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Jamming, or dynamical arrest, is a transition at which many
particles stop moving in a collective manner. In nature it is brought
about by, for example, increasing the packing density, changing
the interactions between particles, or otherwise restricting the
local motion of the elements of the system. The onset of collectivity
occurs because, when one particle is blocked, it may lead to the
blocking of a neighbor. That particle may then block one of its
neighbors, these effects propagating across some typical domain
of size named the dynamical correlation length. When this length
diverges, the system becomes immobile. Even where it is finite but
large the dynamics is dramatically slowed. Such phenomena lead
to glasses, gels, and other very long-lived nonequilibrium solids.
The bootstrap percolation models are the simplest examples de-
scribing these spatio-temporal correlations. We have been able to
solve one such model in two dimensions exactly, exhibiting the
precise evolution of the jamming correlations on approach to
arrest. We believe that the nature of these correlations and the
method we devise to solve the problem are quite general. Both
should be of considerable help in further developing this field.

There exists within nature a whole class of systems that exhibit
a geometrical percolation transition at which they become

spanned by a single infinite cluster extending across the whole
system (1–3). Such transitions may be observed, for example, by
randomly occupying lattice sites at some prescribed density.
Spatio-temporal particle correlations implied by simple dynam-
ical models may also be studied by using percolation ideas.
Indeed, since its introduction (4, 5), the potential of the boot-
strap percolation problem (6, 7) to analyze the dynamics of a
system of highly coupled and locally interacting units has been
recognized. The range of applications has continued to grow
(8–12).

This problem is of particular interest because of a growing
focus on, and appreciation of, the unifying role of dynamical
arrest (13–17) or jamming (18) in the formation of complex
condensed states of matter. Despite many advances, there is as
yet no complete and fundamental conceptual framework to
describe the phenomena. In comparable situations it has been an
important lesson of critical phenomena (19, 20) that an exact
solution, even of a 2D model system, can be of great assistance
in broader efforts to understand the issues. Thus, an exact closed
solution of one bootstrap problem (with all of the implications
of strong packing-induced coupling and divergent correlated
domains) would represent, even without direct access to trans-
port coefficients, a solution of a nontrivial (and non-mean field)
jamming or arrest scenario. We will present such a solution in
this article.

That such a treatment is possible must be considered surpris-
ing, for there have been no prior indications of such simplifica-
tion, to our knowledge.

The connection of the bootstrap percolation problem to
jamming phenomena is clear. Thus, particles, processors, or
members of a competing population are considered to become
inactive (or blocked) depending on the state of their immediate
environment. The relationship of the bootstrap process to dy-
namics is as follows. Beginning with a lattice occupied according
to the steady-state (usually random) distribution of particles of

the underlying dynamical model, units not blocked (i.e. movable)
are iteratively removed. Those remaining are blocked irrespec-
tive of the arrangements of the movable ones in the configura-
tion. Onset of extended mutual blocking (in which one unit is
prevented from moving by its neighbors and also contributes to
the blocking† of some of those neighbors) manifests itself by a
sharp change in the occupancy of the lattice after the bootstrap
process. Percolation occurs when, after the iterative procedure
finishes, the blocked clusters extend across the whole system.
Even on approach to such a transition, single-particle movement
requires a long sequential and contingent string of changes in
surrounding units. In the underlying dynamics this long string
implies a growing correlation length and accompanying time
scale, both determined by mutual blocking effects. This (dynam-
ical) length scale is named the bootstrap length. Apart from
those errors introduced by removal (rather than movement, and
subsequent averaging) of particles, this is the characteristic
blocking or jamming length over which motions can occur only
by rare and cooperative motions. Beyond it, motion is diffusive.

Methods
Bootstrap percolation transitions are believed to fall into two
broad universality classes (21), depending on the dimensionality
d and on the local rule c, and we might expect this to be reflected
in the classes of jamming. The first type is a continuous transition
in which the blocked domain size diverges as a power law in
system size and density. The second type, when d � c � 2d �
1, displays discontinuous transitions with different essential
singularities. Specifically, the case c � d (5, 22, 23) is believed
to be more relevant to particle jamming, and there the bootstrap
length � diverges as � � expo(d�1)(A�(1 � �)) (24) [here
expo(d�1) is the exponential function iterated d � 1 times]. For
the 2D square lattice (c � 2),† theoretical calculations based on
a set of bounds (25) have resulted in an elegant outcome;
essentially exact asymptotic results, lim

�3�
�31 2(1 � �) log � � A,

where A � �2�9 and �2�3 for conventional and modified
bootstrap,† respectively. It transpires that at high packing this
length is also the typical distance between increasingly rare voids
(later named connected holes) in the configuration (26), pro-
viding a key connection between the spatio-temporal correla-
tions, and the packing of particle configurations that determine
them.

A striking aspect of this arena of research is that all attempts
(27, 28) (including some of the most extensive calculations to
have been applied in statistical mechanics) to obtain agreement
between simulations and known exact asymptotic results have so
far failed. Indeed, the bootstrap problem has generated topical
interest (29) because of the notorious (apparent) lack of agree-
ment between simulation (27, 28) and theoretical (24, 25, 30–32)
developments.
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†In conventional bootstrap percolation, particles are removed if they are surrounded by c
or fewer particles. In modified bootstrap percolation, an additional condition requires the
neighboring vacant sites to be second neighbors to each other.
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In our study we introduce holes or dynamically available
volume (22, 33), these being empty sites on the lattice into which
at least one neighboring particle can move. A hole is termed
connected or disconnected, respectively, if the lattice can (or
cannot) be vacated by sequentially removing particles by using it
as an origin in the bootstrap process. In the underlying dynamics,
connected holes typically initiate a sequence of moves that will
mobilize every particle in the system. They are therefore the
mediators of transport in the system and the order parameter of
arrest. For a system to bootstrap (and therefore not be jammed)
it must contain at least one connected hole. We identify � as
being the connected hole density (average frequency of such
occurrences in the lattice). In the high-density regime, the
bootstrap length may therefore be calculated from � � 1��1/d

(26), the particles within this distance being movable only via the
restricted motions made available by a single connected hole.

Disconnected holes in the modified bootstrap problem (for
d � 2, c � 2-modified†) are found to be enclosed by a single
continuous rectangular boundary or cage of particles, none of
which can be moved by any particle rearrangements inside the
boundary. They cannot be formed for edge lengths much larger
than lc [the cut-off size, lc � 1�(1 � �)] for then there is typically
an intervening vacancy. We can therefore sample particle re-
moval paths around holes directly in simulations (26). If particle
domains much larger than lc can be removed, the hole may be
identified as connected, rendering the simulation very efficient.
Thus, the points (�) in Fig. 1 are hole densities one would obtain
for systems sizes up to L � 220,000. They constitute the largest
simulations to have been carried out, to our knowledge, on a 2D
bootstrap problem.

The bootstrap problem is an example of strong (packing-
induced) coupling, so theoretical developments, including sim-
ple extensions of previous approaches (25) involving asymptotic
bounds, invariably fail. Instead we define intermediate states
that imply bootstrap-type (i.e. spatio-temporal) correlations.
Transitions between them may then be composed into sequences
or particle removal paths whose steps are decorrelated, and
transition coefficients [ck

(i, j)(�)] from state to state are then easily

calculated from the random ensemble. These intermediate states
are rectangular regions (of size k by k � s, see Fig. 2). They are,
irrespective of their orientation in space, completely empty, or
empty save for one, two (adjacent) or three edges occupied
entirely by particles. The probabilities that such rectangles are
visited during the emptying process are Pk,k�s

(i) (�), i � 1, 4 [the
states Pk�s,k

(2) (�) and Pk�1,k
(4) (�) are also defined, these bearing the

same meaning as Pk,k�s
(2) (�) and Pk,k�1

(4) (�), but for the orientation
of the occupied lines with respect to the direction of the
elongation]. In defining the transitions between them, only
certain directions (illustrated by arrows in Fig. 2) of the removal
paths are permitted.‡ For example, if the path leads to a state 1
[probability Pk,k�s

(1) (�)] the next attempt to grow the vacated
rectangle will be via either of the two long directions, thus
requiring removal of particles along one or other of those
directions. These directions are chosen randomly, with equal
probability.

The next intermediate state will be a k � 1 by k � s rectangle,
either in state 1 or in state 2, since these represent the only
outcome of that transition. The transition (jump) rates for these
two choices are (1 � �k�s) and �k�s, and they define ck�1,k�s

(1,1) (�)
and ck�1,k�s

(2,1) (�), respectively.
We reiterate these choices. In essence, a highly correlated

bootstrap process becomes uncorrelated within the subset of
intermediate states, leading to an exact method to identify
connected holes by random sampling of a constrained set of
states. For connected holes we remain within the closed set of
rectangular states with the indices suitably modified after each
step. Disconnected holes, being bounded by a rectangular con-
tour of particles, are identified by a transition outside of this set
of states. No transition between states involves more than one
attempt to remove a group of particles, and the transition rates
may be calculated from the random ensemble. The equations of
the bootstrap probabilities, if one recalls that in the bootstrap
problem movable and removable particles are analogous, rep-
resent a map of dynamics at one scale onto the next largest scale,
with the packing correlations automatically accommodated.

These features constitute the key elements of the method-
ological advances described in this article, and similar treatments
may be attempted for other such problems in the future (26).

The exact equations representing the process may be written
in closed form,

Pk,k�s
�1� � �1 � �k�s�Pk�1,k�s

�1� � �1 � 	s,0��1 � ��Pk,k�s�1
�2�

� �1 � ��Pk�s,k�1
�2� � 	s,1�1 � �k�Pk,k

�1�

Pk,k�s
�2� � �k�sPk�1,k�s

�1� � ��1 � �k�1�Pk,k�s�1
�2�

� �1 � ��Pk�1,k�s
�3� � 	s,0�1 � ��2Pk,k�1

�4�

Pk�s,k
�2� � 	s,1	�

kPk,k
�1� � �1 � ��Pk,k

�3� 


� �1 � 	s,0�	��1 � �k�s�1�Pk�s,k�1
�2�

� �1 � ��2Pk,k�s�1
�4� 


[1]

Pk,k�s
�3� � �1 � 	s,0��

kPk,k�s�1
�2� � �k�sPk�s,k�1

�2�

� ��1 � �k�s�1�Pk�1,k�s
�3� � 2��1 � ��Pk,k�s�1

�4�

� 	s,1��1 � �k�1�Pk,k
�3�

Pk,k�s
�4� � �k�sPk�1,k�s

�3� � �2�1 � �k�2�Pk,k�s�1
�4�

Pk�s,k
�4� � 	s,1�kPk,k

�3� .

‡These movements tend to restore the symmetric empty square, except for the state
represented by Pk,k � s

(2) (�).

Fig. 1. Connected hole density in the modified bootstrap model. Open
circles represent the total hole density from simulations (26), the last point
being equivalent to a system of size 220,000, the current limit of computer
simulation. The solid line represents the result of our exact theory. These are
compared with the asymptotic result exp(��2�3(1 � �)) (dashed line) (25). We
recall that results for the total connected hole density � coincide with 1��2 at
high density (26), where � is the bootstrap percolation correlation length.
(Inset) 
��
� (red) and 
2��
�2 (blue) against density in the same range. 
��
�

increases sharply from �1.73 to approximately zero with an inflexion sig-
nalled by the peak in 
2��
�2 at � � 0.85.
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Here s � 0 and the equations are solved numerically subject to
the initial conditions, P1,k

(i) � (1 � �)	1i	1k. These equations
converge numerically for k �� lc and 0 � s�k � 1. The connected
hole density, the probability to bootstrap a square of indefinite
size, is then given by the expression,

���� � lim
k3�

Pk,k
�1� ��� . [2]

Because of the cut-off in cage size, these equations converge
very rapidly and there are no practical limitations on the
density range that can be studied by computer, as already
discussed (26). Based on exact asymptotic analysis, the quan-
tity �2(1 � �)log � � �2�3 � f(�) would be predicted to be
positive and vanishing in the asymptotic limit (�3 1). Now we
have numerically calculated the solution for the modified
model up to the largest sizes allowed by the precision of the
computer, and indeed this quantity does decrease monotoni-
cally when � approaches 1. However, at � � 0.9965, f(�) is still
of order unity, rather too large to be neglected. Suffice it to say
that the true exact bootstrap length for this density is � � 10150.
Thus in reality, for large but finite systems one sees � �
exp[�f(�)�2(1 � �)] exp[�2�6(1 � �)], f(�) being a decreasing
but always finite function of (1 � �). Eq. 1 may also be solved
asymptotically. We illustrate in Fig. 3 the density of cages
(dimension k by k � s) at particle density � � 0.95 and the
probability for vacated square-like regions Pk,k

(1)(�). There we
see that cages become rare somewhat beyond the critical size
lc.§ The reduction of cages, capable of preventing bootstrap-
ping, leads to the dominance of Pk,k

(1)(�) and Pk,k�1
(1) (�) beyond

the critical core size.

Results
The results for connected hole density, the full curve in Fig. 1,
or equivalently the bootstrap length, settle a longstanding
mystery, the theory now being in precise agreement with
simulation where the latter is applicable. They permit us to
explore the nature of the problem all the way from lower
density to the asymptotic form, as solutions to a single closed
set of equations. It is now clear that there has never been any
inconsistency between the simulations and asymptotic results.
They were both correct, but direct comparison is not appro-
priate for any range of density appropriate to computer
simulation. The numerical results (and associated asymptotic
analysis) from these same equations are sufficient to show that
the previously reported exponential asymptotic form (25)
occurs for such high density (and large length scales) that
systems of physical interest will never reach this regime. As
noted in the previous paragraph, even at system sizes of � �
10150 there remains a singular model-dependent prefactor to

the leading exponential. Formulae purporting to describe the
behavior for finite systems (or systems at finite density) in
terms of a simple exponential are effective fits and possess no
fundamental significance.

The real paradoxes lie in the physics. As we now show, this
physics turns out to be much richer than had been supposed
until now. In discussing these issues we have in mind primarily
the clarification of the model system, though the results may
relate to recent experimental observations and could help to
clarify these issues also. We give only pointers to these
directions.

Recall that the connected hole density in a region character-
izes the ease of long-ranged movement of particles in that region,
these being the empty spaces on the lattice that permit sustained
motion. Given this, the Fig. 1 Inset is striking. There we show
both the first (�̇ � 
��
� � �
��
�) and second derivatives (�̈ �

2��
�2 � 
2��
�2) of the connected hole density with respect to
particle (or vacancy, �) density. The former is the long-
wavelength limit of the response of dynamical processes in the
system to small changes in particle density. We observe a
transition in the response of the dynamics to small changes in
particle density. For densities lower than � � 0.85 (the unstable
regime¶) a small local decrease of density leads to many new
connected holes, and thereby opens up many new transport
pathways. For particle densities higher than this (the metastable
regime) the response of dynamical properties to a density
fluctuation is vanishingly small.

Albeit in this context of near-arrested systems, these ideas
make contact with early prescient remarks (30) in which it was
suggested that bootstrap models might offer an explanation for
the decay of the metastable state and (by extension) the spinodal
transition to unstable state decay. Indeed, the two regimes of
connected hole density reflect the relaxation of particle config-
urations by two characteristic means. At low density, configu-
rations are intrinsically unstable to small spatial variations of
density, these leading to dynamical pathways reminiscent of
spinodal waves that enable efficient relaxation of quite dense
particle configurations. Beyond the peak at � � 0.85 the state
develops metastability, this being reflected also in the charac-
teristic exponentially small connected hole density there, and the
decay of such configurations becomes much more difficult. Fig.
4 illustrates these ideas in a more visual manner. Thus, Fig. 4A
represents a configuration at density � � 0.79. There we see the
development of spinodal-like patterns of empty space as particles
are removed from the unstable state. Fig. 4B, at � � 0.915,
exhibits the classical appearance of decay of the metastable state,
including growing empty droplets, with smaller subcritical drop-
lets failing to grow any further. These analogies will prove deeply

§The threshold value lc in (Fig. 3) can be understood as that size at which, with equal
probability, the droplet can either grow or find a cage in the next step.

¶The low-density near-arrest regime has a hole density that is well fitted to power laws
(�c � �) with �c and  suitably defined in the range of interest, whereas the high-density
regime is well fitted to the exponential law exp[ f(�)�(1 � �)]exp[��2�3(1 � �)].

Fig. 2. Intermediate states. Intermediate local configurations surrounding a candidate hole required in evaluation of the sum over particle removal paths that
are used to empty the lattice (k � 4 and s � 3 in the example). The white circles are sites that have been emptied in previous steps, and the red disks are
temporarily blocked particles along the perimeter edges. For each configuration, the arrows indicate allowed transitions (to be selected at random) involving
the growth of one boundary line by one step. This process restores that local configuration to another intermediate state [Pk�1,k�s

(i) or Pk,k�s�1
(i) ] with the indices

k, s suitably revised. The process terminates (as a disconnected hole) when the local configuration makes a transition from Pk,k�s
(4) outside of the class Pk,k�s�1

(i) .
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helpful in future formulations of quantitative laws for dynamical
arrest also (34).

The peak of the second derivative in Fig. 1 defines a transition
between two near-jammed regimes, the first unstable regime
where spatial density heterogeneities produce large heteroge-
neities also in the dynamics, the second metastable regime where
the response is much weaker. This observation may well be
related to recent ideas derived from simulations (35, 36) and
experiments (37–39) where dynamically heterogeneous pro-
cesses have been viewed as intrinsic to the arrest process. The
size of these domains in our bootstrap calculation (1���) in the
unstable regime reaches a maximum value of ld � 8 at � � 0.85.
Thereafter the dynamically heterogeneous processes change
their nature to droplets of movement and the system continues
to slow further, as the number of connected holes decreases.
Thus, the dynamical (here bootstrap) correlation length contin-
ues to diverge, but no longer has the same quality of dynamical
heterogeneity.

That there exists two such regimes, with a clearly defined
transition between them has not been previously clarified in the
scientific literature, to our knowledge. There is inferential
evidence from simulations and experiment that dynamical het-
erogeneities near arrest (36) might change as the system further
progresses toward complete arrest. However, the broader im-
plication of this discussion is that dynamical heterogeneities, and
the metastable state, could be formulated into a theoretical
approach via these response functions in available volume. It is
encouraging to note that, with the advent of new microscopy
tools (37, 38), there has emerged the possibility to directly
measure these more appropriate order parameters and response
functions by using direct optical imaging.

We do not here deal with the issue in detail, but note that,
associated with the two regimes of the response function, the
transport coefficients governing these two regimes should be
quite different. This observation might also point to a resolution
of another long-standing controversy about the nature of the
dynamical laws (power law or ‘exponential’) near arrest.¶

Discussion
In summary, this approach to treating strong jamming correla-
tions by using random paths between appropriately selected

states means that the 2D bootstrap model can now be solved
exactly. This advance allows us to explore phenomena far beyond
the reach of simulations with modern computers and provides us
with a complete picture of the onset of arrest.� The conclusions
of the study are intriguing and resolve long-standing apparent
conflicts between theoretical and simulation treatment of these
problems.

True arrest occurs only as a limit of a metastable state when
the system is dense-packed on the lattice. Thus, even the smallest
amounts of available volume means that motion is still possible,
albeit at enormously long time scales. The finite size dependence
of this regime is barely appreciable, but nevertheless persists up
to the fully packed limit and means that neither simulations, nor
nature, can ever access length scales where simple asymptotic
results in terms of density are valid.** However, the results
written in terms of connected hole density, or dynamically
available volume, are simple. This has deep implications for the
way in which experiments (indeed the whole study of dynamical
arrest) might be framed in the future (22, 33).

Finally, and important to the general arena of dynamical
arrest, we have shown how the conceptual infrastructure of
order parameters, dynamically available volumes, spatio-
temporal correlation lengths, and equations to represent them,
may be framed into a closed theory, from which rational
approximations emerge. However, it is our belief that these
principles governing treatment of the bootstrap are close to
those required to frame a comparable dynamical theory, from
which one would obtain the transport coefficients in systems
that are dynamically slowed.

Understanding and ultimately calculating these transport co-
efficients in dynamically slowed systems from a fundamental
theoretical basis, and comparing them to results from carefully
designed experiments, constitutes one of the outstanding chal-
lenges of those interested in the field of dynamical arrest.

�It is possible to show that more complicated jamming scenarios may also be exactly solved
in two dimensions, providing the defining constraints on particle movement remain
short-ranged on the lattice.

**This issue deserves some comment. There is as yet not settled opinion on where, for
continuum systems, true dynamical arrest occurs. The continuum analogue of the lattice
arrest transitions would likely be random close packing for hard spheres, or the Kautz-
mann condition for systems with finite energy repulsions.

We acknowledge fruitful interactions with A. van Enter, E. Marinari, M.
Mezard, G. Parisi, A. Robledo, M. Sellitto, D. Stauffer, and P. Tartaglia.

Fig. 3. Cages. Particle density � � 0.95. Illustrative calculation in the meta-
stable or droplet state is shown. The red surface represents the probability (in
log10 scale) that a rectangular cage surrounding a vacant site is first found at
size k by k � s. The probability density of cages is plotted against k (core size)
and s (asymmetry degree) and decreases monotonically in k. High degrees of
asymmetry are very rare. The probability of finding an empty square of size k
is also plotted for a comparison. The intersection with the corresponding cage
size distribution is at lc � 25,§ indicating that cages become statistically
irrelevant (i.e. extremely rare) already at sizes much smaller than � � 105.

Fig. 4. The two regimes. Shown are configurations (L � 400) after partial
removal of particles via parallel updating. The two examples refer to the
unstable regime (A) and the metastable regime (B), lying respectively to the
left and right of the peak in the Fig. 1 Inset. The process is stopped after
removal of 50% of the particles (black) (the gray scale representing the time
during the process when the particles were removed).
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