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Disease-syndrome combination 
modeling: metabolomic strategy 
for the pathogenesis of chronic 
kidney disease
Shasha Li   1, Peng Xu1, Ling Han1, Wei Mao1, Yiming Wang1,2, Guoan Luo1,2 & Nizhi Yang1

Conventional disease animal models have limitations on the conformity to the actual clinical situation. 
Disease-syndrome combination (DS) modeling may provide a more efficient strategy for biomedicine 
research. Disease model and DS model of renal fibrosis in chronic kidney disease were established 
by ligating the left ureter and by ligating unilateral ureteral combined with exhaustive swimming, 
respectively. Serum metabolomics was conducted to evaluate disease model and DS model by using 
ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. 
Potential endogenous biomarkers were identified by multivariate statistical analysis. There are no 
differences between two models regarding their clinical biochemistry and kidney histopathology, 
while metabolomics highlights their difference. It is found that abnormal sphingolipid metabolism is a 
common characteristic of both models, while arachidonic acid metabolism, linolenic acid metabolism 
and glycerophospholipid metabolism are highlighted in DS model. Metabolomics is a promising 
approach to evaluate experiment animal models. DS model are comparatively in more coincidence with 
clinical settings, and is superior to single disease model for the biomedicine research.

As an absolutely essential part to most of the modern medicine research, animal models were widely used to 
investigate disease or injury states especially in ways which would be inaccessible in patients. Most of the animal 
models serving in research at present are disease models, which may have an existing, inbred or induced disease 
similar to a human condition, and thus may meet most of the requirement of western medicine researches.

However, people come to realize the limitation of an animal model1, that the duplicated disease in animal is 
often different from the disease in human being. Human diseases, in most cases, are multifactorial and thus often 
accompanied by complications or a series of other symptoms. For instance, most patients of renal fibrosis are also 
characterized with weakness, fatigue, dizziness, deficient sweating, stuffy chest, short breath and blood stasis, 
which are, according to the theory of traditional Chinese medicine (TCM), typical observations of syndrome of 
qi-deficiency and blood-stasis (QDBS). The most common rat model of renal fibrosis is established by ligation of 
the left ureter2, and validated with blood biochemistry and kidney histopathology indicators, without too much 
attention on other symptoms that should be present. As a result, this kind of simple disease animal model cannot 
reflect the real condition of human being, which might be, as least in part, responsible to the possible inconsist-
ency between animal experiments and clinical trials3.

In theory and practice, TCM believed that disease does not exist in isolation, often accompanied by some 
specific “syndrome” (more accurately, maybe should be transliterated as “Zheng”)4. Disease-Syndrome (DS) com-
bination modeling5, taking both disease and syndrome into consideration, is expected to be an efficient solution 
deal with the limitation of disease model. Then, how to evaluate the validity of an established DS model? A disease 
model can be evaluated by determination on some addressed biochemical indicators, which is, nevertheless, may 
not suffice to a DS model. Syndrome is a holistic concept with global pathological or physiological abnormalities 
occurred in patients or model animal, and can hardly be described by limited biochemical index6. Metabolomics 
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is a holistic analysis strategy widely applied in the field of biomedicine research and in clinical application, and 
may be used as a powerful tool for the evaluation of TCM and DS models7, 8.

Chronic kidney disease (CKD) is a serious disease that jeopardizes human health worldwide9. The common 
pathological alteration in progressive CKD was tubulointerstitial fibrosis10. Tubulointerstitial fibrosis was com-
plex, involving various independent and overlapping cellular and molecular pathways11. It was reported that 
metabolomics has been used to study patients with CKD for the last several years12–16. Compared with clini-
cal aplication, metabolomics has been applied widely to the study of different animal models of CKD such as 
5/6 nephrectomized CKD, adenine-induced chronic renal failure and other drug-induced CKD17–23. However, 
most publications were just based on the studies on animal disease models24. Statistic study of clinical cases 
in our hospital found that renal fibrosis patients had mostly a syndrome of qi-deficiency and blood-stasis 
(QDBS), and this conclusion has also been supported by literature in year 201025. Ultra-high performance liquid 
chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) with rapidly separation and 
high reproducibility is regarded as a suitable for untargeted metabolomics in disease biomarker discovery and 
drug research26–29. In this present study, a DS model was established in rats as a combination model of QDBS and 
renal fibrosis in CKD, and metabolomic approach was used to comparatively evaluate this model. It is expected to 
discover novel diagnostic biomarkers and to highlight pathophysiological mechanisms of renal fibrosis in CKD.

Materials and Methods
Animals and Treatment.  Thirty-two specific pathogen-free Sprague Dawley (SD) rats (male, weight, 180–
220 g) were provided by the Experimental Animal Center of Guangdong Medical (certificate number, 0079361). 
All experiments were performed in accordance with the internationally accepted standard guidelines for the use 
of animals. This study was conducted in accordance with the Chinese national legislation and local guidelines, 
and the care and handling of rats were also approved by the Ethical Committee of Guangdong Provincial Hospital 
of Chinese Medicine. The rats were housed under standard environmental conditions (23 ± 2 °C, 55% ± 5% 
humidity and 12 h/12 h light/dark cycle) and were allowed free access to water as well as standard laboratory rat 
food.

After 3 days of acclimatization, the rats were randomly divided into three groups of control group (n = 10), 
disease model group (n = 10) and DS model group (n = 12), respectively. Rats in disease and DS model group 
underwent ligation of the left ureter to establish a model of renal fibrosis, and rats in DS group were further forced 
to swim exhaustively every day to establish a DS model; they swam in a pool of water with a depth of 60 cm at 
room temperature and were picked up when 50% of the rats were exhaustively submerged in water for 10 s. This 
experiment lasted for 28 days.

Sample Preparation.  Three groups of rats were sacrificed after being anesthetized by intraperitoneal injec-
tion of pentobarbital (50 mg/kg of body weight) (GBCBIO Technologies, Guangzhou, China) and their blood and 
kidney were collected. Blood samples were drawn into tubes, allowed to stand for 30 min, and were centrifuged 
to obtain serum. Serum samples were snap frozen in liquid nitrogen for 5 min and then stored in a refrigerator 
at −80 °C. Kidney tissues were fixed with 10% formalin (Sigma, America) in PBS for 12 h after dehydration, 
cleared in xylene (Damao chemical reagent company, Tianjin, China), penetrated in wax and embedded in par-
affin (Leica, Germany).

Thawed serum (400 μL) was mixed with methanol (1200 μL), then swirled for 2 min and centrifuged at 
13,000 rpm for 15 min at 4 °C. The clear supernatant was transferred and evaporated to dryness by N2, followed 
by dilution with 300 µL of methanol-H2O (80:20, v/v) (Merck, Germany) and centrifugation at 13,000 rpm for 
15 min at 4 °C. The supernatant was transferred to a new EP tube for UPLC-QTOF/MS analysis.

Chromatographic Condition.  Chromatography was performed on a Waters Acquity UPLC BEH C18 col-
umn (2.1 mm × 100 mm, 1.7 μm) at 30 °C. The mobile phase consisted of acetonitrile (Merck, Germany) as solvent 
A and 0.1% formic acid (Merck, Germany) in water as solvent B. The gradient programs was as follows: 0–5 min, 
2–50% A; 5–7 min, 50–60% A; 7–14 min, 60–65% A; 14–18 min, 65–80% A; 18–24 min, 80–90% A; 24–26 min, 
90–95% A; 26–28 min, 95–2% A; and 28–30 min, 2% A. The injection volume of the test sample was 5 µL and each 
sample was injected three times. Each wash cycle consisted of 200 µL of strong wash solvent (80% CH3CN-H2O, 
8:2, v/v) and 600 µL of weak wash solvent (10% CH3CN-H2O, 1:9, v/v).

Mass spectrometry condition.  MS was performed on a Waters Q-TOF Premier with an electrospray ioni-
zation system (Waters MS technologies, Manchester, UK). A preliminary experiment was conducted to optimize 
the experimental conditions. To achieve the desired detection results, the flow rate and column temperature for 
chromatography, as well as capillary voltage, flow and temperature of the desolvation gas for the mass spectrom-
etry detector were optimized carefully. As a result, the optimal parameters were fixed as followed. The capillary 
voltages were set at 3.0 and 2.5 kV, and the sample cone voltages were 30 and 45 V for the positive and negative 
ion modes, respectively. The desolvation gas flow was set to 600 L/h at a desolvation temperature of 350 °C, the 
cone gas set to 50 L/h and the source temperature was 110 °C. The Q-TOF Premier acquisition rate was 0.1 s with 
a 0.02 s inter-scan delay. The instrument was operated with the first resolving quadrupole in a wide-pass mode 
(50–1500 Da). Argon was used as the collision gas. ESI-MS spectra were acquired in both ionization modes of 
positive and negative with full-scan detection.

The precision and stability of the UPLC-MS method was determined by repeated analysis of six injections of 
the same QC samples, and the repeatability of sample preparation was accessed by preparing six parallel samples 
using the same protocol. All assays were performed using a lock spray to ensure accuracy and reproducibility, 
with Leucine enkephalin amide acetate as the lock mass at 200  рg/μL concentration and 20 μL/min flow rate.
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Data processing.  Data pre-processing was performed with MarkerLynx applications manager version 4.1 
(Waters, MA, USA). The parameters included retention time from 1 min to 26 min, mass range from 50 Da to 
1500 Da and mass tolerance was 0.01 Da. The minimum intensity was set at 10% of base peak intensity, the max-
imum mass per retention time was set at 6 and the retention time tolerance was 0.05 min. MarkerLynx incorpo-
rates an Apex-Track-peak detection package and the data were combined into a single matrix by aligning peaks 
with the exact mass/retention time pair together. The ion intensities for each peak were normalized to a constant 
integrated intensity to partially compensate for the concentration bias of each sample.

The processed data was then exported and processed by principle component analysis (PCA) and partial least 
square-discriminant analysis (PLS-DA) in the software package SIMCA-P 11.5 version (Umetrics AB, Umeå, 
Sweden). PCA was used first to determine the general interrelation between the three groups, and PLS-DA was 
subsequently performed to maximize the difference in metabolic profiling. The value of Q2 and R2 were used to 
estimate the accuracy of the model and a typical 7-round cross-validation was used to validate the model against 
over fitting.

Statistical analyses were performed using SPSS software (Version 18.0, USA). Assumptions of normality and 
homogeneity of variance were first checked. Data were presented as the mean ± standard deviation for contin-
uous variables with a normal distribution, as counts and percentages for categorical variables. The independent 
samples t-test or one-way ANOVA were used to analyze the differences among groups for continuous measures. 
Differences with P values less than 0.05 were considered to have statistical differences, and P values less than 0.01 
were considered to have significant differences. All probability values were two-sided.

Data availability.  All data generated during this study are included in this published article and the raw data 
are available from the corresponding author on reasonable request.

Results
Change of weight and swimming time of rats.  The weight of all rats was recorded every week, and the 
swimming time of the rats for the DS model group was measured every 2 days. Figure 1a shows that the weight of 
all rats increased with time. Starting from the second week, the weight growth rate of the control group and disease 
model group was faster than that of DS model group, and this phenomenon persisted until the end of the experi-
ment. The Dunnett’s test showed that the weights of the rats in each group were equal at the beginning of the exper-
iment; however, the final weights of the DS model group were significantly lower than that of the control group and 
the disease group (P = 2.92 × 10−6 and 1.05 × 10−3, respectively). No significant difference was observed between 
the control and disease model group. Figure 1b shows the exhaustive swimming time of the DS model group dur-
ing the adaptive swimming period. After stress reduction in the second day, the swimming time of rats shortened 
gradually in followed two weeks. Then, the time remained relatively stable until the end of the experiment.

Serum biochemistry.  Thirty-two rats were included in this study and the results of serum biochemistry are 
listed in Table 1. Compared with control rats, rats of both model groups show significant changes in levels of cho-
lesterol, lactate dehydrogenase, creatine kinase, blood urea nitrogen and creatinine. However, excepting triglycer-
ide, these biochemical parameters in rats showed no statistical differences between disease group and DS group.

Immunohistochemical staining.  Paraffin embedded kidney tissue were cut into 4 μm sections. 
Hematoxylin & Eosin (H&E) and Masson staining were performed on sections for observation of kidney 
pathohistological changes. As illustrated in Fig. 2, compared with control group, those in disease and DS groups 

Figure 1.  The change of weight in all three groups and swimming time in DS model group. The weight of all 
rats was measured weekly and the swimming time of the rats for the DS model group was measured every 2 days 
from the start to the end of the experiment. Rats in DS model group were weighed before exhaustive swimming. 
Data were reported as the mean ± standard deviation in each group. *P < 0.05, compared with the control 
group. The swimming time was calculated from the point when rats were placed in water to the point when 50% 
of the rats were exhaustively submerged in water for 10 s.
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were observed with renal cortex and medulla atrophied, and microscopic examination showed the development 
of glomerular sclerosis and atrophy by H&E staining, together with renal tubular expansion, structure diffusion, 
visible hyalinization, protein tube and a large number of cavity; in addition, glomerular and capillary congestion 
and clear inflammatory cell infiltration was also observed in disease and DS groups of rats. Masson staining 
showed dramatically tubulointerstitial fibrosis. Immunohistochemical staining indicates both disease and DS 
models successfully established renal fibrosis models, while it cannot show any significant variations between 
them.

Metabolic Fingerprinting.  Based on the optimal conditions, the UPLC-MS base peak intensity chromato-
grams obtained in the ESI positive and negative ion modes are shown in Fig. 3. In this study, abundant chroma-
tographic peak information was observed both in the positive and negative ion modes. To acquire the maximum 
amount of detectable metabolites, the detection data of two ionization patterns were all considered in further 
study. Quasi-molecular ion [M + H]+ was the most usually form with a higher signal/noise in the positive ion 
mode and [M − H]− or [M + HCOO]− in the negative ion mode.

Control group Disease model group DS model group

No. of subjects 10 10 12

Cholesterol, mmol/L 1.18 ± 0.20 2.56 ± 0.30** 2.66 ± 0.29**

Triglyceride, mmol/L 0.37 ± 0.10 0.57 ± 0.08** 0.37 ± 0.12ΔΔ

Lactate dehydrogenase, U/L 429.20 ± 89.17 1131.11 ± 122.93** 1111.86 ± 91.61**

Creatine kinase, U/L 225.80 ± 38.88 416.92 ± 95.67** 443.38 ± 80.69**

Blood urea nitrogen, mmol/L 7.40 ± 1.55 9.90 ± 1.06** 9.32 ± 1.13*

Creatinine, μmol/L 14.75 ± 2.75 54.60 ± 8.40** 55.29 ± 13.46**

Table 1.  Comparison of serum biochemistry analysis among groupsa, b. aThe serum levels of biochemical 
indices of rats are presented as the mean ± standard deviation. bThe serum concentrations of biochemical 
indices were statistically tested by Dunnett’s t-test when the variance in different groups was homogeneous and 
by the Games-Howell test when the variance was non-homogeneous. *P < 0.05, **P < 0.01 compared with the 
control group; ΔP < 0.05, ΔΔP < 0.01 compared with the disease model group.

Figure 2.  H& E and Masson staining on kidney tissue of rats in control, disease and DS groups. H& E staining: 
rats in disease and DS groups were observed with renal cortex and medulla atrophied, glomerular sclerosis and 
atrophy, renal tubular expansion, structure diffusion, visible hyalinization, protein tube and a large number of 
cavity; Glomerular and capillary congestion and clear inflammatory cell infiltration was also observed. Masson 
staining: glomerular basement membrane and tubule interstitial fibers proliferated significantly in disease and 
DS groups of rats.
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The relative standard deviations of the peak retention time and area value in methodological investigation 
were all less than 5.0%, indicating that the precision and repeatability of the proposed method were satisfactory 
for metabolomic analysis.

PCA and PLS-DA.  In this study, PCA was used first to determine the general interrelation between the three 
groups. For a clearer display of clustering, PCA 3D score plots were provided in this study. As shown in Fig. 4, the 
model groups and control group were separated clearly, indicating that the rats of model groups have significantly 
altered endogenous metabolism both in the positive and negative ion modes. Furthermore, the assembly of DS 
model group was far from control group compared to the disease model group both in positive and negative ion 
modes, indicating a more obvious change in metabolic state of DS model group. This indicates that metabolic fin-
gerprints could reflect the alternation between disease and normal rats. In addition, metabolic fingerprints could 
exhibit the difference between disease model group and DS model group that cannot be observed in detection of 
serum biochemistry and immunohistochemical staining.

Subsequently, PLS-DA was performed to maximize the difference in metabolic profiling (Fig. 5). The R2Y and 
Q2Y values calculated from the results in SIMCA-P package were 0.990 and 0.944 in the positive ion mode, mean-
ing 99% of data fit the model and 94.4% of data could be predicted by this model. Besides, the R2Y and Q2Y values 
in the negative ion mode were 0.989 and 0.919 respectively. Both the Q2Y and R2Y close to 1 indicate an excellent 
model which is good to fitness and prediction. In order to maximize the difference, Data of control model and 
disease model or DS model groups were performed PLS-DA, respectively.

Biomarkers.  After PLS-DA processing, metabolites that significantly contributed to the clustering and dis-
crimination were identified when the variable importance in the projection values was more than 1 and p-value 
of t-test between groups was less than 0.05. These endogenous metabolites were selected for further structural 
identification. In next process, the calculated mass, mass deviation (mDa and ppm), double bond equivalent, 

Figure 3.  Representative base peak intensity chromatogram of rat serum obtained in the ESI positive (a) and 
negative ion modes (b) based on UPLC-QTOF/MS. Con, control group; DM, disease model group; DSM, DS 
model group.

Figure 4.  PCA 3D Score plots of the serum profiles in positive ion mode (a) and negative ion mode (b).
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formula, and isotopic pattern of the selected ion (i-fit value) were used to evaluate the accuracy of possible for-
mulas30, 31. A smaller mass deviation and a lower i-fit value indicate a more accurate elemental composition. The 
structural information of the metabolites selected was subsequently obtained by searching the freely accessible 
databases HMDB (http://www.hmdb.ca) and KEGG (http://www.genome.jp). Finally, twenty significantly differ-
ential metabolites were identified (Table 2). Moreover, the relative levels of biomarkers were also analyzed and 
were shown in Table 2, and the heatmap of these 20 potential biomarkers is shown in Fig. 6.

Eleven and fifteen potential biomarkers were identified in disease model and DS model, respectively. 
Leukotriene E3(LTE3), 15(S)-Hydroxyeicosatrienoic acid (15(S)-HETrE), LysoPE (20:1), Tyrosyl-histidine, 
Glutaminyl-glutamate and Sphingosine 1-phosphate(S1P) were observed as potential biomarkers in both mod-
els and these biomarkers show the same variation trends. No. 7–11 and No. 12–20 metabolites were particular 
biomarkers obtained by PLS-DA analysis in disease model and DS model, respectively (Table 2 and Fig. 7). The 
relative level of all twenty potential biomarkers was listed in Table 2 and a one-way ANOVA was conducted to 
evaluate the significance of difference between groups. The p-value in Table 2 showed that the relative level of five 
among No.12–20 had significant difference in disease model compared to control group, and No.7–11 metabolites 
had significant difference in DS model. This result illustrated again that the DS model could exhibit the abnormal 
endogenous metabolic status comprehensively.

Metabolic pathway analysis revealed key pathways involved in disease model and DS model32, 33. According to 
Fig. 8, abnormal sphingolipid metabolism is a common characteristic of both models, while there are some other 
important pathways of arachidonic acid (AA) metabolism, linoleic acid metabolism and glycerophospholipid 
metabolism are involved highlight in DS model. The biosynthetic pathways for parts of potential biomarkers 
related to arachidonic acid metabolism, linoleic acid metabolism, glycerophospholipid metabolism and sphingo-
lipid metabolism were shown in Fig. 9.

Discussion
In clinic, serum creatinine, blood urea nitrogen, cholesterol and triglyceride levels are the main biochemical 
biomarkers that are preferred to detect patients with nephropathy. Among these biomarkers, serum creatinine 
and blood urea nitrogen levels are most reliable for the detection of renal function, whereas cholesterol and tri-
glyceride levels are related to lipid metabolism34, 35. In addition, creatine kinase and lactate dehydrogenase levels 
were used to access the physical condition of rats in the present experiment. This study applied two approaches 
to establish models for the same disease, including a common disease model and a disease model combined 
syndrome under the guidance of the TCM theory. Table 1 indicates that the two types of modeling methods 
can induce injury of the kidneys, which presented as damaged renal function, reduced physical condition and 
disordered the lipid metabolism. Except triglyceride, all biochemical indices in two models show significant var-
iance compared with control rats, which indicate the validity of both models. The difference in triglyceride lev-
els observed between the disease and DS model groups may be due to daily swimming, which requires a great 
amount of energy.

Disease model and DS model show no difference in biochemical biomarkers except triglyceride and suggests 
common approach is not sufficient to evaluate DS modeling. Metabolomics focuses on the quantitative and qual-
itative analysis of low-molecular-weight metabolites and is an efficient tool for globally understanding of diseases 
pathogeneses. Disease model and DS model have almost the same biochemical parameters, while metabolomics 
may highlight their difference. Besides 6 biomarkers in common, five metabolites were discovered only in dis-
ease model and control groups; while investigation on DS model and control groups identified nine particular 

Figure 5.  PLS-DA score plots of control group and model groups. (a) Comparison of groups in positive ion 
mode (R2X(cum) = 0.349, R2Y(cum) = 0.990, Q2Y(cum) = 0.944); (b) Comparison of groups in negative ion 
mode (R2X(cum) = 0.279, R2Y(cum) = 0.989, Q2Y(cum) = 0.919). Con, control group; DM, disease model 
group; DSM, DS model group.

http://www.hmdb.ca
http://www.genome.jp
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biomarkers. MataboAnalyst 3.0 is efficient tool for metabolites related metabolic pathway analysis, and it indicates 
that abnormal sphingolipid metabolism is a common characteristic of both model, while AA metabolism, linoleic 
acid metabolism and glycerophospholipid metabolism are highlighted in DS model.

It has been reported that CKD was closely related to the abnormal sphingolipid metabolism36, 37, and kidney 
injury may be caused by excessive accumulation of sphingolipids38–40. In this study, two important metabolites 
phytosphingosine and sphingosine 1-phosphate (S1P) involved in sphingolipid pathway could be considered as 
important biomarker in both models. Sphingolipids can regulate cell growth, differentiation, death and many 
important signal transduction pathways41. It was reported that phytosphingosine inhibited fibrosis by regulating 
the expression and activity of peroxisome proliferator-activated receptor γ (PPARγ)42. PPARγ has various biolog-
ical functions, such as anti-inflammatory, anti-fibrotic, regulation of lipid metabolism by regulating expression 
of transforming growth factor β (TGF-β) and nuclear factor kappa B (NF-κB), inhibition of the proliferation of 
mesangial cells and reduction in the accumulation of extracellular matrix and type I collagen43. In addition, S1P 
plays an important role in the progression of lung fibrosis. Ikeda’s study found significant changes in the levels of 
S1P and its receptor in the liver tissues of patients with fibrosis44. Another report demonstrated that the role of 
S1P in fibrosis was correlated with the site of action and extracellular S1P promoted fibrotic processes in a S1P 
receptor-dependent manner, whereas intracellular S1P had an opposite effect45.

The biomarkers indicate abnormal sphingolipid metabolism in both models34. Compared with disease model, 
DS model includes additional TCM syndrome (qi-deficiency and blood-stasis, QDBS) on the base of abnor-
mal serum biochemistry and pathological characteristics. Metabolic pathway analysis suggests DS model display 
more distinct abnormality in AA metabolism, linoleic acid metabolism and glycerophospholipid metabolism.

AA metabolic pathway includes AA together with its metabolites, LTE3 and 11b-PGF2α. AA mediates inflam-
mation and the function of several organs and systems, either directly or upon its conversion into eicosanoids46, 47.  
The metabolites that are involved in the regulation of renal epithelial transport and vascular function, such as 
EETs and 20-HETE can regulate transport function in the proximal tubules, which is important to maintain 
renal function in patients with kidney disease by affecting Na+-K+-ATPase activity48. LTE3 is a by-product of 
the metabolism of LTC3, a cysteinyl leukotriene. Cysteinyl LTs (leukotrienes C4, D4 and E4) possess bronchoc-
onstrictive and inflammatory effects in the lung via their action on specific leukotriene receptors. Montelukast, 
a potent cysteinylleukotriene1 (CysLT1) receptor antagonist, is therapeutically effective for the alleviation of 
further progression of lung fibrosis via the inhibition of α-smooth muscle actin (α-SMA). It was found that 
LT receptor blockers prevented necroinflammatory liver injury and fibrogenesis by modulating the hepatic 

No. Identified potential biomarker Related metabolism

Concentration

Fc Sig.c

p valued

Control Disease modelb DS modelb Con. VS DM Con. VS DSM

1 Leukotriene E3 Arachidonic acid metabolism 34.54 ± 5.67 14.81 ± 6.44↓ 7.94 ± 2.27↓ 81.62 1.23 × 10−12 2.52 × 10−8 2.33 × 10−8

2 15(S)-Hydroxyeicosatrienoic 
acid γ-Linolenic acid metabolism 124.22 ± 14.73 101.64 ± 29.31↓ 44.29 ± 7.87↓ 53.00 2.07 × 10−10 2.27 × 10−2 2.37 × 10−8

3 LysoPE (20:1) Glycerophospholipid metabolism 14.93 ± 4.49 1.78 ± 0.82↓ 5.80 ± 1.40↓ 63.35 2.61 × 10−11 2.33 × 10−8 4.16 × 10−8

4 Tyrosyl-histidine Tyrosine metabolism 16.88 ± 1.46 21.01 ± 2.26↑ 29.40 ± 3.92↑ 56.02 1.10 × 10−10 5.56 × 10−3 2.34 × 10−8

5 Glutaminyl-glutamate Glutamate metabolism 17.29 ± 1.19 21.12 ± 3.58↑ 27.65 ± 3.60↑ 32.61 3.79 × 10−8 1.67 × 10−2 4.25 × 10−8

6 Sphingosine 1-phosphate Sphingolipid metabolism 34.68 ± 6.52 43.28 ± 5.38↑ 52.80 ± 12.55↑ 11.01 2.78 × 10−4 1.45 × 10−2 1.22 × 10−4

7 Docosahexaenoic acid α-Linolenic acid metabolism 215.29 ± 21.48 288.42 ± 37.48↑ 283.26 ± 32.33↑ 17.50 1.04 × 10−5 2.59 × 10−5 3.96 × 10−5

8 8,11,14-eicosatrienoyl 
ethanolamide α-Linolenic acid metabolism 26.96 ± 6.69 41.47 ± 9.72↑ 46.69 ± 9.00↑ 15.01 3.35 × 10−5 1.42 × 10−3 1.84 × 10−5

9 11b-PGF2α Arachidonic acid metabolism 26.17 ± 7.08 43.35 ± 11.74↑ 41.89 ± 8.64↑ 10.71 3.29 × 10−4 5.52 × 10−4 9.03 × 10−4

10 Palmitoleic acid Fatty Acid Biosynthesis 57.01 ± 11.35 94.07 ± 18.91↑ 85.33 ± 23.24↑ 10.66 3.38 × 10−4 2.65 × 10−4 2.87 × 10−3

11 Cholic acid Bile Acid Biosynthesis 39.07 ± 12.93 144.96 ± 31.70↑ 166.96 ± 26.46↑ 78.00 2.14 × 10−12 2.38 × 10−8 2.33 × 10−8

12 Arachidonic acid Arachidonic acid metabolism 35.62 ± 3.81 30.06 ± 8.90↓ 16.72 ± 5.57↓ 25.73 3.74 × 10−7 1.09 × 10−1 2.96 × 10−7

13 Eicosapentaenoic acid Α-Linolenic acid metabolism 245.94 ± 56.43 153.10 ± 39.18↓ 122.45 ± 39.35↓ 21.35 1.99 × 10−6 1.58 × 10−4 1.18 × 10−6

14 9-HODE Linoleic acid metabolism 35.18 ± 1.40 35.76 ± 7.15 21.41 ± 4.15↓ 32.27 4.22 × 10−8 9.47 × 10−1 4.88 × 10−7

15 Phytosphingosine Sphingolipid metabolism 461.18 ± 55.03 403.14 ± 35.19↓ 180.93 ± 66.80↓ 81.25 1.30 × 10−12 4.57 × 10−1 2.33 × 10−8

16 LysoPC (16:0) Glycerophospholipid metabolism 13.97 ± 5.31 16.45 ± 2.99↑ 22.59 ± 9.59↑ 4.73 1.67 × 10−2 6.29 × 10−1 1.16 × 10−2

17 LysoPE (18:1) Glycerophospholipid metabolism 10.57 ± 1.24 4.47 ± 1.97↓ 4.01 ± 1.27↓ 60.62 4.38 × 10−11 2.47 × 10−8 2.34 × 10−8

18 LysoPC (15:0) Glycerophospholipid metabolism 42.71 ± 5.02 29.30 ± 8.41↓ 17.36 ± 10.69↓ 23.96 7.20 × 10−7 2.88 × 10−3 2.84 × 10−7

19 Tri-N-acetyl chitotriose Amino sugar metabolism 52.54 ± 10.38 38.94 ± 7.02↓ 23.61 ± 4.99↓ 39.54 5.20 × 10−9 7.98 × 10−4 2.52 × 10−8

20 17β-Estradiol glucuronide Steroid hormone biosynthesis 41.38 ± 11.24 30.78 ± 6.30↓ 17.92 ± 3.17↓ 27.42 2.06 × 10−7 6.56 × 10−3 1.04 × 10−7

Table 2.  Identification of significantly different potential endogenous metabolites in the sera of individuals 
in the control and model groupsa. aMetabolites were confirmed by tR and m/z with authentic chemicals. 
bCompared with control group. “↑” indicates a higher level of metabolites, whereas “↓” represents a lower level 
of metabolites. All data are represented the intensity values of metabolites. cThe value of F and Sig. was obtained 
from a one-way ANOVA. The F value is the ratio of the variance between the groups and the variance in the 
group. F value greater than 1 and Sig. less than 0.05 means the differences between groups were statistically 
significant. dp values were calculated from the Dunnett test in multivariate statistical analysis.
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expression of TGF-β, NF-κB, tissue inhibitor of metalloproteinase 1 and matrix metalloproteinases49. 11β-PGF2α 
is irreversibly produced from prostaglandin D2 via the enzyme prostaglandin-F synthase. Recent study demon-
strated that PGD2 was probably involved in multiple aspects of inflammation through its dual receptor systems, 
DP and CRTH250.

Linoleic acid pathway involves five metabolites of 15S-HETrE, docosahexaenoic acid (DHA), eicosapentae-
noic acid (EPA), 9-HODE and 8,11,14-eicosatrienoyl ethanolamide. Among the five metabolites, 15S-HETrE 
and 9-HODE play a role in regulating PPARγ activity because 15S-HETrE can promote PPARγ expression51 
and 9-HODE is an endogenous agonist of PPARγ52. 8,11,14-eicosatrienoyl ethanolamide is a DHA-derived 
N-acylethanolamine(NAE) metabolite, which modulates inflammation by reducing MCP-1 and NO production 

Figure 6.  Heatmap of 20 potential biomarkers between control and model groups. The color of each section 
is proportional to the significance of change of metabolites (red, upregulated; green, downregulated)as the 
numbers listed in Table 2. Rows: metabolites; Columns: samples (C: control group; DM: disease model group; 
DSM: DS model group).

Figure 7.  Identification of potential metabolites related to disease model rats and DS model rats. The color 
represent different classes of biomarkers: (a) arachidonic acid metabolism, linoleic acid metabolism; (b) 
fatty acid biosynthesis; (c) sphingolipid metabolism; (d) amino acid metabolism; (e) glycerophospholipid 
metabolism. DHA: docosahexaenoic acid; LTE3: leukotriene E3; 15S-HETrE: 15(S)-hydroxyeicosatrienoic 
acid; DHEA: 8,11,14-eicosatrienoyl ethanolamide; EPA: eicosapentaenoic acid; AA: arachidonic acid; S1P: 
Sphingosine 1-phosphate.
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and expression53. DHA and EPA both belong to the long-chain ω-3 unsaturated fatty acid family, which maintains 
the normal physiological functions of cells and reduces blood cholesterol and triglycerides to improve blood 
microcirculation31, 54, 55. In addition, docosahexaenoic acid can suppress oxidative stress and fibrotic reaction in 
mice with non-alcohol fatty liver disease56. Moreover, EPA can regulate the ratio of urinary albumin/creatinine, 
as well as reduce the extracellular matrix accumulation of mesangial cells and renal tubulointerstitial fibrosis by 
adjusting monocyte chemoattractant protein-1 (MCP-1) levels57.

Lysophosphatidylcholines (LysoPCs) play a key role in process of glycerophospholipid metabolism, which 
have a pro-fibrotic effect because it can promote epithelial cell apoptosis, increase vascular permeability, promote 
fibroblast migration and anti-apoptosis, activate TGF-β activity and increase the secretion of the pro-fibrotic 
cytokines platelet-derived growth factor β and connective tissue growth factor in proximal tubule cells58–62. 
Moreover, LysoPCs can promote oxidative stress and enable cell structural and functional abnormalities that 
ultimately induce hemodynamic disorders by inhibiting Na+-K+-ATPase activity35, 63, 64.

Moreover, compared with disease model, some other particular biomarkers were also identifed in DS model. 
Phytosphingosine could regulate PPARγ expression and activity42, and its reduced level was closely related to the 
progress of fibrosis. tri-N-acetyl chitotriose, a component of oligosaccharides, could protect mucosal and main-
tain normal digestive action, and the reduced level of tri-N-acetyl chitotriose in model rats may be correlated 

Figure 8.  Pathway analysis on biomarkers of disease model (a) and DS model (b). All matched pathways 
according to p-values from pathway enrichment analysis and pathway impact values from pathway topology 
analysis, using pathway library of Rattus norvegicus (rat).

Figure 9.  Biosynthetic pathways for parts of potential biomarkers related to arachidonic acid metabolism, 
linoleic acid metabolism, glycerophospholipid metabolism and sphingolipid metabolism. The colored dots 
showed metabolites identified in the current study. DGLA: dihomo-γ-linolenic acid; 15S-HETrE: 15(S)-
hydroxyeicosatrienoic acid; AA: arachidonic acid; LTE3: leukotriene E3; EPA: eicosapentaenoic acid; DHA: 
docosahexaenoic acid; DHEA: 8, 11, 14-eicosatrienoyl ethanolamide; S1P: Sphingosine 1-phosphate.
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with gastrointestinal dysfunction65. Estradiol is closely related to oxidative stress in patients with CKD as an 
anti-fibrosis component that inhibits the generation of reactive oxygen species and loss of anti-oxidant enzymes 
via the suppression of NADH/NADPH oxidase activity, attenuation of hydrogen peroxide induced TGF-β1 
expression as well as proliferation and transformation of hepatic stellate cells66, 67.

The metabolomic study identified the similarities and differences of the two models. Common potential bio-
markers related to abnormal sphingolipid metabolism were identified in disease model and DS model, which are 
associated with the formation of fibrotic cells or tissue and their cytokines, such as PPARγ, TGF-β and MCP-1. 
Furthermore, compared with the disease model, DS model shows its differences on AA metabolism, linoleic 
acid metabolism and glycerophospholipid metabolism, which were mainly involved in the maintenance of cell 
structure and function, regulation of cytokines related to fibrosis and other aspects and moderation of oxidative 
stress and inflammation. Accumulated evidences have demonstrated the presence of inflammation, oxidative 
stress, lipid metabolism disorders and other symptoms in patients with CKD. Therefore, DS model is in more 
coincidence with clinical settings.

Conclusion
Disease model and DS model show no difference in clinical biochemistry, while metabolomics may highlight 
their difference. Abnormal sphingolipid metabolism is a common characteristic of both models, while AA metab-
olism, linoleic acid metabolism and glycerophospholipid metabolism are highlighted in DS model.

DS model not only involves the histopathological changes or abnormal biochemistry but can reveal potential 
biomarkers related to renal fibrosis, oxidative stress, inflammation and digestive disorders that are presented 
patients with CKD. This result is consistent with actual clinical situation. This consistence is beneficial for the 
translational medicine research and presents a greater advantage in the evaluation of disease and in the pharma-
cological study of drugs.
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