tau-induced neuronal death[22]. In addition, cortical 
neurons expressing truncated tau show increased levels 
of ROS, and antioxidants such as vitamin C eliminate 
this alteration[83]. A relationship between oxidative stress 
and tau pathology has also been demonstrated in P301S 
and P301L transgenic mice. The functional analysis 
of proteomics finds mitochondrial dysfunction together 
with reduced NADH-ubiquinone oxidoreductase activity 
impairs mitochondrial oxidative phosphorylation and ATP 
synthesis[84-86]. Accordingly, coenzyme Q10 (CoQ10), an 
antioxidant and key component of the electron transport 
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chain, signifi cantly enhances complex I activity and reduces 
lipid peroxidation, and consequently, signifi cantly improves 
survival and the behavioral defi cits in P301S mice[87]. 
Infl ammation
Inflammation also participates in the production of ROS 
(Fig.1). Both microglia and astrocytes release pro-
inflammatory mediators such as cytokines, chemokines, 
ROS, and complement proteins[88]. Aβ attracts and activates 
microglia, leading to their clustering around Aβ deposits 
in the brain. Microglia also express scavenger receptors 
to interact with Aβ, and cause ROS secretion and cell 
immobilization[89]. Astrocytes are also activated by Aβ, and 
hence produce chemokines, cytokines, and ROS that may 
result in neuronal damage[90, 91]. 

Oxidative Stress Is an Important Contributor to 

the Pathology of Alzheimer’s Disease

Studies have found that Aβ at physiological levels plays a 
self-protective role in the neuronal response to oxidative 
stress. Picomolar or low nanomolar levels of Aβ are 
neurotrophic or neuroprotective[92], effi ciently suppress the 
auto-oxidation of lipoproteins in the CSF and plasma[93], and 
dramatically increase hippocampal long-term potentiation[94], 
whereas high nanomolar concentrations induce the well-
established neurotoxicity. Low concentrations of Aβ 
are not detrimental until their accumulation reaches a 
threshold level. However, neuronal oxidative damage is 
more pronounced in AD patients with less Aβ deposition 
or with a shorter disease duration[95]. There is an inverse 
relationship between the degree of oxidative damage of 
nucleic acids in neurons and the amounts of intraneuronal 
Aβ42 in the hippocampus of the AD brain[96]. How can this 
contradiction be interpreted? As discussed above, ROS 
can be produced by disruption of oxidative phosphorylation 
in mitochondria or through other reactions. For example, 
respiratory chain dysfunction can lead to the release 
of free radicals, including ROS[12, 19]. To eliminate these 
free radicals, neurons may initiate mechanisms for the 
prevention of oxidative damage. Interestingly, some studies 
suggest that Aβ is initially a compensation for overwhelming 
concentrations of ROS[97, 98]. Aβ has antioxidant activity 
and protects lipoproteins from oxidation in the CSF and 
plasma; and patients with Down syndrome with the most 
severe Aβ deposition show the lowest levels of 8-OHG, 

while neurons lacking Aβ pathology have significantly 
higher levels of 8-OHG[99]. Thus Aβ may be characterized 
as an environmental stress on neurons that is induced by 
oxidative stress, or other pathological factors. 

On the other hand, when Aβ accumulates to certain 
extent it exhibits a detrimental effect on neurons and 
elicits further oxidative stress[82]. Oxidative stress reduces 
the activity of α-secretase and promotes the expression 
and activation of β- and γ-secretases[100-102]. The oxidative 
stress-induced β-site APP-cleaving enzyme 1, PS1 
expression, and γ-secretase activation are mediated by 
activation of the c-Jun N-terminal kinase pathway[103]. 
Furthermore, antioxidants such as EGb 761, curcumin, 
and green tea catechins reduce brain Aβ level and the Aβ 
plaque burden[12, 104-106]. Modification of the antioxidative 
system by overexpressing Mn-SOD in Tg19959 APP-
mutated transgenic mice decreases protein oxidation and 
increases antioxidant defense in the brain, resulting in a 
reduced Aβ plaque burden and restoration of memory[107]. 
Aβ oligomerization is also increased in the Tg2576 APP-
overexpressing AD mouse model by deleting cytoplasmic 
SOD1[108]. In sum, oxidative stress plays an important role 
in Aβ pathology (Fig.1). 

Accumulating evidence suggests that oxidative 
stress also contributes to tau pathology in AD. Oxidation 
of fatty acids accelerates the polymerization of tau, and 
thus serves as a possible link between oxidative stress 
and the development of fibrillar pathology in AD[109]. This 
polymerization is hypothesized to occur via a cysteine-
dependent mechanism[110]. In Tg2576 AD transgenic 
mice, a deficiency in mitochondrial SOD2 or a reduction 
of cytoplasmic SOD1 induces tau phosphorylation[111]. In 
addition, p38 mitogen-activated protein kinase, a kinase 
responsible for tau phosphorylation, is activated by 
oxidative stress in vitro[112]. The hyperphosphorylation of 
tau makes it susceptible to conformational changes by 
the production of paired helical fi laments and subsequent 
NFTs. However, further studies are needed to fully clarify 
the role of oxidative stress in tau pathology. 

Antioxidants as a Treatment for Alzheimer’s 

Disease

The antioxidants are potential therapeutics by eliminating 
ROS and exerting neuroprotective effects on neurons in AD 
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(Fig.1). For example, CoQ10, also known as ubiquinone, 
reduces oxidative stress and has neuroprotective 
properties both in vitro and in vivo[113]; its administration to 
transgenic AD mice also dramatically reduces the amyloid 
plaque burden[114, 115]. Although CoQ10 has not been tested 
in clinic trials, its analog, idebenone, has been assessed 
in AD patients, and has beneficial effects on memory 
and attention[116, 117]. However, it failed to prevent disease 
progression in a later large-scale study[118]. Another CoQ10 
derivative, mitoquinone mesylate or mitoQ, has also been 
applied to prevent oxidative damage in AD[119]. Latrepirdine 
(Dimebon), a nonselective antihistamine, has shown 
promise in vitro for preventing ROS-mediated damage in 
neurodegenerative diseases[120]. In a phase-2 trial, Dimebon 
was found to be well-tolerated and improved cognition, 
activities of daily living, and overall function in MCI and 
AD patients as compared to placebo[121]. However, more 
recently, the phase 3 CONNECTION trial in AD patients 
did not reveal any benefi cial effects[122]. Curcumin has also 
been tested in AD patients in a pilot trial with a duration 
of 6 months, but had no effects on cognition and levels 
of isoprostanes and Aβ[123]. Acetyl-L-carnitine (ALCAR) 
and R-alpha lipoic acid are also potential antioxidants 
for AD therapy. Particularly, ALCAR has been tested in 
many clinical trials[124-126]. Other drugs, including vitamin 
E[93, 127], pramipexole[128], and Szeto-Schiller peptides[129] 
have also been investigated widely, but none has received 
convincing confirmation of efficacy. The reason for the 
low effi cacy or failure of the clinical trials may be that the 
basic pathological changes, including Aβ accumulation 
and tau hyperphosphorylation, are not effi ciently changed, 
even when the elimination of oxidative stress seems to be 
realized. Besides, as AD is a multi-factorial degenerative 
disease, combined treatment to target multiple pathological 
mechanisms should be explored in order to develop 
effective disease-modifying therapies[130]. 

Conclusion

Oxidative stress is an important pathophysiological change 
in AD. It is closely correlated with amyloid pathology and 
tau pathology by forming vicious pathophysiological cycles, 
inducing mitochondrial dysfunction and promoting metal 
toxicity. Oxidative stress is an essential pathological marker 
of AD, but also serves as a potential treatment target. 
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